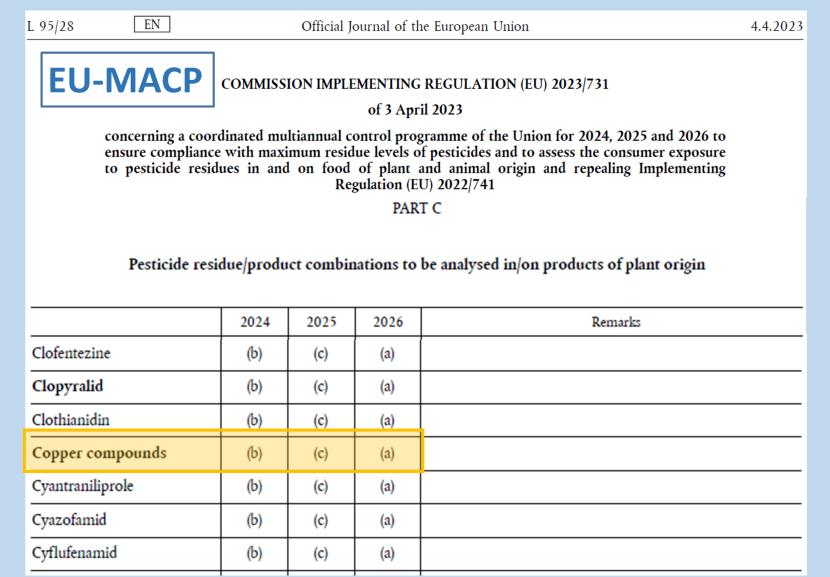


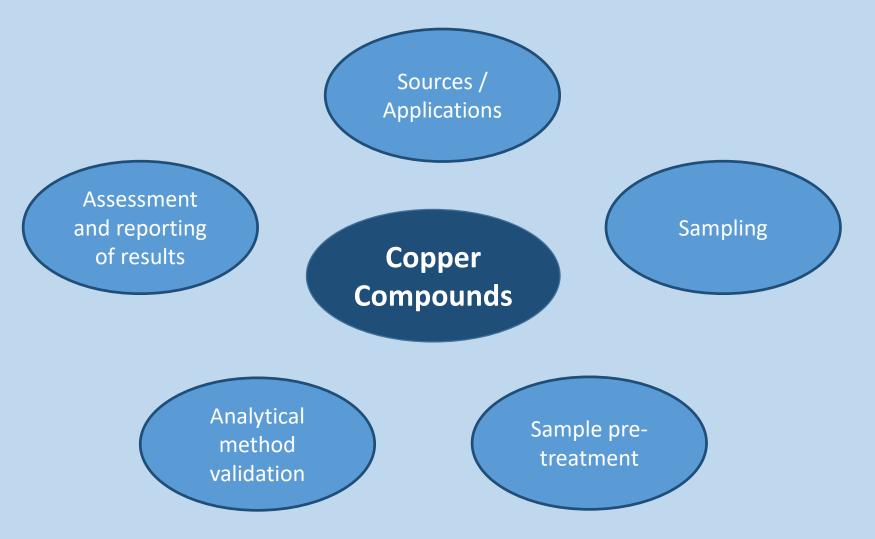
EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Current Challenges in the Analysis of Copper Pesticide Residues

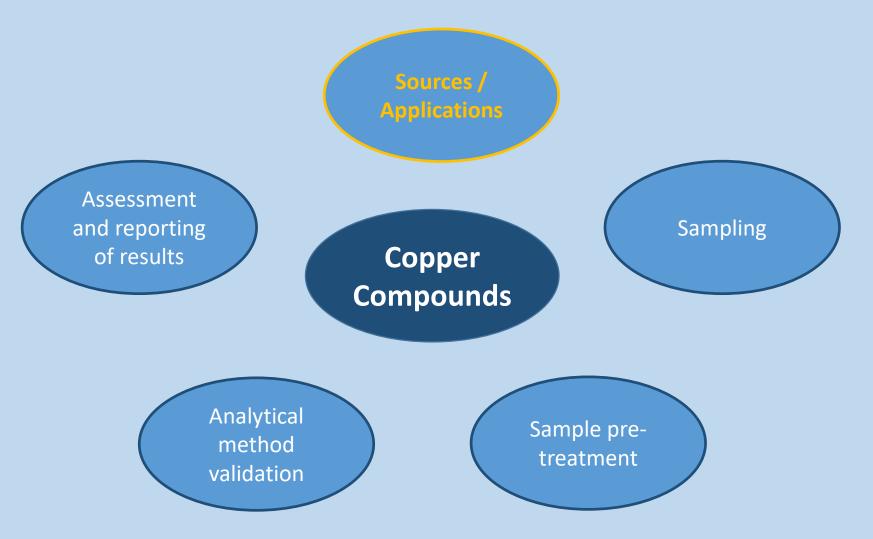

<u>E. Eichhorn¹</u>, Ann-Kathrin Schäfer¹, Susanne Maier², Jörg Rau², M. Anastassiades¹

 European Union Reference Laboratory for Pesticides requiring Single Residue Methods, located at the Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, Fellbach, Germany
 Laboratory for elemental analyses, located at the Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, Fellbach, Germany

> EURL-SRM Workshop 01st & 02nd July 2024, Fellbach, Germany



Copper Compounds Introduction


Copper Compounds | Challenges

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Copper Compounds | Challenges

Copper Compounds | Sources and Applications 1

- antimicrobial agent, especially against fungi and bacteria
 - **non-dietary sources**: personal care products, biocides, veterinary medicine,....
 - use as a **pesticide**

EURL-SRM

Copper Compounds | Sources and Applications 2

USE AS A <u>PESTICIDE</u>:

- approved pesticide active substances according to Reg. (EC) No. 1107/2009
 - Bordeaux mixture*
 - Copper hydroxide
 - Copper oxide
 - Copper oxychloride
 - Tribasic copper sulphate
 - various applications on fruits, vegetables and cereals
 - > application also approved in organic production according to VO (EU) 2021/1165
- component of other a.s.'s:
 - Mancopper (manganese and copper salt of ethylene-bis-dithiocarbamate)
 - Oxine Copper (Copper salt of 8-Hydroxyquinoline)

Residue definition according to Reg. (EU) No. 396/2005: *Copper Compounds*

* Bordeaux mixture: Mixture of <u>copper</u>sulfate & calcium oxide

Copper Compounds | Sources and Applications 3

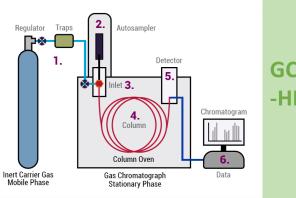
- <u>antimicrobial agent</u>, especially against fungi and bacteria
 - Non-dietary sources: personal care products, biocides, veterinary medicine,....
 - Use as a **pesticide**
- **Essential micro-nutrient** for all living organisms as a component of enzymes
 - feed additive for all species (Reg. (EC) No. 1334/2003), e.g. 35 mg Cu/kg feeding stuff for bovines
 - additive in infant and follow-on formulae as well as baby food
 - **food additives**: component of the pigments Cu-chlorophyll (E 141i) and –chlorophyllin (E 141ii)
 - component in fertilisers
 - > potential gradual enrichment of copper in the soil and therefore in food crops
 - Imitation: Max. 28 kg of copper per hectar over a period of 7 years (as PPP)

EU Reference Laboratories for Residues of Pesticides

Single Residue Methods

Finding copper?!

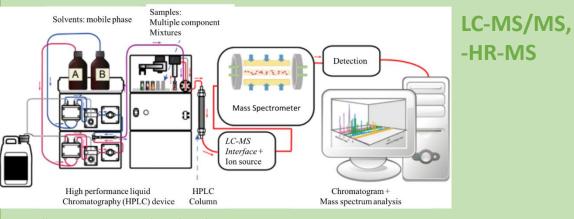
Copper Compounds | Current practice 1


EU Reference Laboratories for Residues of Pesticides

Single Residue Methods

Finding

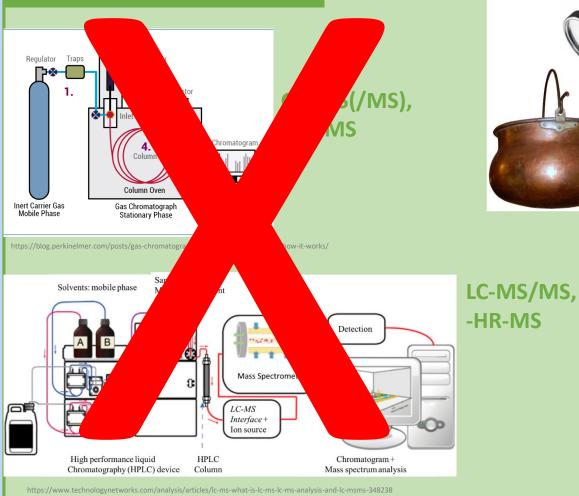
Copper Compounds | Current practice 1 Copper?!


usual analytical equipment in a pesticide lab

GC-MS(/MS), -HR-MS

https://blog.perkinelmer.com/posts/gas-chromatography-explained-what-it-is-and-how-it-works/

https://www.technologynetworks.com/analysis/articles/lc-ms-what-is-lc-ms-analysis-and-lc-msms-348238

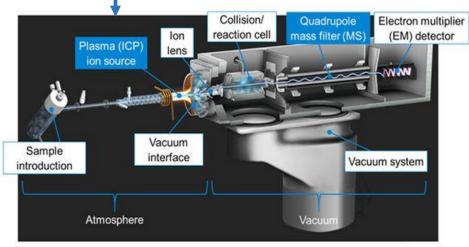


EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Finding

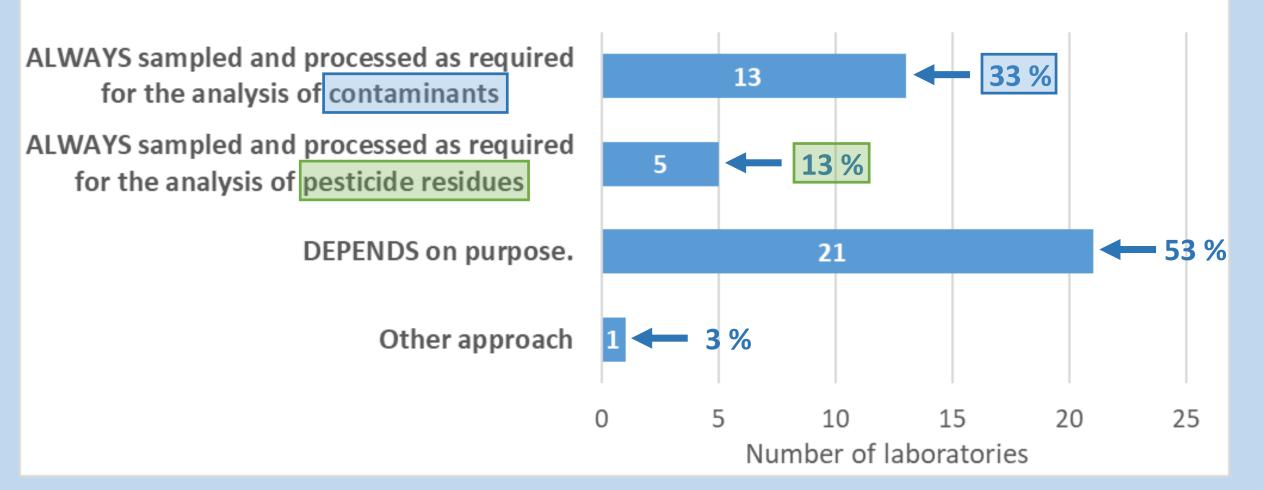
Copper Compounds | Current practice 1 Copper?!

usual analytical equipment in a pesticide lab



usual analytical equipment in a contaminant/heavy metal lab

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)



https://www.agilent.com/en/product/atomic-spectroscopy/inductively-coupled-plasma-mass-spectrometry-icp-ms/what-is-icp-ms-faqs/

Copper Compounds | Current practice 2

EU-wide OfL survey, conducted by the EURL-SRM in 2024

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Copper Compounds | Current practice 3

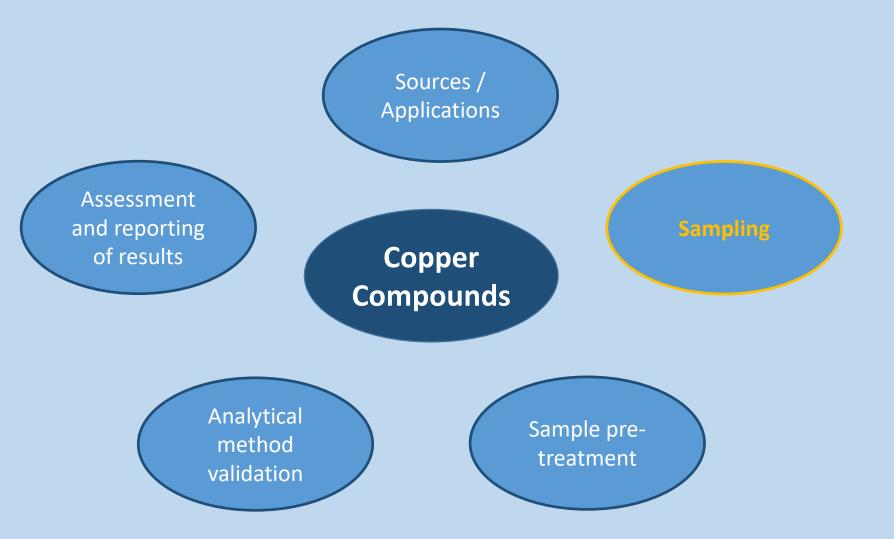
Weigh sample homogenate into a Teflon vessel

2.0 g (fruit & vegetables)0.5 g (dry and high oil content comm.)1.0 g (Egg, milk, meat entrails)

Addition of acidic solution: HNO₃ and H₂O₂

Microwave

digestion


Measurement with ICP-MS

Copper Compounds | Challenges

L 187/30

Copper Compounds | Sampling

for pesticide analysis Dir. 2002/63/EC: EN Official Journal of the European Communities 16.7.2002

COMMISSION DIRECTIVE 2002/63/EC

of 11 July 2002

establishing Community methods of sampling for the official control of pesticide residues in and on products of plant and animal origin and repealing Directive 79/700/EEC

for contaminant analysis

Copper Compounds | Sampling

	fo	r pesticide	analysis	for contaminant analysis	
Dir. 2	2002/63/EC:				
	Plant products: description of	Table 4 primary samples an	nd minimum size of labora	tory samples	
	Commodity classification (¹)	Examples	Nature of primary sample to be taken	Minimum size of each laboratory sample	
Primary	r food commodities of plant	origin			
1.	All fresh fruits All fresh vegetables includin	g potatoes and sugar	beets and excluding herbs		
1.1.	Small sized fresh products units generally < 25 g	Berries, peas, olives	Whole units, or packages, or units taken with a sampling device	1 kg	
1.2.	Medium sized fresh prod- ucts, units generally 25 to 250 g	Apples, oranges	Whole units	1 kg (at least 10 units)	
1.3.	Large sized fresh products, units generally > 250 g	Cabbages, cucum- bers, grapes (bunches)	Whole unit(s)	2 kg (at least 5 units)	

	fo	r pesticide	analysis	for contaminant analysis	
Dir. 2	002/63/EC:				
		Table 4			
P	lant products: description of	primary samples a	nd minimum size of labora		
	Commodity classification (¹)	Examples	Nature of primary sample to be taken	Minimum size of each laboratory sample	
	-a fresh vegetable -adin	g potatoes	beets and en en herbs		
1.2.	Medium sized fresh prod- ucts, units generally 25 to 250 g	Apples, oranges	Whole units	(at least 10 units)	
1.3.	Large sized fresh products, units generally > 250 g	Cabbages, cucum- bers, grapes (bunches)	Whole unit(s)	2 kg (at least 5 units)	
	1				

for pesticide analysis	for contaminant analysis			
Dir. 2002/63/EC:	Reg. (EC) No. 333/2007:			
Table 4	29.3.2007 EN Official Journal of the European Union L 88/29			
Plant products: description of primary samples and minimum size of laboratory samples	COMMISSION REGULATION (EC) No 333/2007 of 28 March 2007			
Commodity classification (1) Examples Nature of primary sample to be taken laboratory sample	laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs			
Portional igin of the second s				
1.2. Medium sized fresh prod- ucts, units generally 25 to 250 g Whole units (at least 10 units)				
1.3. Large sized fresh products, units generally > 250 g Cabbages, cucumbers, grapes (bunches) Whole unit(s) 2 kg (at least 5 units)				

		pesticide	anarysis	
Dir. 2	2002/63/EC:			
		Table 4		
1	Plant products: description of	primary samples ar	nd minimum size of laborat	tory <mark>samples</mark>
	Commodity classification (1)	Examples	Nature of primary sample to be taken	Minimum size of each laboratory sample
	Contraction of the second seco	jġn		
	a fresh vegetaba	g potatoes	beets and en herbs	
1.2.	Medium sized fresh prod- ucts, units generally 25 to 250 g	Apples, oranges	Whole units	(at least 10 units)
1.3.	Large sized fresh products, units generally > 250 g	Cabbages, cucum- bers, grapes (bunches)	Whole unit(s)	2 kg (at least 5 units)

for nesticide analysis

for contaminant analysis

Reg. (EC) No. 333/2007:

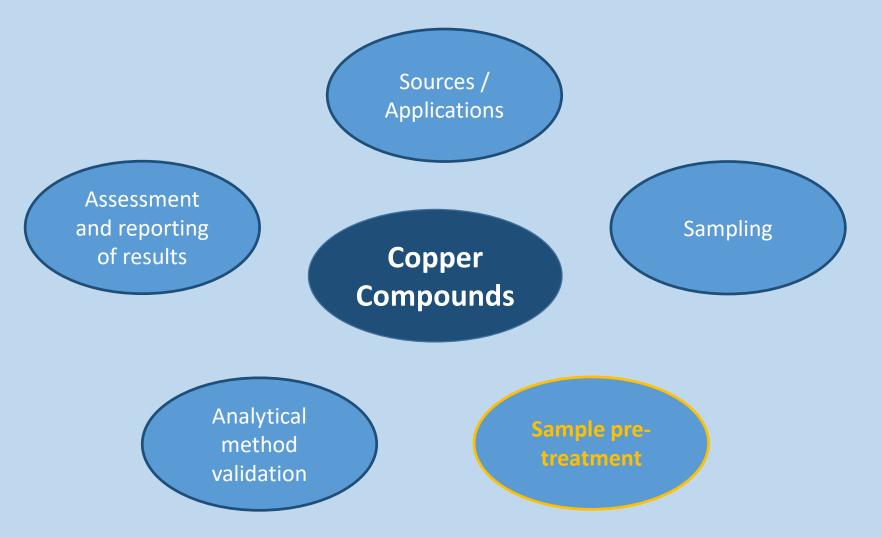
B.2.2. Number of incremental samples

For food, other than food supplements, dried spices or herbs, dried fungi, algae or lichen, the aggregate sample shall be at least 1 kilogram or 1 litre, except where it is not possible, e.g. when the sample consists of 1 package or unit.

For food, other than food supplements, the minimum number of incremental samples to be taken from the lot or sublot shall be in accordance with Table 3.

Table 3

Minimum number of incremental samples to be taken from the lot or sublot of food, other than food supplements

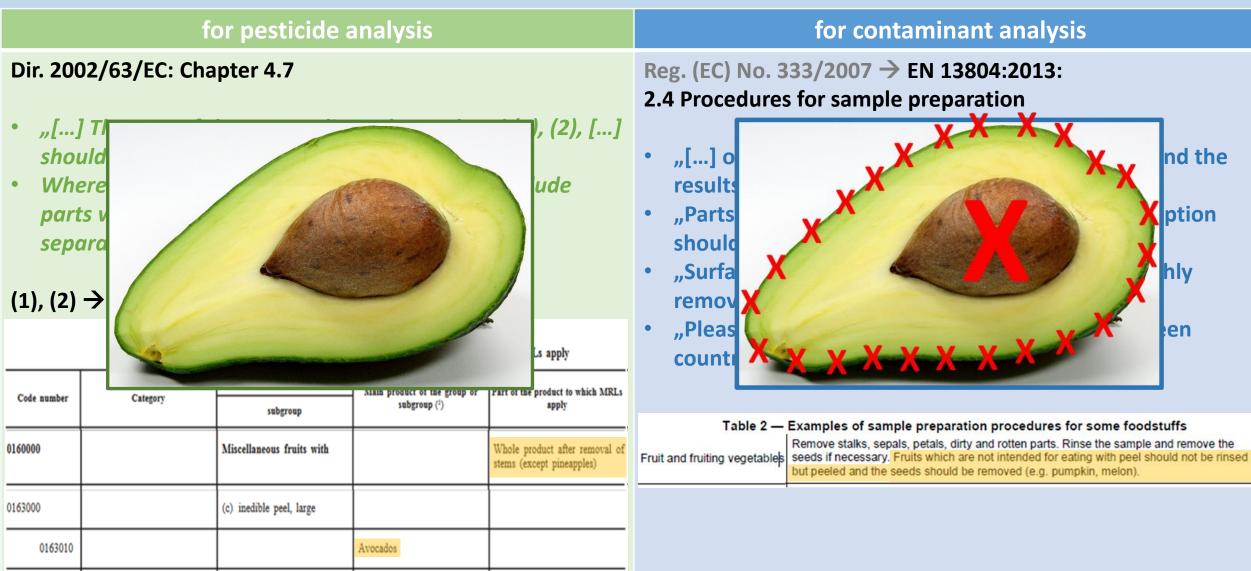

Weight or volume of lot/sublot (in kilogram or litre)	Minimum number of incremental samples to be taken
< 50	3
\geq 50 and \leq 500	5
> 500	10

for pesticide analysis	for contaminant analysis			
Dir. 2002/63/EC:	Reg. (EC) No. 333/2007:			
Table 4	B.2.2. Number of incremental samples			
Plant products: description of primary samples and minimum size of laboratory samples	For food, other than food supplements, dried spices or herbs, dried fungi, algae or lichen, the aggregate sample shall be at least 1 kilogram or 1 litre, except where it is not possible, e.g. when the			
Commodity classification (¹) Examples Nature of primary sample to be taken Minimum size of each laboratory sample	sample consists of 1 package or unit. For food, other than food supplements, the minimum number of incre-			
1. The first vegetable and ing potatoes are beets and exercise herbs	Por 1000, other than 1000 subject entry. the infinitum multipler of incre-			
	Minimum number or sul Weight or volume of lot/sublot (m Ispanning to the lot ents			
1.2. Medium sized fresh prod- ucts, units generally 25 to 250 g Whole units Whole units (at least 10 units)	kilogram or litre) samples to be taken			
1.3.Large sized fresh products, units generally > 250 gCabbages, cucum- bers, (bunches)Whole unit(s)2 kg (at least 5 units)	\geq 50 and \leq 500 5			
	> 500			

Copper Compounds | Challenges

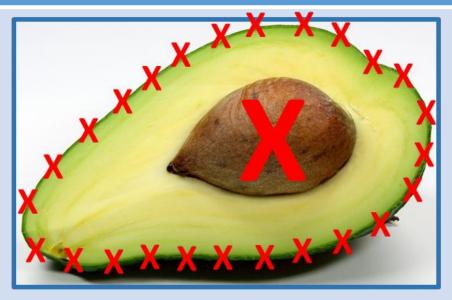
for pesticide analysis	for contaminant analysis
Dir. 2002/63/EC: Chapter 4.7	
 <i>"[]</i> The part of the commodity to be analysed (1), (2), [] should be prepared as soon as practicable. Where the residue level must be calculated to include parts which are not analysed, the weights of the separated parts must be recorded." 	

	for pesticide analysis					
Dir. 200	Dir. 2002/63/EC: Chapter 4.7					
shou • Whe part sept	 "[] The part of the commodity to be analysed (1), (2), [] should be prepared as soon as practicable. Where the residue level must be calculated to include parts which are not analysed, the weights of the separated parts must be recorded." (1), (2) → Reg. (EU) No. 396/2005 Annex I: 					
	Pro	ducts of plant and animal origi	PART A in referred to in Article 2(1) to	which MRLs apply		
		Group	Main product of the group or	Part of the product to which MRLs		
Code number	Category	subgroup	subgroup (1)	apply		
0160000		Miscellaneous fruits with		Whole product after removal of stems (except pineapples)		
0163000		(c) inedible peel, large				
0163010			Avocados			



	fc	or pesticide a	analysis		for contaminant analysis
Dir. 200	2/63/EC: Cha	pter 4.7			
 ,, (2), [] Where parts v separa (1), (2) → 					
Code number	Category	subgroup	Main product of the group or subgroup (¹)	Part of the product to which MRLs apply	
0160000		Miscellaneous fruits with		Whole product after removal of stems (except pineapples)	
0163000		(c) inedible peel, large			
0163010			Avocados		

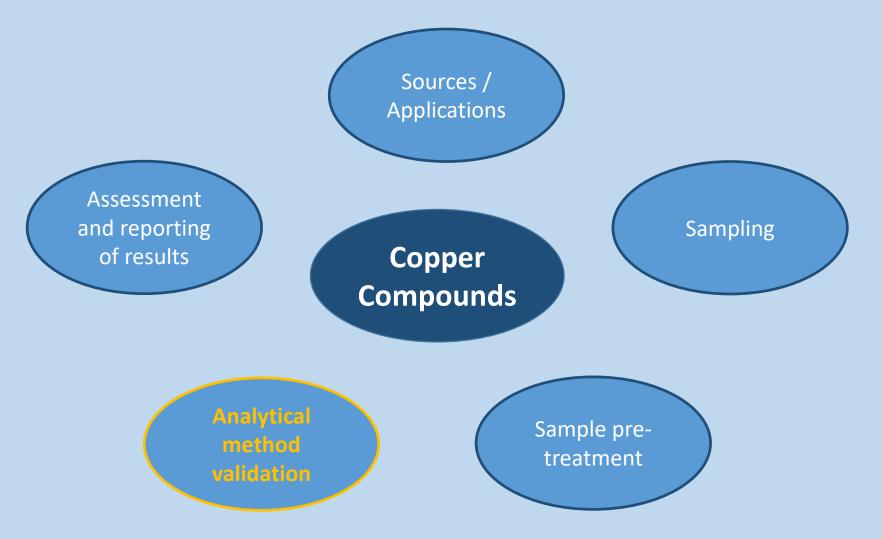
	fo	or pesticide a	analysis		for contaminant analysis		
Dir. 20	02/63/EC: Cha	pter 4.7		, (2), []	Reg. (EC) No. 333/2007 → EN 13804:2013: 2.4 Procedures for sample preparation		
sho • Wh par sep (1), (2)	uld ere ts v ara			ude	 "[] only the edible part should be investigated and the results should refer to this part" "Parts which are usually not intended for consumption should be removed" "Surface contamination like soil should be thoroghly removed by rinsing with drinking water" "Please note that the edible part can differ between 		
Code number	Category		Main product of the group of subgroup (*)	Ls apply	countries"		
		subgroup	suproup ()	*****	Table 2 — Examples of sample preparation procedures for some foodstuffs		
0160000		Miscellaneous fruits with		Whole product after removal of stems (except pineapples)	Fruit and fruiting vegetables Remove stalks, sepals, petals, dirty and rotten parts. Rinse the sample and remove the seeds if necessary. Fruits which are not intended for eating with peel should not be rinsed but peeled and the seeds should be removed (e.g. pumpkin, melon).		
0163000		(c) inedible peel, large					
0163010			Avocados				
	1	1	1				



for pesticide analysis

for contaminant analysis

Avocados are the perfect example of the two different main goals of both approaches:


Control of the Good Agricultural Practice

←→

Monitoring of the actual consumer intake

Copper Compounds | Challenges

		for pesticide analysis		for contaminant analysis
A ty <u>Inst</u>	ypical example o rumental sample Conditioning I Calibration sto Reagent blan Blank sample 5 spiked samp 5 spiked samp Calibration sto	TE/11312/2021v2 of the experimental set up of a validate a sequence: blanks in GC * e.g. involving brack andards* calibration using 60 % k 120 %-levels oles at target LOQ oles at 2-10 x target LOQ	eting 6- and	
	Parameter	What/how	Criterion	
LO	DQ	Lowest spike level meeting the identification and method performance criteria for recovery and precision	≤MRL	
Sp	ecificity	Response in reagent blank and blank control samples	≤ 30 % of RL	
Re	covery	Average recovery for each spike level tested	70-120 %	
Pre	ecision (RSD _r)	Repeatability RSD, for each spike level tested	≤ 20 %	

for pesticide analysis

Document Nº SANTE/11312/2021v2

Validation experiment results: 10 mg/kg

	ICP-MS signal (Counts)									
Mass trace	Blank	Matrix Calib. 60 %	Matrix Calib. 120 %	Rec. 1	Rec. 2	Rec. 3	Rec. 4	Rec. 5	Matrix Calib. 60 %	Matrix Calib. 120 %
Lutetium m/z 175 (ISTD)	8.23E+05	8.03E+05	7.90E+05	8.13E+05	8.23E+05	8.32E+05	8.35E+05	8.48E+05	8.26E+05	8.10E+05
Copper m/z 63	4.30E+05	9.98E+05	1.87E+06	1.57E+06	1.64E+06	1.66E+06	1.62E+06	1.62E+06	1.02E+06	1.86E+06
Recovery (%)			98.1	101.3	101.5	98.8	97.0			
Average Recovery (%)						criteria fulfilled				
Relative standard deviation (\pm %)						criteria fulfilled				

for contaminant analysis

for pesticide analysis

Document Nº SANTE/11312/2021v2

Validation experiment results: 10 mg/kg

	ICP-MS signal (Counts)									
Mass trace	Blank	Matrix Calib. 60 %	Matrix Calib. 120 %	Rec. 1	Rec. 2	Rec. 3	Rec. 4	Rec. 5	Matrix Calib. 60 %	Matrix Calib. 120 %
Lutetium m/z 175 (ISTD)	8.23E+05	8.03E+05	7.90E+05	8.13E+05	8.23E+05	8.32E+05	8.35E+05	8.48E+05	8.26E+05	8.10E+05
Copper m/z 63	4.30E+05	9.98E+05	1.87E+06	1.57E+06	1.64E+06	1.66E+06	1.62E+06	1.62E+06	1.02E+06	1.86E+06
Recovery (%)			98.1	101.3	101.5	98.8	97.0			
Average	Recovery	(%)				criteria fulfilled				
Relative standard deviation (\pm %)			(±%)			criteria fulfilled				
Signal in Blank			26 % (of the avg. signal in recovery samples)					criteria fulfilled		

- natural content in avocado: approx. 2.8 mg/kg in average (based on CVUA data from 2019, n = 5)
- validation at lower levels virtually impossible
- Iowest succesfully validated level = MRL = legal LOQ: 10 mg/kg

for contaminant analysis

for pesticide analysis

Document Nº SANTE/11312/2021v2

Validation experiment results: 10 mg/kg

	ICP-MS signal (Counts)									
Mass trace	Blank	Matrix Calib. 60 %	Matrix Calib. 120 %	Rec. 1	Rec. 2	Rec. 3	Rec. 4	Rec. 5	Matrix Calib. 60 %	Matrix Calib. 120 %
Lutetium m/z 175 (ISTD)	8.23E+05	8.03E+05	7.90E+05	8.13E+05	8.23E+05	8.32E+05	8.35E+05	8.48E+05	8.26E+05	8.10E+05
Copper m/z 63	4.30E+05	9.98E+05	1.87E+06	1.57E+06	1.64E+06	1.66E+06	1.62E+06	1.62E+06	1.02E+06	1.86E+06
Recovery (%)			98.1	101.3	101.5	98.8	97.0			
Average	Recovery	(%)				criteria fulfilled				
Relative standard deviation (±%)					criteria fulfilled					
Signal in Blank			<pre>26 % (of the avg. signal in recovery samples)</pre>					criteria fulfilled		
(of the avg. signal in recovery samples)										

- **natural content in avocado:** approx. 2.8 mg/kg in average (based on CVUA data from 2019, n = 5)
- validation at lower levels virtually impossible
- Iowest succesfully validated level = MRL = legal LOQ: 10 mg/kg

for contaminant analysis

EN 13804:2013 → DIN 32645:2008-11

a) direct calibration curve method:

standard deviation (SD) of a number ≥20 of blank
 measurements

b) indirect calibration curve method:

- spike the analyte free sample at 10 equidistant
 concentrations of the expected LOD up to 10x of the
 LOD
- alternative: four spiking levels in triplicate
- SD is derived from the interceptions of the calibration curves
- Detection limit: 3x SD
- Limit of quantitation: 10x SD

for pesticide analysis

Document Nº SANTE/11312/2021v2

Validation experiment results: 10 mg/kg

	ICP-MS signal (Counts)									
Mass trace	Blank	Matrix Calib. 60 %	Matrix Calib. 120 %	Rec. 1	Rec. 2	Rec. 3	Rec. 4	Rec. 5	Matrix Calib. 60 %	Matrix Calib. 120 %
Lutetium m/z 175 (ISTD)	8.23E+05	8.03E+05	7.90E+05	8.13E+05	8.23E+05	8.32E+05	8.35E+05	8.48E+05	8.26E+05	8.10E+05
Copper m/z 63	4.30E+05	9.98E+05	1.87E+06	1.57E+06	1.64E+06	1.66E+06	1.62E+06	1.62E+06	1.02E+06	1.86E+06
Recovery (%)			98.1	101.3	101.5	98.8	97.0			
Average	Recovery	(%)				criteria fulfilled				
Relative standard deviation (±%)					criteria fulfilled					
Signal in Blank			<pre>26 % (of the avg. signal in recovery samples)</pre>					criteria fulfilled		
(of the avg. signal in recovery samples)										

natural content in avocado: approx. 2.8 mg/kg in average (based on CVUA data from 2019, n = 5)

- validation at lower levels virtually impossible
- Iowest succesfully validated level = MRL = legal LOQ: 10 mg/kg

for contaminant analysis

EN 13804:2013 → DIN 32645:2008-11

a) direct calibration curve method:

standard deviation (SD) of a number ≥20 of blank
 measurements

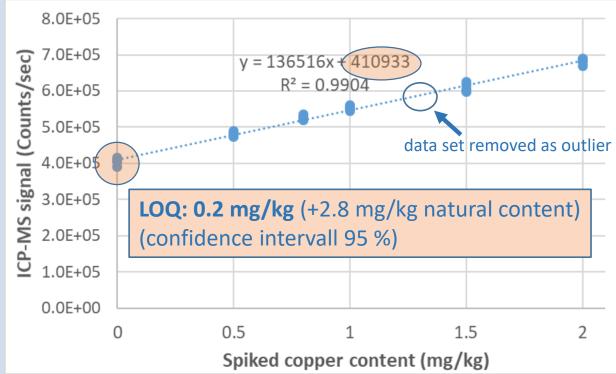
b) indirect calibration curve method:

- spike the analyte free sample at 10 equidistant concentrations of the expected LOD up to 10x of the LOD
- alternative: four spiking levels in triplicate
- SD is derived from the interceptions of the calibration curves
- Detection limit: 3x SD
- Limit of quantitation: 10x SD

for pesticide analysis

Document Nº SANTE/11312/2021v2

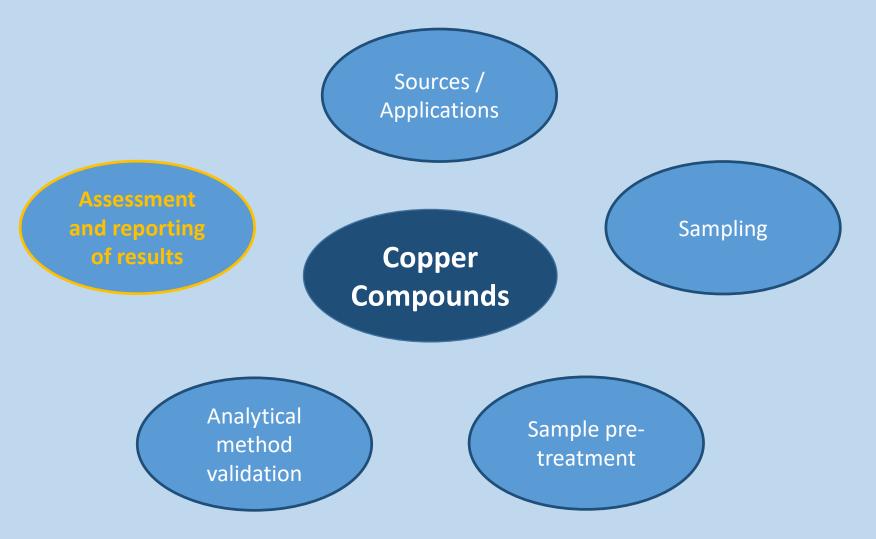
for contaminant analysis


EN 13804:2013 → DIN 32645:2008-11

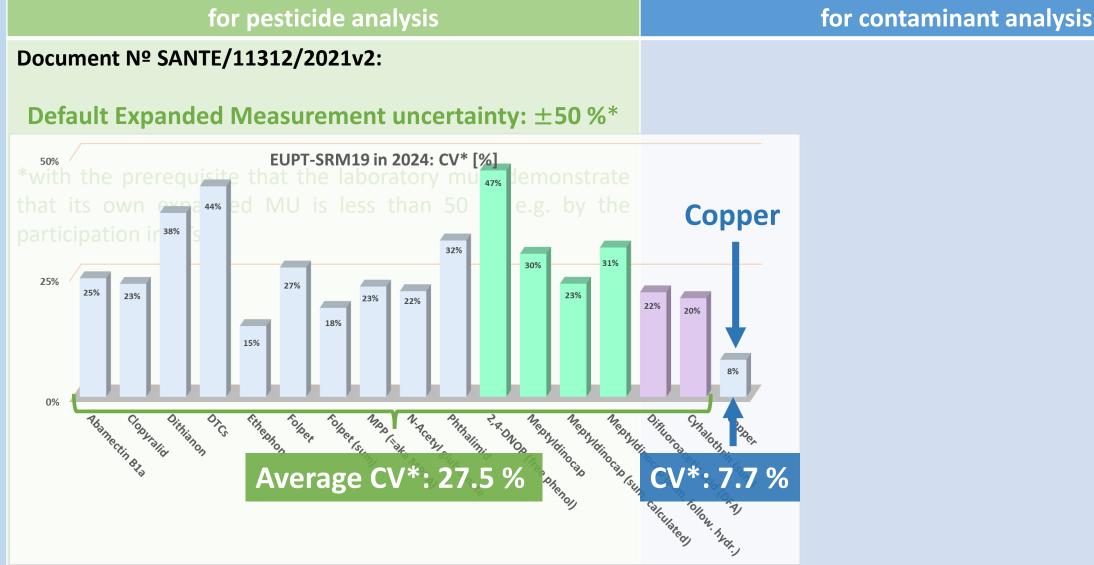
Validation experiment results: 10 mg/kg

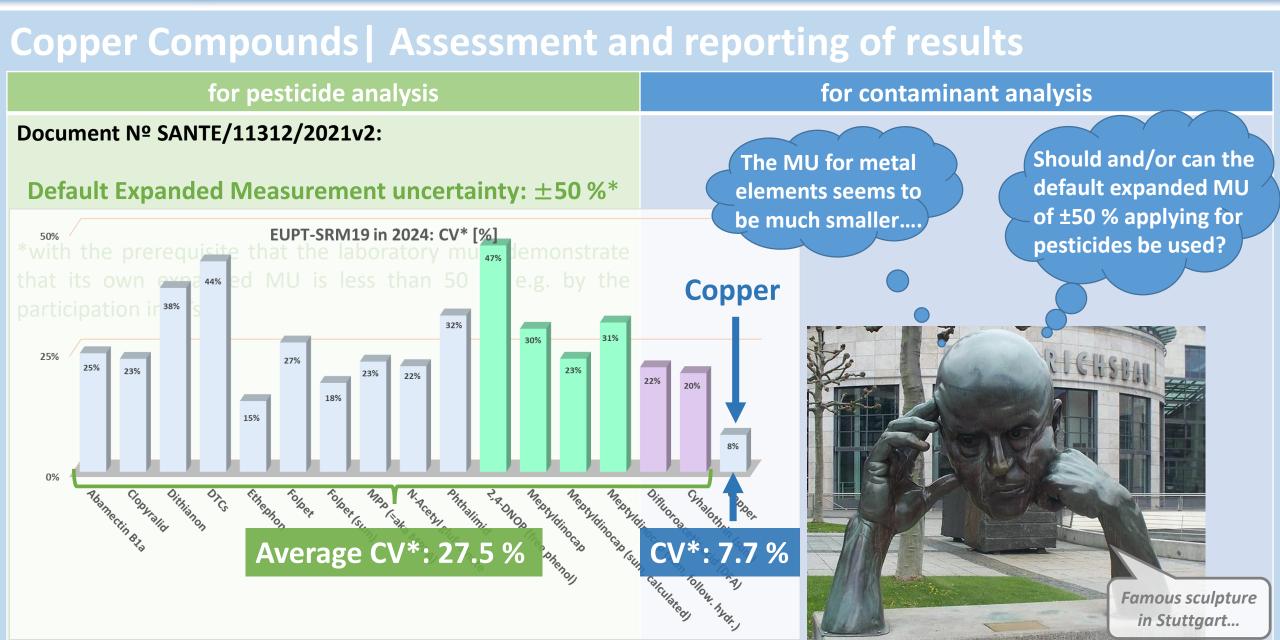
	ICP-MS signal (Counts)									
Mass trace	Blank	Matrix Calib. 60 %	Matrix Calib. 120 %	Rec. 1	Rec. 2	Rec. 3	Rec. 4	Rec. 5	Matrix Calib. 60 %	Matrix Calib. 120 %
Lutetium m/z 175 (ISTD)	8.23E+05	8.03E+05	7.90E+05	8.13E+05	8.23E+05	8.32E+05	8.35E+05	8.48E+05	8.26E+05	8.10E+05
Copper m/z 63	4.30E+05	9.98E+05	1.87E+06	1.57E+06	1.64E+06	1.66E+06	1.62E+06	1.62E+06	1.02E+06	1.86E+06
Recovery (%)			98.1	101.3	101.5	98.8	97.0			
Average	Recovery	(%)		99.3 (%)					criteria fulfilled	
Relative	standard	deviation	(±%)	2.0					criteria fulfilled	
Signal in Blank				26 % (of the avg. signal in recovery samples)					criteria fulfilled	

- **natural content in avocado:** approx. 2.8 mg/kg in average (based on CVUA data from 2019, n = 5)
- validation at lower levels virtually impossible
- Iowest succesfully validated level = MRL = legal LOQ: 10 mg/kg

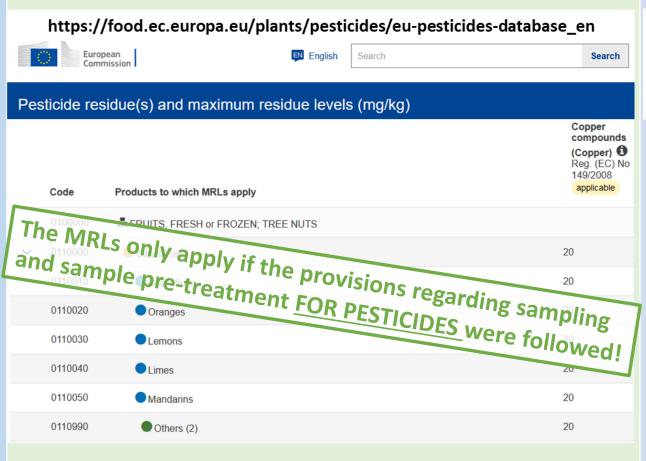

Validation experiments using 7 spiking levels, each n = 5

Data based on validation experiments by the elemental analysis laboratory of the CVUA Stuttgart, 06/2024


Copper Compounds | Challenges



for pesticide analysis	for contaminant analysis
Document Nº SANTE/11312/2021v2:	
Default Expanded Measurement uncertainty: \pm 50 %*	
*with the prerequisite that the laboratory must demonstrate that its own expanded MU is less than 50 %, e.g. by the participation in PTs	



for pesticide analysis https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en European EN English Search Search Commission Pesticide residue(s) and maximum residue levels (mg/kg) Copper compounds (Copper) 🕄 Reg. (EC) No 149/2008 applicable Code Products to which MRLs apply The MRLs only apply if the provisions regarding sampling and sample pre-treatment FOR PESTICIDES were followed! Limes 0110050 Mandarins 20 20 Others (2) 0110990

for contaminant analysis

for pesticide analysis

for contaminant analysis

- No maximum limits for copper in the contaminant law!
- toxicological assessment possible: health-based guidance value of 0.07 mg/kg bw per day

SCIENTIFIC OPINION

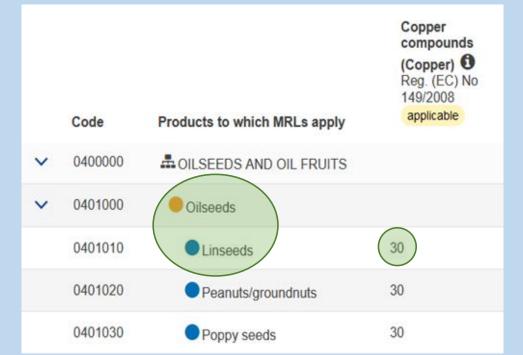
efsujournal

ADOPTED: 16 November 2022

doi: 10.2903/j.efsa.2023.7728

Re-evaluation of the existing health-based guidance values for copper and exposure assessment from all sources

EFSA Scientific Committee, Simon John More, Vasileios Bampidis, Diane Benford, Claude Bragard, Thorhallur Ingi Halldorsson, Antonio F Hernández-Jerez, Susanne Hougaard Bennekou, Kostas Koutsoumanis, Claude Lambré, Kyriaki Machera, Ewen Mullins, Søren Saxmose Nielsen, Josef R Schlatter, Dieter Schrenk, Dominique Turck, Maged Younes, Polly Boon, Gordon AA Ferns, Oliver Lindtner, Erik Smolders, Martin Wilks, Maria Bastaki, Agnès de Sesmaisons-Lecarré, Lucien Ferreira, Luna Greco, George E N Kass, Francesca Riolo and Jean-Charles Leblanc



Copper Compounds Chia seeds

Data from CVUA Stuttgart 2017-22	No. of samples	Mean	Median	Min	Max
Total	18	16.1	16.0	11.5	21.8
thereof from conventional production	1	14.2	-	-	-
thereof from organic production	17	16.2	16.0	11.5	21.8

> The use is rather analoguous to oilseeds (especially linseeds) but the MRL for pseudo-cereals applies

	Code	Products to which MRLs apply	Copper compounds (Copper) () Reg. (EC) No 149/2008 applicable
~	0500000	- CEREALS	10
	0500010	Barley	10
	0500020	Buckwheat and other pseudocereals	10
	0500030	Maize/corn	10
	0500040	Common millet/proso millet	10

Copper Compounds | Bovine liver

Data from CVUA Stuttgart and Freiburg 2010-22	No. of samples	Mean	Median	Min	Max	MRL
Bovine liver	113	56	45	1.4	255	
Calf liver	22	112	117	1.4	330	30
Chicken liver	55	3.3	3.1	1.8	4.8	50
Swine liver	75	10	8.5	4.8	36	

Ruminants, including bovines, have genetic disadvantages when it comes to copper retention in the liver (target organ)

- \rightarrow Resorption rate of approx. 20 %
- → ACCUMULATION (EFSA 2023)
- Possible sources:
 - ! Feeding stuff: additive!, natural content, pesticide application,...
 - veterinary medicine,...

Copper Compounds | Summary

There are **DISCREPANCIES** between the field of pesticides and the field heavy metals/contaminants, regarding....

- analytical instruments used
- sampling
- sample pre-treatment
- analytical method validation and LOQ determination
- expression of results in regards to applying measurement uncertainty
- assessment of results do NOT mix the data of copper contents in samples otherwise....
 - wrong natural background assessments
 - wrong intake calculations
 - wrong conclusions as regards to MRL conformity

There is a need of EU-wide consolidation!

Thank you for your attention!

Questions to:

eric.eichhorn@cvuas.bwl.de or eurl-srm@cvuas.bwl.de

Bendedikt

Hornung

Hubert

Zipper

Hanna

Dias

Cristin

Wildgrube

Karst Doro

Andrea

Dorota Stanislawcyk Mack

Anja

Barth

Sabrina

Goerlich

Eric

Eichhorn

Kathi

Hacker

Karin

Leonie Moser

Pat

Schreiter

Lötterle

Irina

Fieberg

Sigrid Schüler

Bärbel

Heike

Welzel

Marc

Wieland

Anne

Benkenstein

Ellen

Scherbaum

Bruno

Sauer

Giovanna Cerchia

Michelangel Anastassiade

Susanne Maier

Carolin Löw

Gabriele Wahl

Bettina Rupp

Dr. Jörg Rau

Elemental Analysis team of the CVUA Stuttgart

Pesticide team of the CVUA Stuttgart

Rothenbächer