

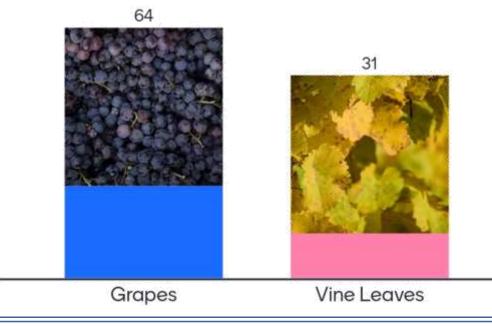
EURLs for Residues of Pesticides Single Residue Methods

Photo by kstudio, www.freepik.com

EUPT-SRM19 (Grape-Matrix) and News from SRM

M. Anastassiades P. Schreiter / A.-K. Schäfer / E. Eichhorn / K. Hacker A. Barth / B. Hornung / D. Mack / B. Sauer

EURL-SRM Selection of Commodity & Pesticides to be spiked


COMMODITY & DATE Selection

AdvG-Meeting (Jun 2023)

- Tentative matrices: Grapes or Vine Leaves
- > Tentative timing: 1st EUPT in 2024-season (shipment early Feb. 24)

EURL-Workshop (Oct 2023)

Survey: "Which matrix do you propose for the EUPT-SRM19 (2023)?"

EUPT-SRM19 Organisation

Collection of info on underperformance: Apr.-Jun. 2024

CALENDAR for the EUPT – SRM19

N TUE WED

Matrix: Grape Homogenate

(update an 20/11/2023)

Activity	Dates
Announcement of the EUPT-SRM19 opening of the EUPT-SRM19 Website with links to all relevant documents.	10 Nov. 2023
Registration Period for EUPT-SRM19 via "EURI-OstePool" Labe stacofied as "OBIGED" to participate in the EUPT-SRM19 <u>MUST</u> inter the EUPT-Registration Form within the EURI-DataPool and either register OR give <u>geptionations for mon-participation</u>	15 Dec. 2023 – 7 Jan. 2024*
Dispatch of EUPT-SRM19-Specific Protocol	by 18 Jan. 2024
Shipment of EUPT-SRM19 Test Item	5 Feb. 2024
Confirming Sample Receipt and Acceptance via "EUPI-SIM19 Result Submission Wolfmai"	From 6 Feb. 2024 onwards
Submission of Results (Pesticide scope, Results, Method Info) via "EUPT-Stitt13 Result Submission Webman"	12 Feb12 March 23 h (11 p.m.) CET
Submission of Additional/Missing Information e.g. Method who on testatively false regative results via "SUPT-SIMED Result Submission Websion"	13 - 21 March 2024
Dispatch of Preliminary Report containing results as well as preliminary assigned values and t-scores only	Within 3 weeks after the submission deadline
Collection of reasons for underperformance and missing information on methods	April & May 2024
Dispatch of Final Report	Dec. 2024

*Please make sure to register for the EUPT from IS December 2023 to the deadline 7 January 2024 via EURC-DataPool, Any wish for registration after this deadline or not using the registration website cannot be considered.

REMARK

Please note that the dates given above may be subject to minor changes. In case of changes significantly affecting the participants or their results, the participants will be informed via e-mail. However, please still check periodically our website for possible updates in case the email does not get through to you. Contact: earlierd-arm@count.bwi.de

The EUPT-SRM Team

Selection of Commodity & Pesticides to be spiked

ANALYTE Selection for TARGET LIST - Factors considered for includion

- a) EU Monitoring Documents (MACP-Reg. & WD for NCPs):

EURL-SRM

- Spiked: Avermectin B1a, Clopyralid, Copper, Dithianon, DTCs, Folpet/PI, MPP, NAGlu, ...
- Non-spiked: 2,4-D, Captan/THPI, Chlormequat, Emamectin B1a, Ethephon, Glufosinate ...
- - Spiked: Meptyldinocap, 2,4-DNOP; EXTRA: Gamma Cyhalothrin (Chiral Chr/phy), DFA
 - Non-spiked: Amitrole, MCPA, Triclopyr, Trimesium
- b) Suggestions/Voting by EUPT-Scientific Committee
- c) Relevance to matrix (Not to fruits in general this time, as grapes are sprayed with a very wide range of compounds)
- d) Capacities and Capabilities of Participants (and of EURL-SRM): Keep no. of methods moderate

EURL-SRM **SRM19 TARGET PESTICIDES List**

Compulsory Compounds

Compounds	Listed in	MRRL
2,4-D (free acid)	MACP-Reg. (grapes explicitly named)	0.01
Avermectin B1a	MACP-Reg.	0.01
Captan	MACP-Reg.	0.01
Captan (sum)	MACP-Reg.	0.03
ТНРІ	MACP-Reg.	0.01
Chlormequat-chloride	MACP-Reg. (grapes explicitly named)	0.01
Clopyralid	MACP-Reg. (grapes explicitly named)	0.01
Copper	MACP-Reg.	0.2
Dithianon	MACP-Reg. (grapes explicitly named)	0.01
Dithiocarbamates as CS ₂	MACP-Reg.	0.01
Emamectin B1a	MACP-Reg.	0.01
Ethephon	MACP-Reg. (grapes explicitly named)	0.01
Folpet	MACP-Reg.	0.01
Folpet (sum)	MACP-Reg.	0.03
Phthalimide	MACP-Reg.	0.01
Glufosinate	MACP-Reg.	0.01
MPP (aka MPPA)	MACP-Reg.	0.01
N-Acetyl Glufosinate	MACP-Reg.	0.01

Optional Compounds

Compounds	Listed in	MRRL
Amitrole	WD (grapes explicitly named)	0.01
MCPA (free acid)	WD (grapes explicitly named)	0.01
Meptyldinocap	WD (grapes explicitly named)	0.02
Meptyldinocap (sum <u>following hydrolysis</u>)	WD (grapes explicitly named)	0.01
Meptyldinocap (sum <u>calculated</u>)	WD (grapes explicitly named)	0.01
2,4 DNOP	WD (grapes explicitly named)	0.01
Triclopyr (free acid)	WD (grapes explicitly named)	0.01
Trimethylsulfonium cation	WD (grapes explicitly named)	0.01

Extra Compounds

Compounds	Listed in	MRRL
Difluoroacetic acid (DFA)	WD (grapes explicitly named)	0.02
Gamma-Cyhalothrin	WD (grapes explicitly named)	0.01

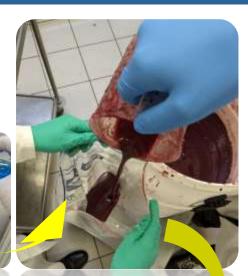
EURL-SRM PESTICIDES INCURRED AND SPIKED

OVERVIEW: COMPOUNDS APPLIED IN LAB AND INCURRED ONES

		compounds	
	residues incurred	spiked in the lab	Compound form used for spiking in the lab
Avermectin B1a	-	\checkmark	Avermectin B1a + B1b
Clopyralid	-	\checkmark	Clopyralid
Copper	> -	\checkmark	Copper sulfate pentahydrate
Dithianon	20 -	\checkmark	Dithianon
Dithiocarbamates as CS2	MANDATORN	\checkmark	Metiram (CELAFLOR)
Ethephon	-	\checkmark	Ethephon
Folpet	-	\checkmark	Folpet
Folpet metabolite Phthalimide	traces	\checkmark	Folpet metabolite Phthalimide
Glufosinate metabolite MPP (aka MPPA)	-	\checkmark	MPP (aka MPPA)
Glufosinate metabolite N-Acetyl Glufosinate	-	\checkmark	N-Acetyl Glufosinate
Meptyldinocap	- AL	\checkmark	Meptyldinocap
Meptyldinocap metabolite 2,4 DNOP		\checkmark	2,4 DNOP
Difluoroacetic acid (DFA)	-	\checkmark	Difluoroacetic acid (DFA)
Gamma Cyhalothrin	0.	\checkmark	Gamma Cyhalothrin + Lambda Cyhalothrin

Preparation of PT-Item

100 kg grapes frozen but left to partly defrost


Thermomix milling (<0°C) (liquid due to high sugar)

Filled into a tank and cooled down to -4°C

Spiked and homogenized (Silverson stirrer)

Liquid homogenate (at 4°C) filled into bags

Express delivery (with dry ice)

Bottling and sealing Snow

aling Snow-like material

Milling with dry ice

Bags placed in freezer

Preparation of PT-Item

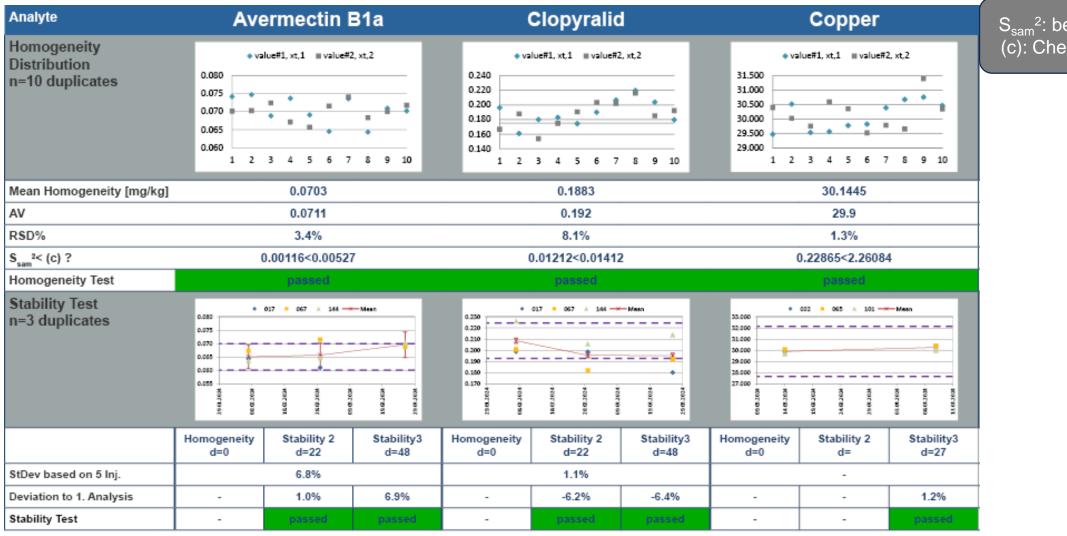
Spiked Homogenate portions in freezer

Milling w. dry ice

Despite cooling at -18°C for several days, homogenate
in the bags remained lethery soft
➢ Probably due to the high sugar content.

 Homogenate initially snow-like

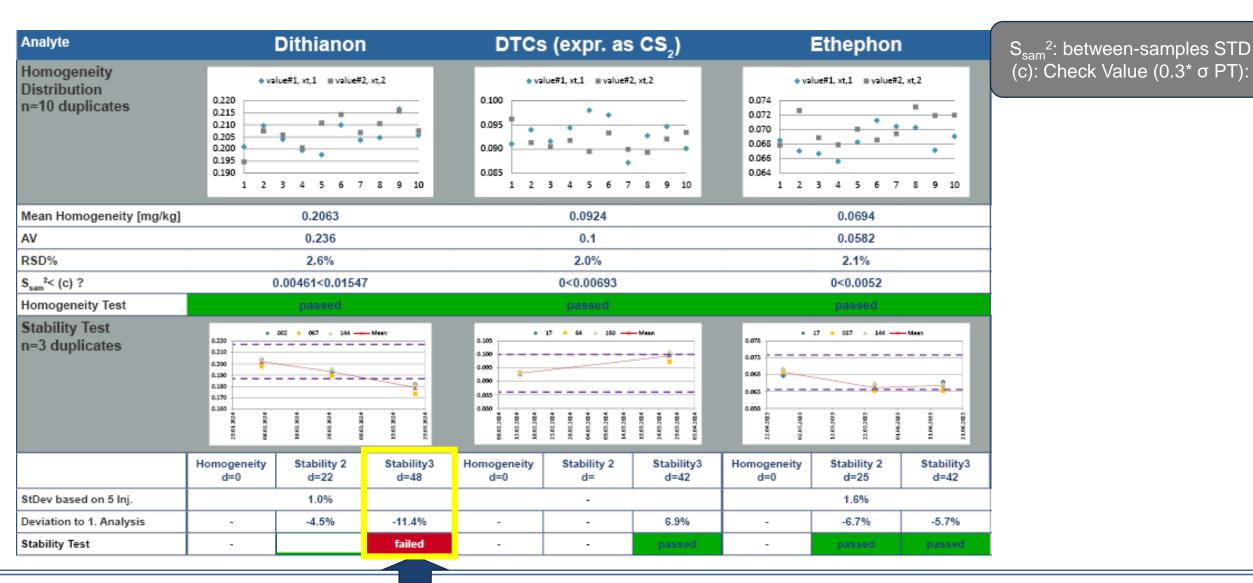
Material collapsed and hardened during shipment with dry ice


(Note: Temp. at sample receipt often <-40°C due to dry ice)

Fortunately: When material was left to warm up a bit it became easy to handle again

EURL-SRM

Homogeneity TEST/ Stability TEST


<u>Homogeneity and Stability Test Results – COMPULSORY COMPOUNDS</u>

S_{sam}²: between-samples STD (c): Check Value (0.3* σ PT): EURL-SRM

Homogeneity TEST/ Stability TEST

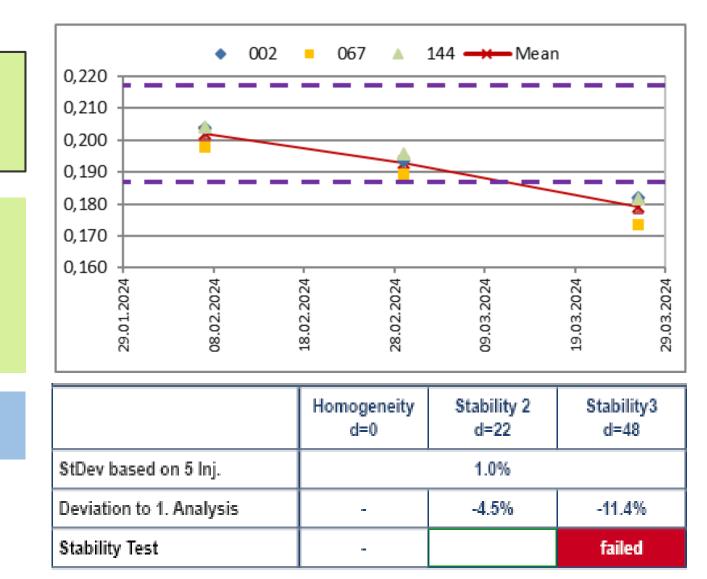
Homogeneity and Stability Test Results – COMPULSORY COMPOUNDS

Homogeneity TEST/ Stability TEST

Stability of DITHIANON

NOTES:

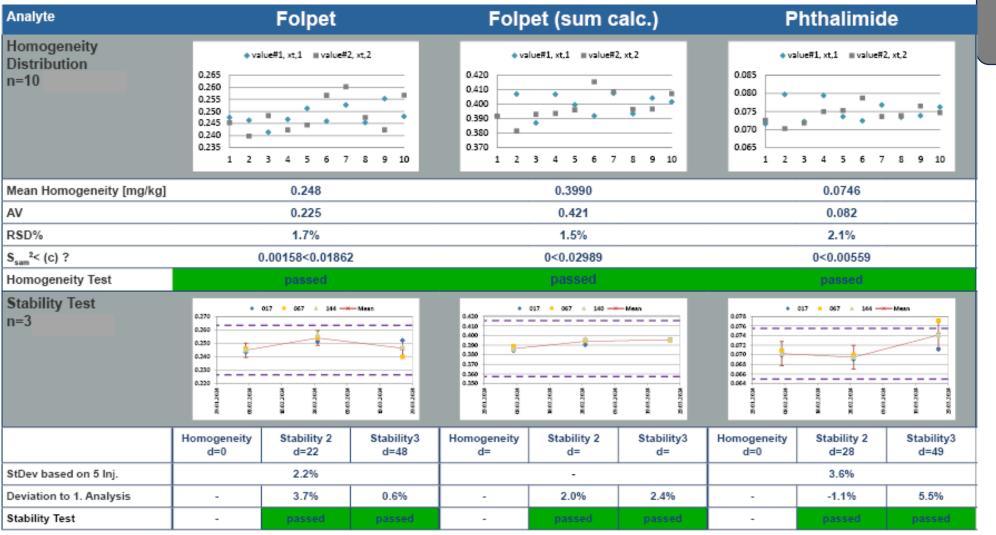
PT-Period: 38 d (shipping day not counted)! **Max. allowed deviation:** +/- 7.5% (=30% of target SD of 25%)


Extrapolation of stability based on slope

a) Slope of entire curve (D1-D3): Deviation Limit of -7.5% reached after ~31 d.

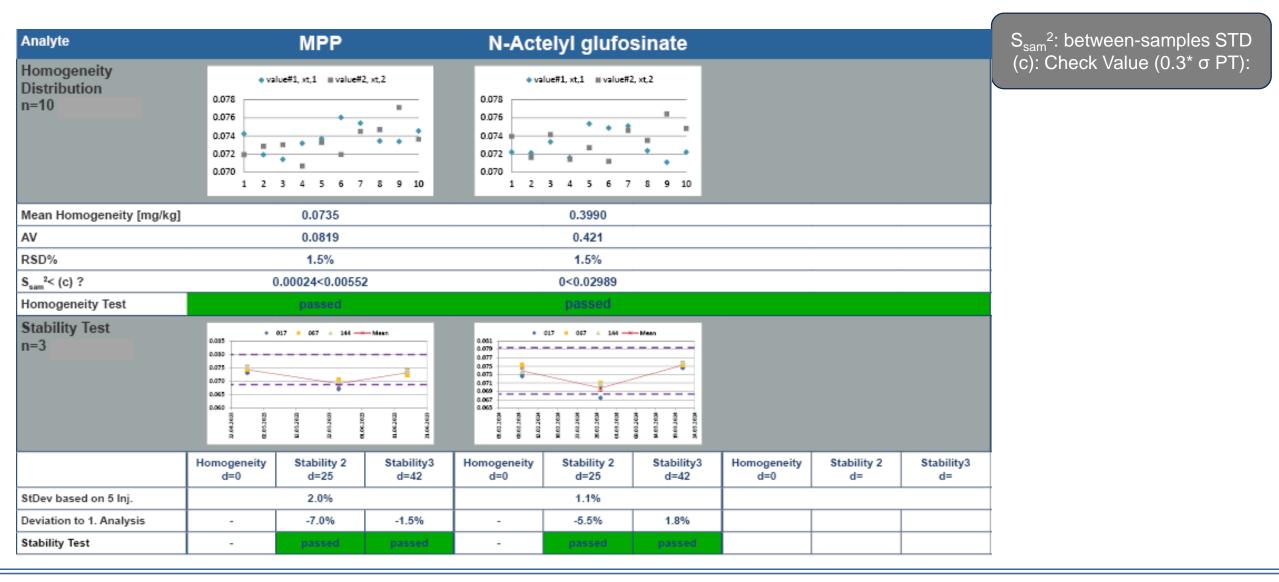
b) <u>Slope of (D1,D2):</u> Deviation Limit of -7.5% reached after ~**37 d.**

Conclusion: Stability of Dithianon was not sufficient !


 S_{sam}^{2} : between-samples STD (c): Check Value (0.3* σ PT):

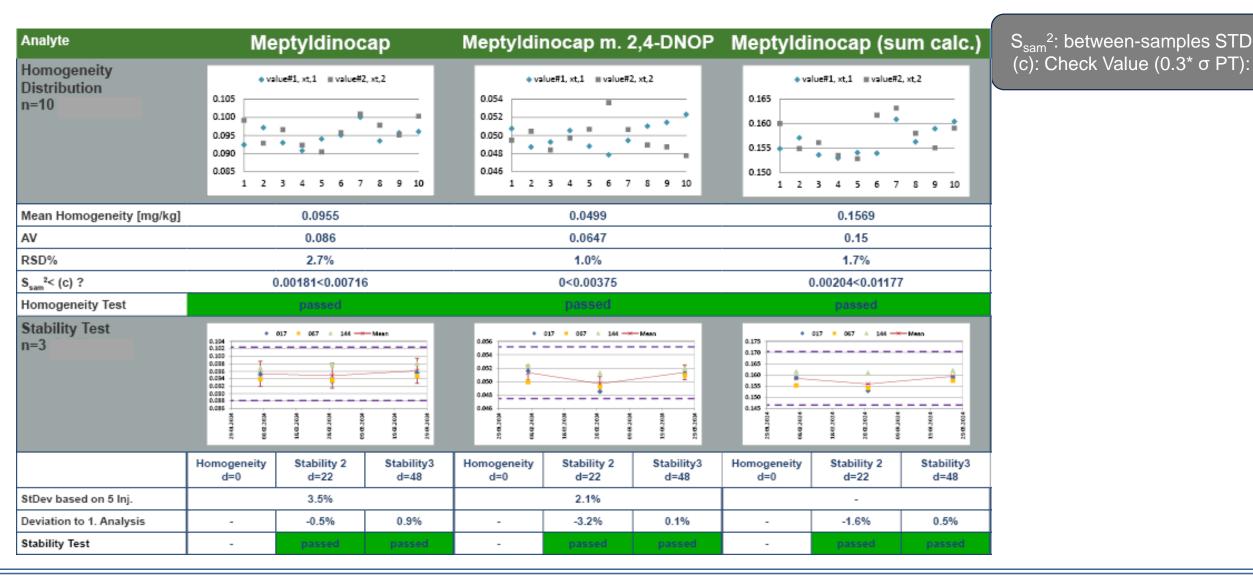
EURL-SRM

Homogeneity TEST/ Stability TEST

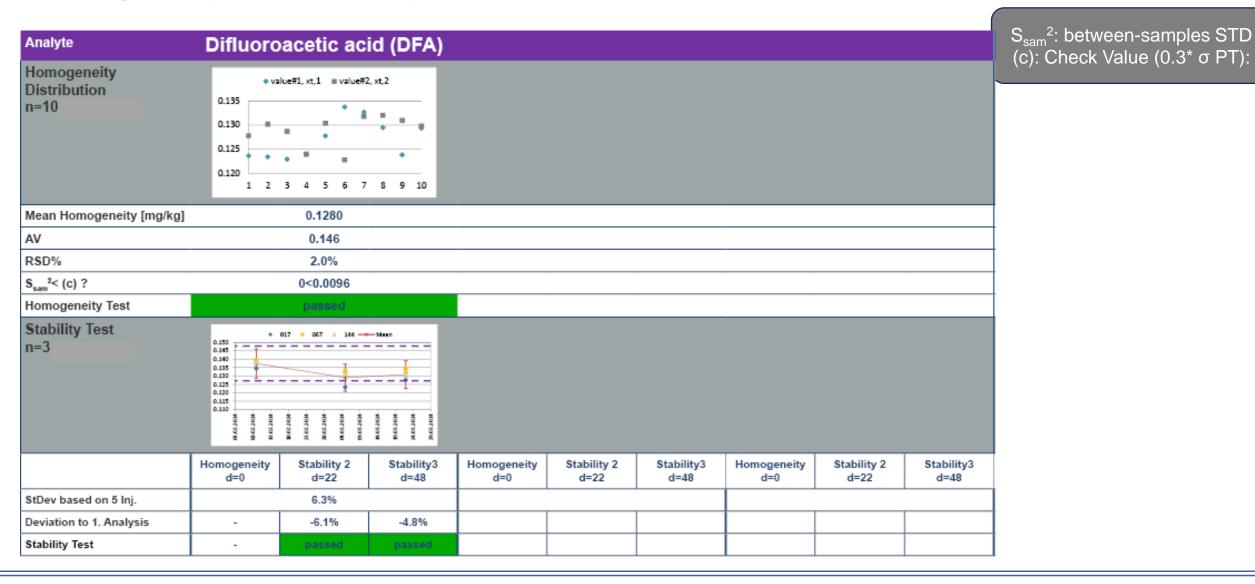

Homogeneity and Stability Test Results – COMPULSORY COMPOUNDS

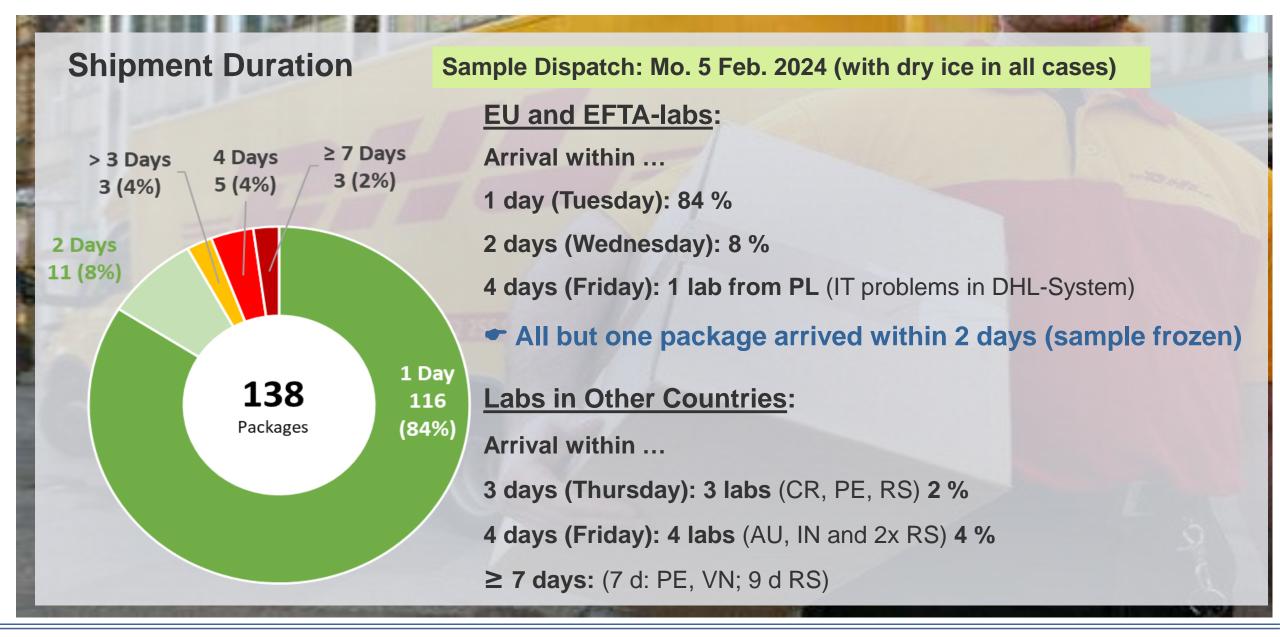
 S_{sam}^{2} : between-samples STD (c): Check Value (0.3* σ PT):

Homogeneity TEST/ Stability TEST


Homogeneity and Stability Test Results – COMPULSORY COMPOUNDS

Homogeneity TEST/ Stability TEST


Homogeneity and Stability Test Results – OPTIONAL COMPOUNDS


Homogeneity TEST/ Stability TEST

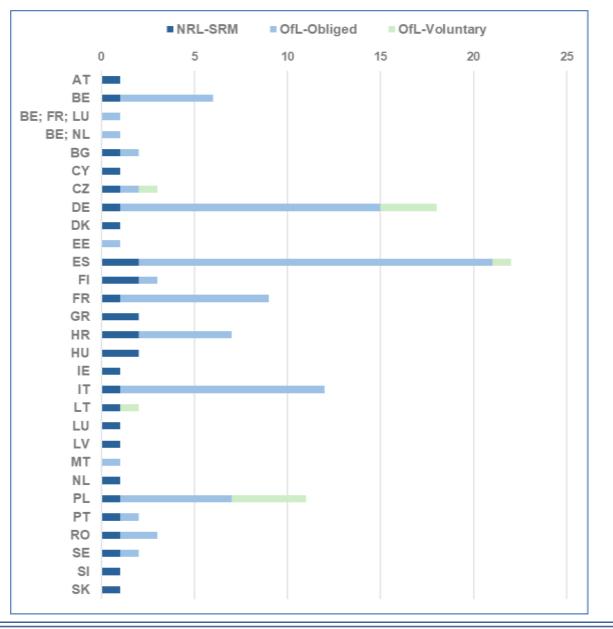
Homogeneity and Stability Test Results – EXTRA ANALYTE

EURL-SRM

Stability during shipping

Participating labs / countries

**** **** European Commission


EURL-SRM®

		Labs submitting results	Registered WITHOUT submitting results
EU OfLs	****	119	1* + 1
EFTA OfLs	EFTA	4	0
3 rd Countries + EU Candidates		12	0
	SUM	76	2

* EU-OfLs stated in Webtool, that all *analytes were out of lab's scope*, therefore it didn't analyze any of the compounds

Participating labs / countries

EFTA-Countries	Participated in EUPT-SRM19
СН	2
NO	1
IS	1
EFTA-Total	4

EU Candidate & 3rd countries	Participated in EUPT-SRM19
AU	1
CR	1
IN	1
PE	2
RS	4
VN	1
UK	2
EU Cand. & 3rd C. Total	4

- EE: Re-organisation (to be NRL-SRM took part)
- MT (designation of new proxy NRL-SRM is pending)

Frequency of analysis

COMPULSORY, OPTIONAL and EXTRA Compounds

Percentage based on 123 (119 EU + 4 EFTA) labs registered and submitting results

Present	No. of L	abs An	alysed	I				
in Test Material	0% 20%	40%	60%	80%	100%			
Abamectin B1a	99	Ì	Ì	l.				
Ethephon	96							
DTC (expr. as CS2)	92						≥ 80 %	
Folpet	88						≥ 00 %	
Phthalimide	87							/
Folpet (sum)	83						50 – 79 %	0
Dithianon	81						25 40 0	,
N-Acetyl glufosinate	79						25 – 49 %	Ó
Clopyralid	77						AH A <i>i</i>	
Copper	75						< 25 %	
MPP (=aka MPPA)	75							
Meptyldinocap	19							
Meptyldinocap (sum, foll	o 19					of the	ese labs analy	170d
Gamma Cyhalothrin	16			•	·		~	
2,4-DNOP (free phenol)	14			Gam	ma Cy	n. (v	ia Chiral Chr/	ony)
Meptyldinocap (sum, calo	2 1 4							
Difluoroacetic acid (DFA)	10							

NOT Present	No. of Labs Analysed						
in Test Material	% 20%	40%	60%	80%	100%		
2,4-D (free acid)	100						
Emamectin B1a	100						
Chlormequat-Cl	99						
Mepiquat-Cl	99						
Glufosinate	91						
MCPA (free acid)	90						
Captan	88						
THPI	87						
Captan (sum)	84						
Triclopyr (free acid)	63						
Trimethylsulfonium cation	33						
Amitrole	16						

False negatives

34x Compulsory, 5x Optional and 2x Extra analytes

EU+EFTA

Compulsory	AV	No. of	Lab-	RL		Compulsory
Analytes	[mg(kg]	FNs/FN*	Code	[mg(kg]	Judgement	Analytes
Abamectin B1a	0.0711	2	75	0.01	FN	MPP (=aka MPPA)
			94	0.001	FN	
Clopyralid	0.192	2	71	0.01	FN	N-Acetyl glufosin
			134	0.5	FN* (AV < RL)	
Dithianon	0.236	4	46	0.01	FN	
			54	0.01	FN	
			87	0.01	FN	Phthalimide
			125	0.01	FN	
DTC (expr. as CS2)	0.1	5	2	0.2	FN* (AV < RL)	
			27	0.1	FN* (AV < RL)	
			53	0.01	FN	
			104	0.3	FN* (AV < RL)	Optional
			108	0.05	FN	Analytes
Ethephon	0.0582	3	67	0.05	FN	2,4-DNOP (free pl
			84	0.05	FN	
			114	0.01	FN	Meptyldinocap
Folpet	0.225	8	13	0.01	FN	Meptyldinocap (s
			58	0.01	FN	Meptyldinocap (s
			72	0.01	FN	
			80	0.01	FN	
			111	0.05	FN	Extra
			114	0.01	FN	Analytes
			125	0.005	FN	Difluoroacetic aci
			137	0.01	FN	Cyhalothrin (sum)
Folpet (sum)	0.421	2	15	0.03	FN	Cyndiothinn (Sulli,
			58	0.03	FN	

Compulsory Analytes	AV [mg(kg]	No. of FNs/FN*	Lab- Code	RL [mg(kg]	Judgement
MPP (=aka MPPA)	0.0819	2	60	0.01	FN
			127	0.01	FN
N-Acetyl glufosinate	0.0773	4	52	0.01	FN
			78	0.01	FN
			124	0.01	FN
			132	0.10	FN* (AV < RL)
Phthalimide	0.082	2	15	0.01	FN
			72	0.01	FN

Optional Analytes	AV [mg(kg]	No. of FNs/FN*	Lab- Code	RL [mg(kg]	Judgement
2,4-DNOP (free phenol)	0.0647	2	59	0.01	FN
			96	0.01	FN
Meptyldinocap	0.086	1	125	0.005	FN
Meptyldinocap (sum, calculated)	0.15	1	59	0.02	FN
Meptyldinocap (sum, follow. hydr.)	0.188	1	59	0.01	FN

Extra Analytes	AV [mg(kg]	No. of FNs/FN*	Lab- Code	RL [mg(kg]	Judgement
Difluoroacetic acid (DFA)	0.146	1	137	0.01	FN
Cyhalothrin (sum)	0.0754	1	89	0.01	FN

EURL-SRM

EU+EFTA

False negatives

32 labs reported **41 FN** results

Therein ...

5 FNS due to RLs > AVs

marked with asterisk 3x DTCs, 1x Clopyralid 1x N-Acetyl-Glufosinate

																/	
Lab- Code	AUS	snectine topy	and	anon DTCL	expr. as c	521 Eshor Folge	t for	et sum	Laka MPC	ety Buros	nate almide 2,4.0	40Ptree Nep	oheroll Melinocett	systemocal pherometers	alsum, calc	Jated I Jated I Jate of Italian Company	ant the sum
2				1*													
13						1	1			1							1
15 27				1*			1			1							2
46			1	-													1
52			-						1								1
53				1					-								1
54			1	-													1
58						1	1										2
59											1		1	1			3
60								1									1
67					1												1
71		1															1
72						1				1							2
75	1																1
78									1								1
80						1											1
84 87			1		1												1
87			1													1	1
94	1															1	1
96											1						1
104				1*													1
108				1													1
111						1											1
114					1	1											2
124									1								1
125			1			1						1					3
127								1									1
132									1*								1
134		1*															1
137						1									1		2

EURL-SRM False positives / False reporting Details

FALSE POSITIVES

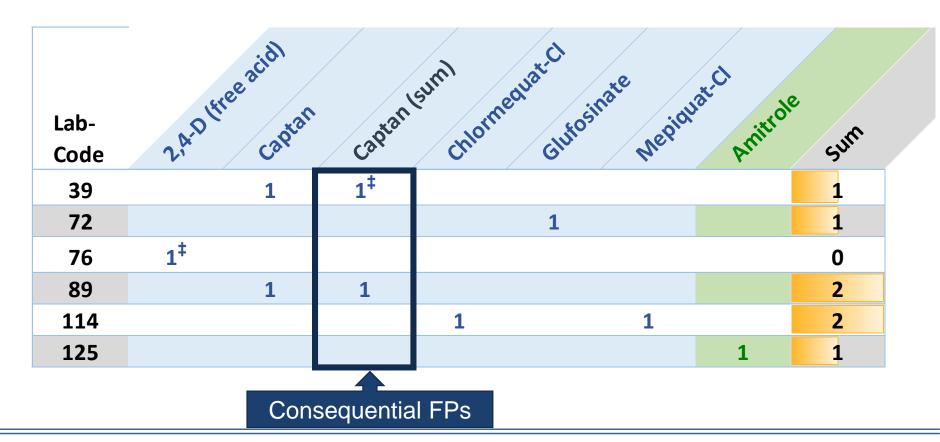
EU+EFTA

8 x FP for 6 Compulsory Analytes (thereof 2x FR)

Compulsory	No. of	Lab-	Conc.	MRRL	RL	
Analytes	FPs/FRs	Code	[mg(kg]	[mg(kg]	[mg(kg]	Judgement
2,4-D (free acid)	1	76	0.007	0.01	0.025	FR (result < RL)
Captan	2	39	0.0276	0.01	0.01	FP
		89	0.033	0.01	0.01	FP
Captan (sum)	2	39	0.0276	0.03	0.03	FR (result < RL)
		89	0.033	0.03	0.03	FP
Chlormequat-Cl	1	114	0.054	0.01	0.01	FP
Glufosinate	1	72	0.014	0.01	0.01	FP
Mepiquat-Cl	1	114	0.119	0.01	0.01	FP

1x FP for one Optional Analyte

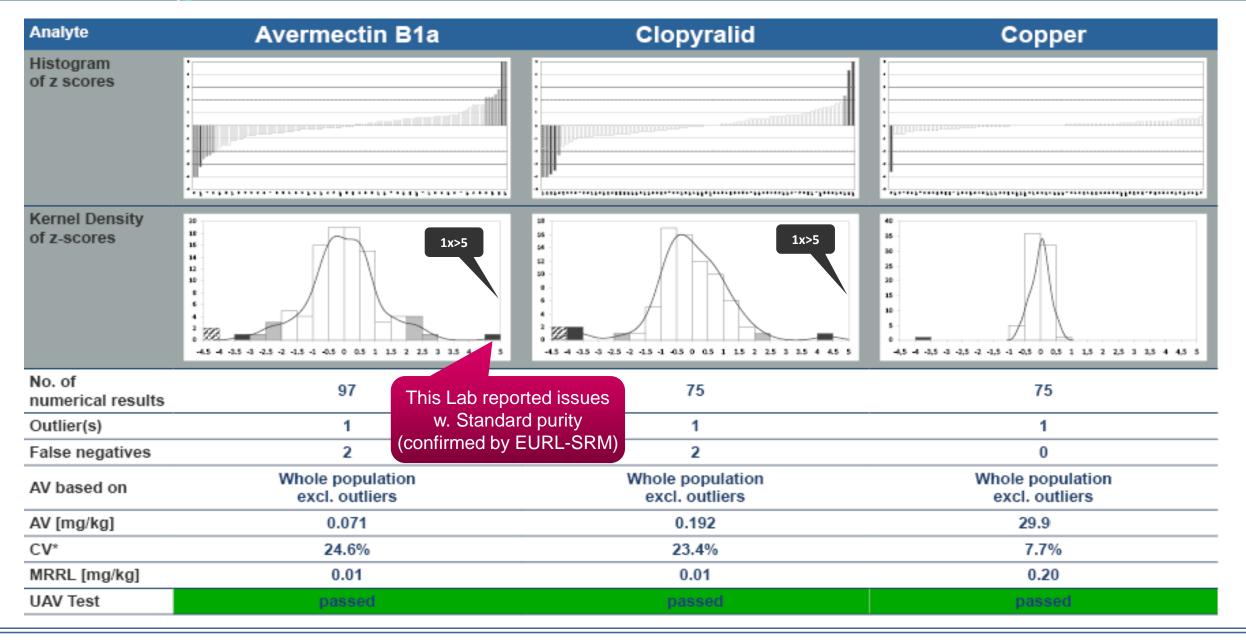
Compulsory	No. of	Lab-	Conc.	MRRL	RL	
Analytes	FPs/FRs	Code	[mg(kg]	[mg(kg]	[mg(kg]	Judgement
Amitrole	1	125	0.10	0.01	0.005	FP

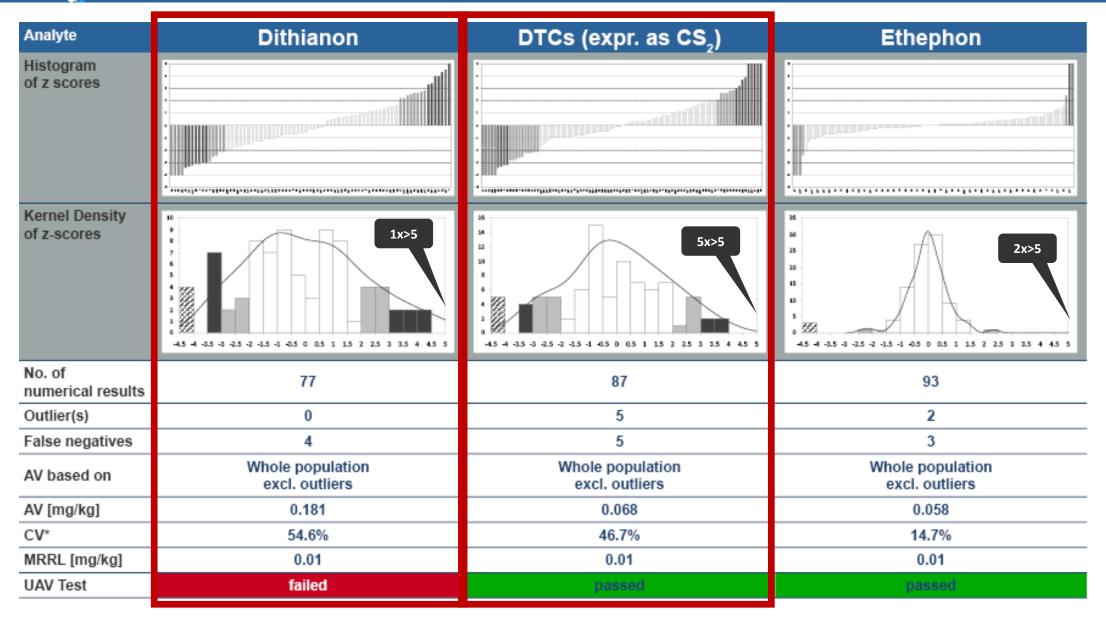

EURL-SRM False positives / False reporting

EU+EFTA

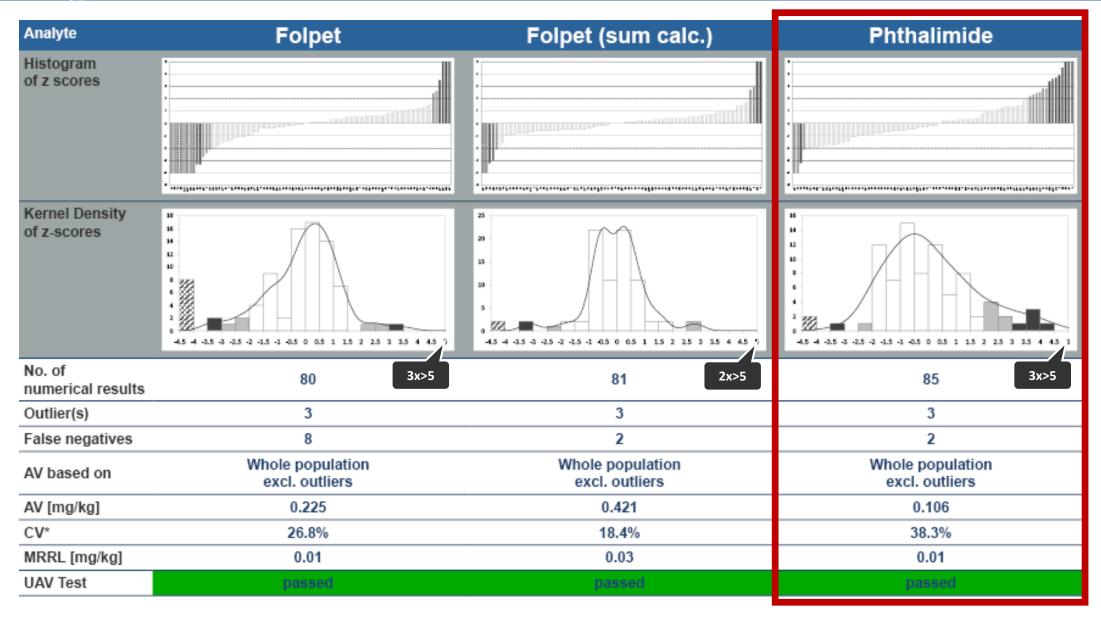
6 labs reported 9 numerical results for analytes not present in test material.

Therein ...2 "false reporting" (result < RL) marked with ‡

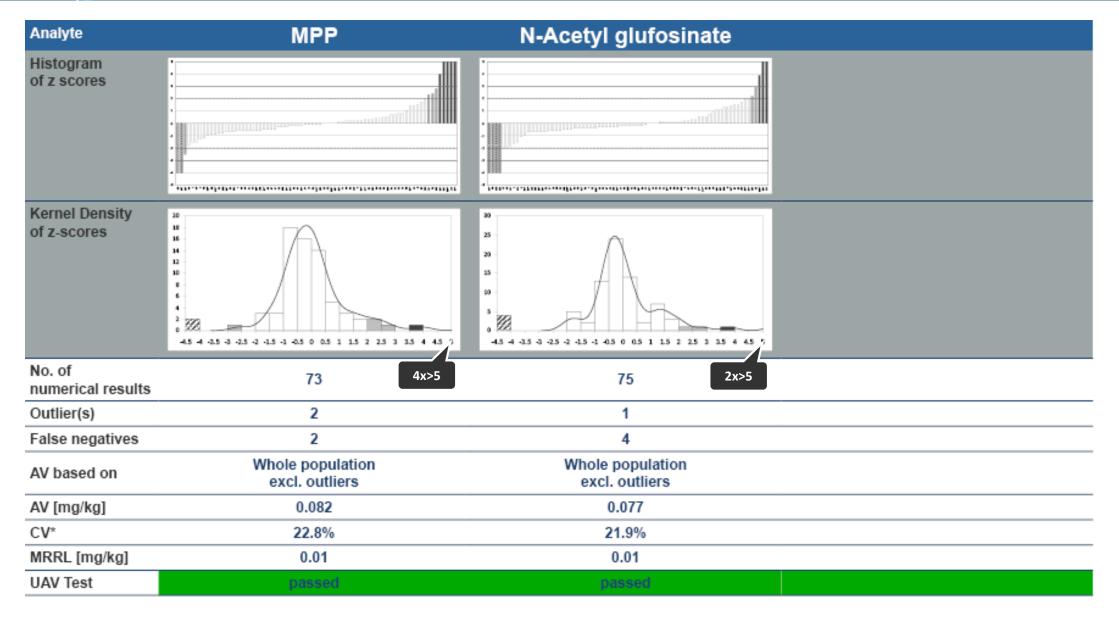

1x captan (sum) 1x 2,4-D (free acid)


RESULTS OVERVIEW

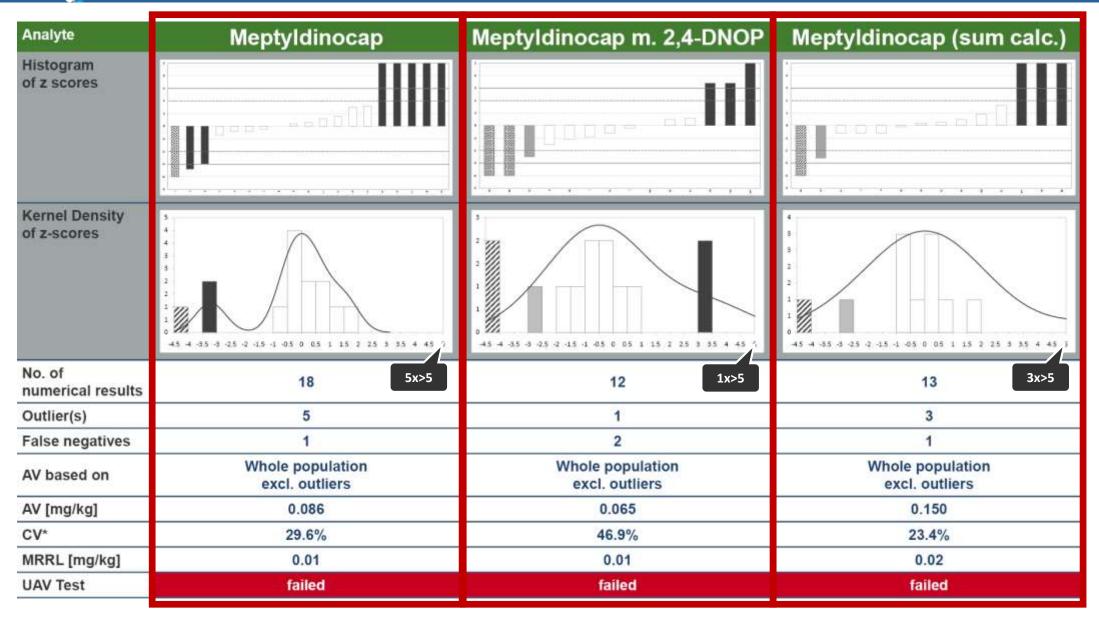
EURL-SRM



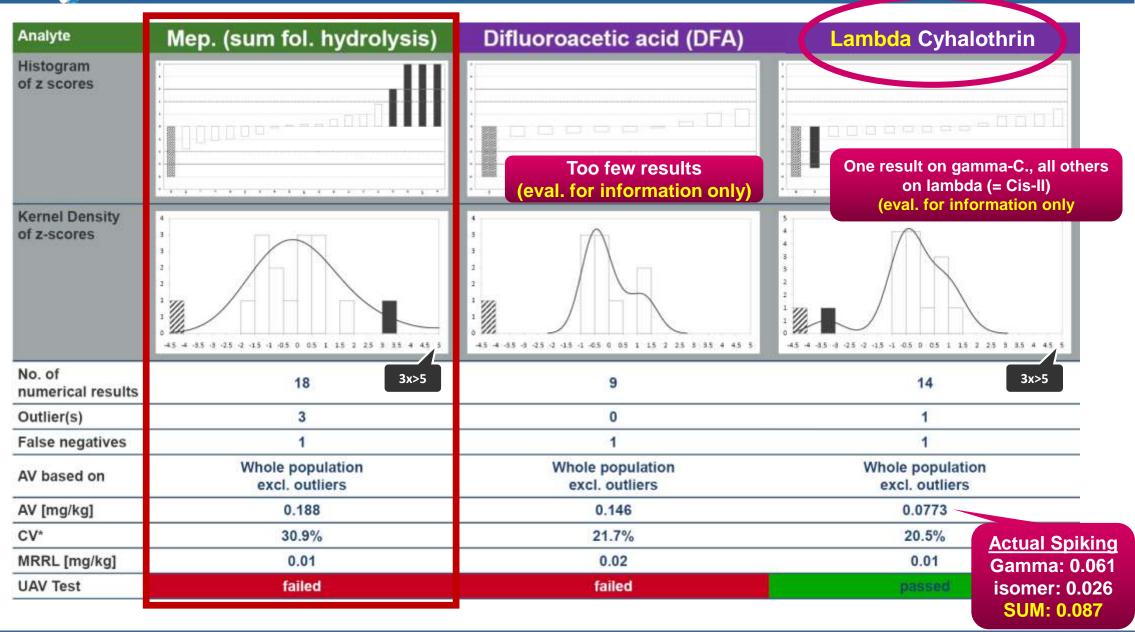
EURL-SRM Results Overview


passed

EURL-SRM Results Overview



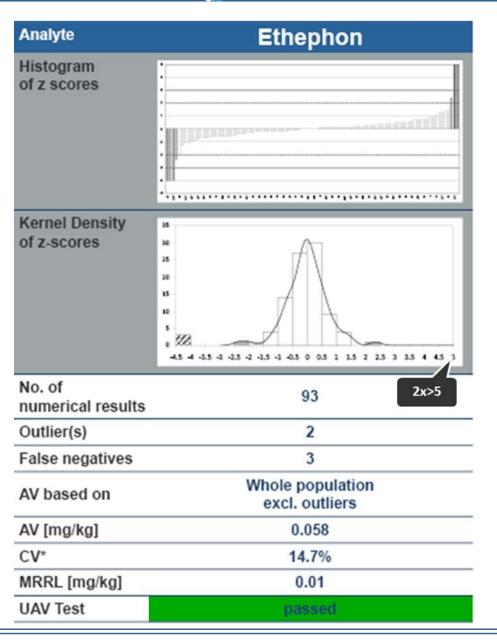
European EURL-SRM A Results Overview


EURL-SRM

**** **** European Commission

EURL-SRM Results Overview

European Commission



Closer LOOK on individual Analytes

QuPPe -Compounds

EURL-SRM The Impact of using ILIS on Accuracy

passed

Ethephon	ILIS-Yes	ILIS-No
Results (n=)	55	38
Median	0.0590	0.0565
Robust Mean	0.0589	0.0578
CV*	9.4%	24.9%

ILIS-No

45

Impact of using ILIS on Accuracy

assed		
EURL-S	RM	using ILIS on Accuracy
Analyte	MPP	
Histogram of z scores		
Kernel Density of z-scores		MPP (=aka MPPA)
		Results (n=)
No. of numerical results	73	Median
Outlier(s)	2	
False negatives	2	
AV based on	Whole population excl. outliers	Robust Mean
AV [mg/kg]	0.082	
CV*	22.8%	CV*
MRRL [mg/kg]	0.01	-
UAV Test	passed	

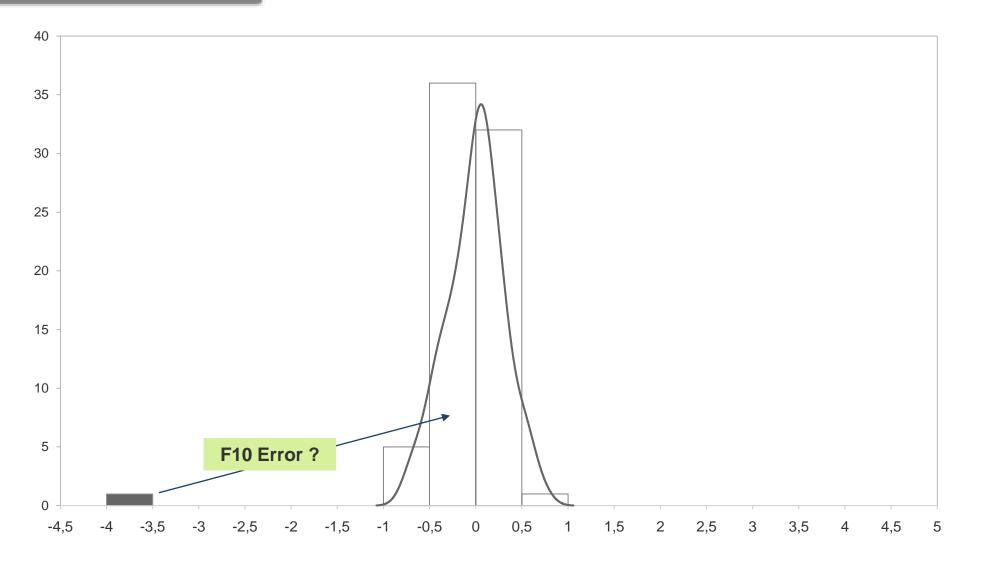
17.8%	32.3%
0.0105	0.0117
0.0807	0.0826

ILIS-Yes

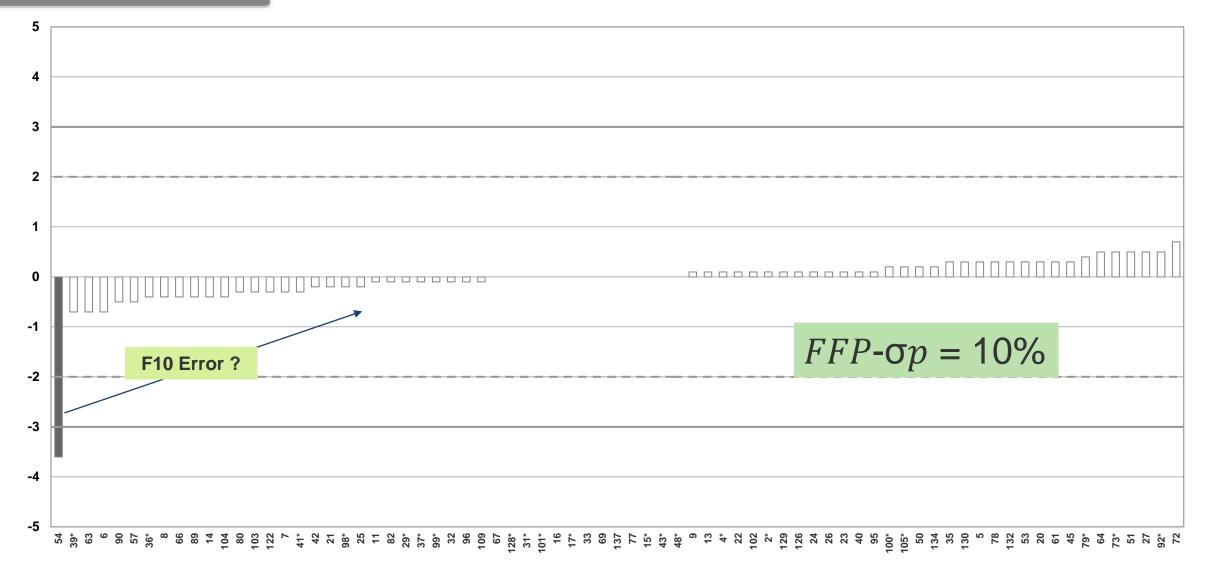
28

EURL-SRM Impact of using ILIS on Accuracy

Analyte	N-Acetyl glufosinate				
Histogram of z scores					
Kernel Density of z-scores	25 25 26 25 29 3 3 45 4 45 5 4 25 4 2 45 4 45 5				
No. of numerical results	75				
Outlier(s)	1				
False negatives	4				
AV based on	Whole population excl. outliers				
AV [mg/kg]	0.077				
CV*	21.9%				
MRRL [mg/kg]	0.01				
UAV Test	passed				


N-Acetyl glufosinate	ILIS-Yes	ILIS-No
Results (n=)	32	43
Median	0.0775	0.0721
Robust Mean	0.0771	0.0785
CV*	13.5%	30.8%

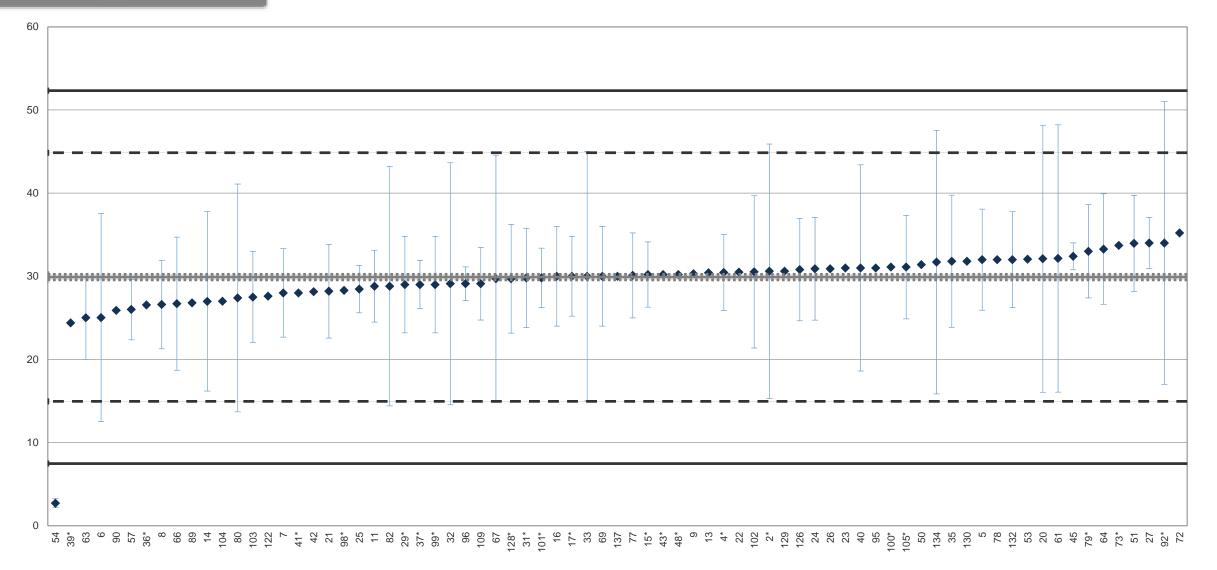
COPPER


EURL-SRM **Results Overview**

Copper

EURL-SRM

Copper

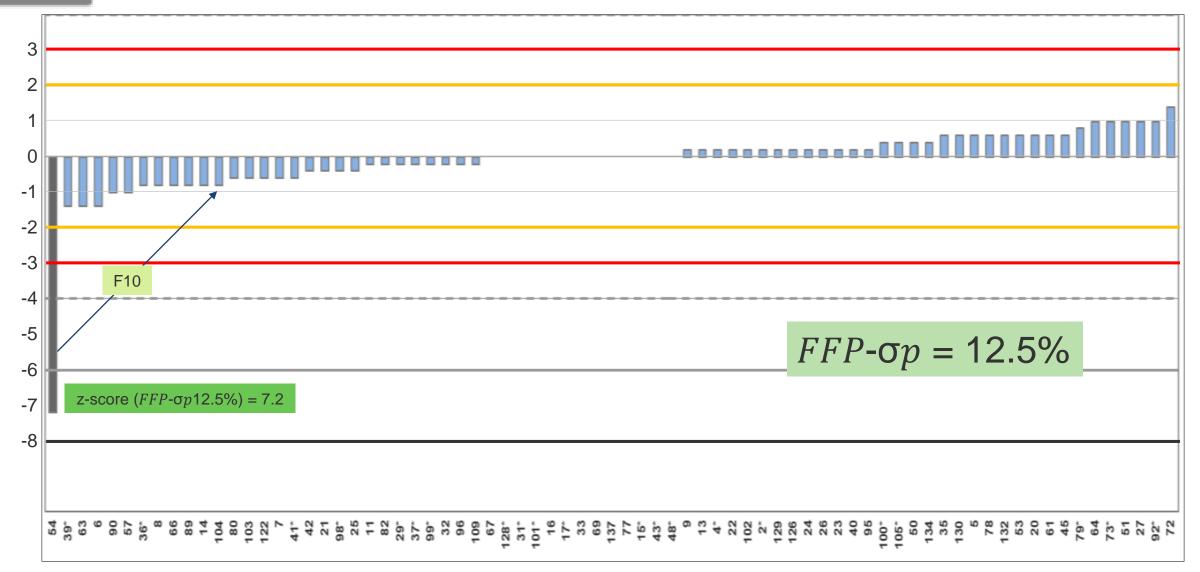

European EURL-SRM

EURL-SRM Expanded MU Reported by Labs

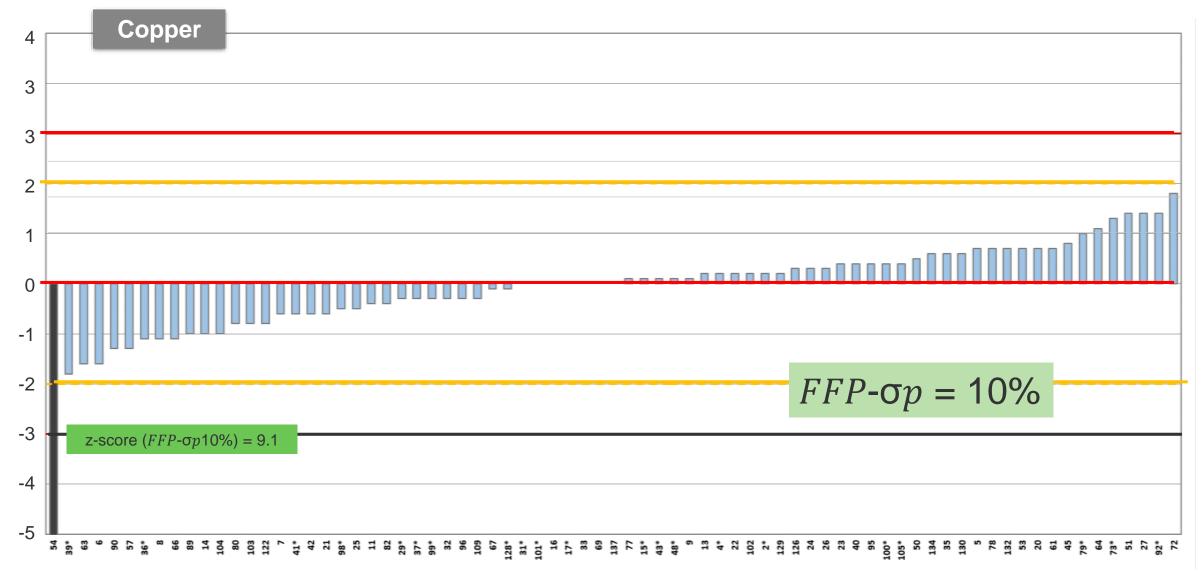
MU %	2,4-DNOP (phenol)	Abamectin B1a	Clopyralid	Cu	DFA	Dithianon	DTC (as CS2)	Ethephon	Folpet	Folpet (sum)	Gamma Cyhalothrin	Meptyl- dinocap	Meptyl- dinocap (sum, calc.)	Meptyl- dinocap (sum hydr.)	MPP (=aka MPPA)	N-Acetyl glufosinate	Phthalimide	Gesamtergebnis
2		1																1
3				1		1	1	1										3
4				1				1										1
7				1						Questi	onably					1		2
9				2												_	1	3
10		1		2		1				expa	nded N	MUs			1			5
12		1		1						•					1			3
13				1														1
14				1			1									1		3
15				3								1						4
16 17				1														1
17	1	1	1	2	Medi	ian MU		1	1	1	1			1		1	1	12
19	-	-	-	2				-	-	-	-			-		-	-	2
20		1	1	14		1	2	1	1	1				1	2	2	1	28
21				2														2
22				1														1
25		2	2	3		1	1	1	1		1							12
26							1											1
27																	1	1
28 29			1			1												1
30		1	1	2		1	3	2	1	1					2	2	1	17
35			_				2	1							1	2		6
40				2		1	1											4
42							1											1
45							1											1
47															1			1
48	0	62	4.4	11	2	45	50	1 57	40	40	10	10	0	10		45	40	1
50 Gesamtergeb	8 9	62 70	44 50	11 56	3 3	45 52	50 64	57 65	49 53	49 52	10	10	9	10	44 52	45 54	49 54	555 678
Counterged		,0	50		,	JL	~7			52					52			078
20% MU	0%	1%	2%	25%	0%	2%	3%	2%	2%	2%	0%	0%	0%	8%	4%	4%	2%	
50% MU	89%	89%	88%	20%	100%	87%	78%	88%	92%	94%	83%	91%	100%	83%	85%	83%	91%	

EURL-SRM **Results Overview**

Copper


Copper

Could be errorneous, due to "Copy Method" function in Webtool


		Data	Excluding	g 50% MU
		calc. basis		calc. basis
MU %	Ν	N=56	Ν	N=45
≤ 20%	35	63%	35	78%
≤ 25%	41	73%	41	91%
>20%	21	38%	10	22%
>25%	15	27%	4	9%
SUM	56		45	

EURL-SRM **Results** Overview using *FFP*-σp of 12.5%

Copper

EURL-SRM **Constant** EURL-SRM **Constant Results** Overview using *FFP*-σp of 10%

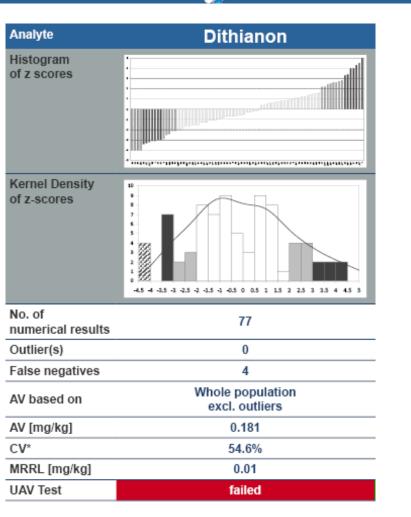
Overview of EUPT-Results from the Contaminants Sector

ΡΤ	Matrix	Assigned value (mg/kg)	Robust PT RSD %	Target RSD % (Horwitz)
2019-02	Liver	392	5,7	6,6
2020-02	Cocoa	31,1	5,4	9,6
2021-03	Feed pellets	4,72	16,3	12,6

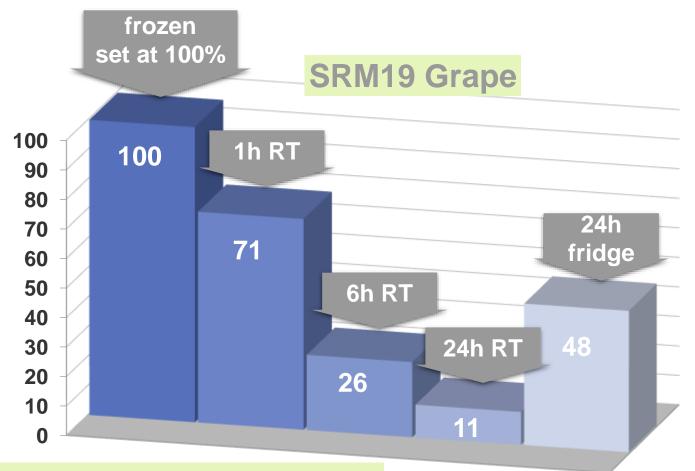
The AdvG agreed to **introduce a FFP-Expanded MU for Copper** in the next revision of the **AQC-Document**. This FFP-MU is to be **derived from multiple PT data** (from various PT providers) according to the **top-down approach**.

Based on a preliminary evaluation, a **FFP-Target Std Dev. of 10%** along with a **20% FFP-MU** seem to be adequate figures for Copper in Food and Feed.

EURLs for Residues of Pesticides



DITHIANON


EURLs for Residues of Pesticides

EURL-SRM 🚺 🐂 Dithianon

European Commission

Impact of Sample Treatment on Dithianon Stability

Message: Dithianon degrades when left standing in non-frozen homogenates. Great care needed to minimize degradation ► Keep Sample Frozen !!

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

EURL-SRM - Analytical Observations Report

SRM-13

concerning the following...

- Compound(s): Dithianon, Dithianon D4
- Commodities: Fruit and vegetables, cereals
- Extraction Method(s): QuEChERS, QuEChERS (variations)
- Instrumental analysis: LC-MS/MS, ESI (neg.)

Analysis of Dithianon by the QuEChERS Method - Impact of pH on recovery rates

Version 2.1 (last update: 09.05.2016)

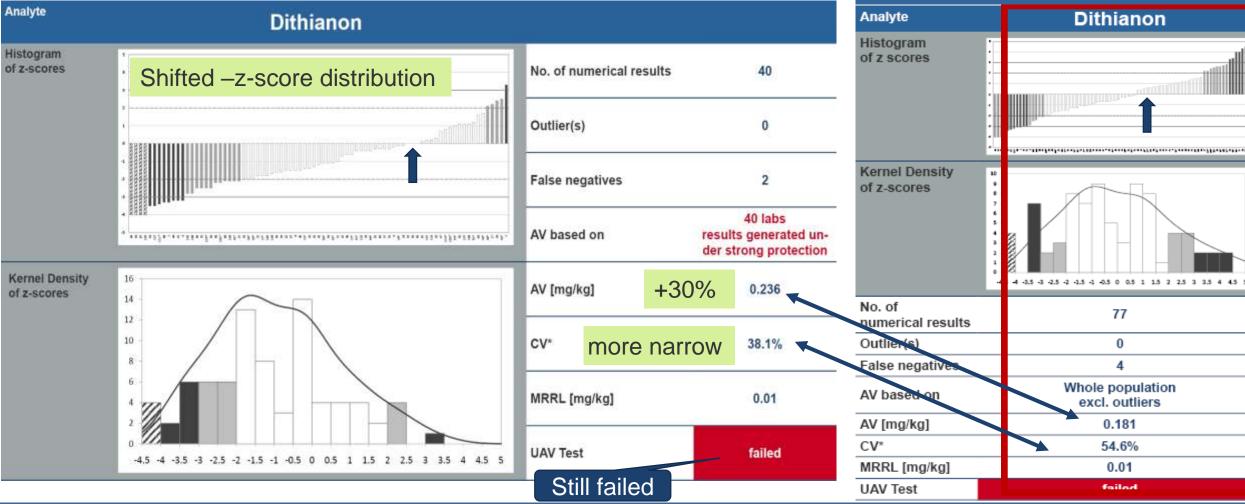
Background information / Initial Observations:

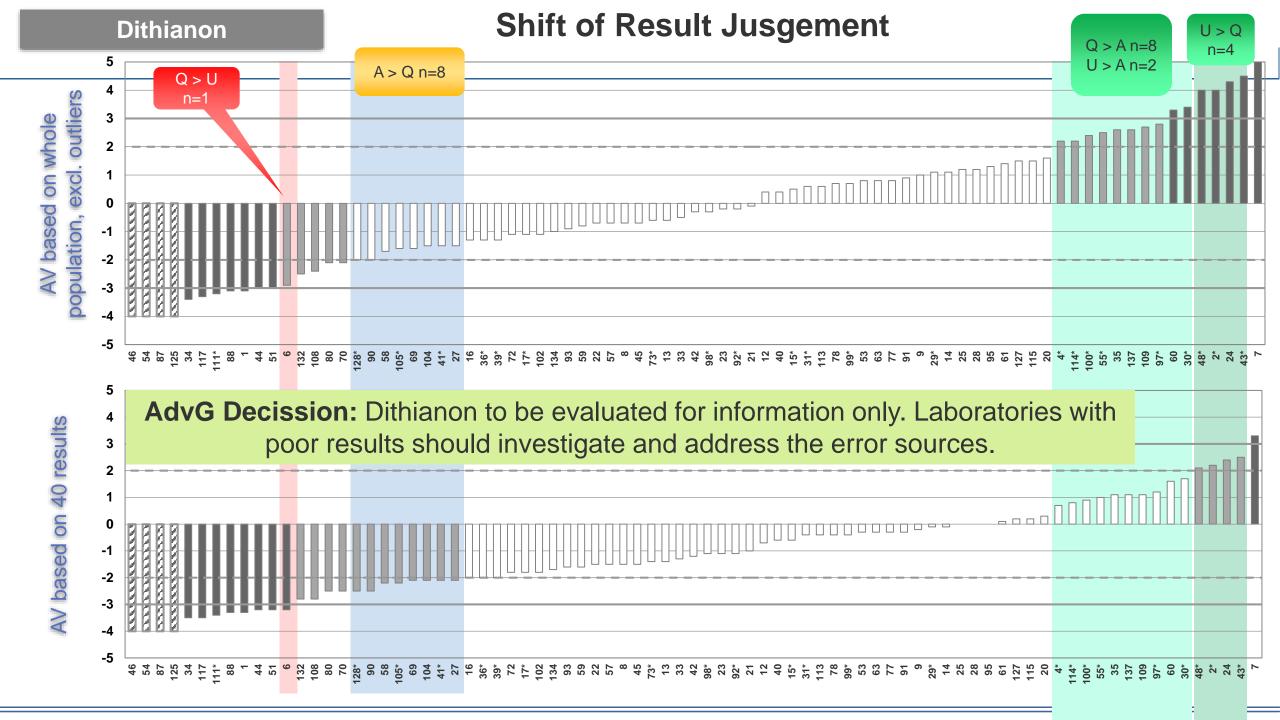
Using QuEChERS (EN 15662), dithianon often shows low or variable recovery rates from various commodities. Especially from commodities exhibiting high natural pH, recoveries are often very low. In acidic commodities recoveries are typically acceptable (see examples in Table 1). However, cleanup with PSA also leads to low recoveries.

Dithianon Losses in non-frozen Homogenates

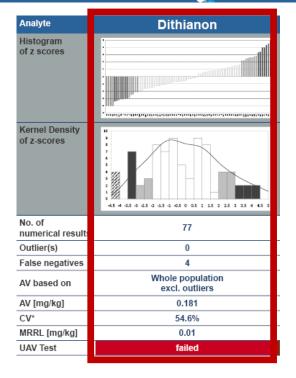
		Delay between	Delay between		Reco	very r	ates [%]		RSD (%)
Extraction Method	IS	spiking native dithianon and spiking of ILIS	spiking native dithianon and extraction	1	2	3	4	5	Avg	
QuEChERS + 1 % FA	ILIS	No delay	No delay	118	109	103			110	6,7
QUECHERS + 1 % FA	BNPU	No delay	No delay	67	70	60			66	7,4
	ILIS	No dolou	Nodeley	<mark>114</mark>	97	108	98	97	103	7,4
	BNPU	No delay	No delay	93	79	85	83	79	84	6,9
	ILIS	Ne deles	aa 10 min	<mark>115</mark>	100	94	-	-	103	10,4
QuEChERS + 1 % SA	BNPU	No delay	ca. 10 min	73	67	62	-	-	68	8,1
	ILIS		ca. 10 min	57	5 <mark>7</mark>	54	-	-	56	3,5
	BNPU	ca. 10 min	(shortly after ILIS-addition)	51	49	<mark>50</mark>	-	-	50	2,3

Already a **10 min delay in extraction leads to considerable losses** The ILIS will not correct for these losses if added afterwards

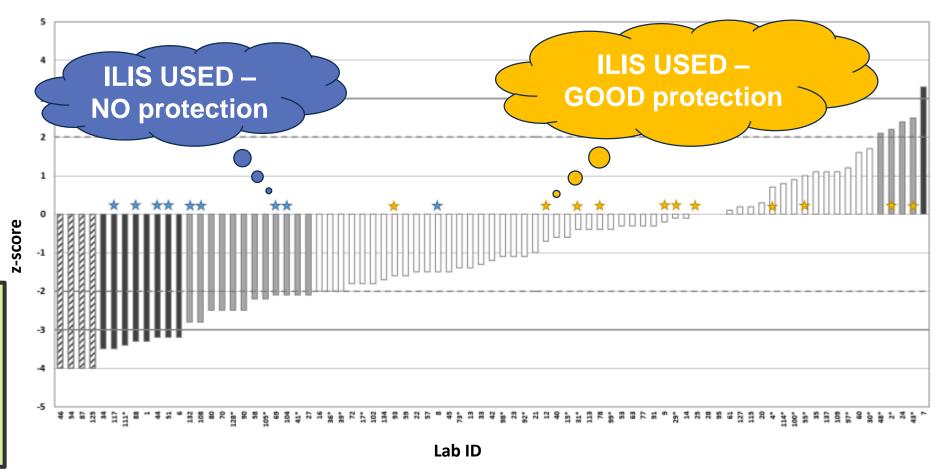

delayed ILIS addition leads to losses !


EURL-SRM Dithianon

Alternative AV for Dithianon based on Subpopulation employing Protective Conditions

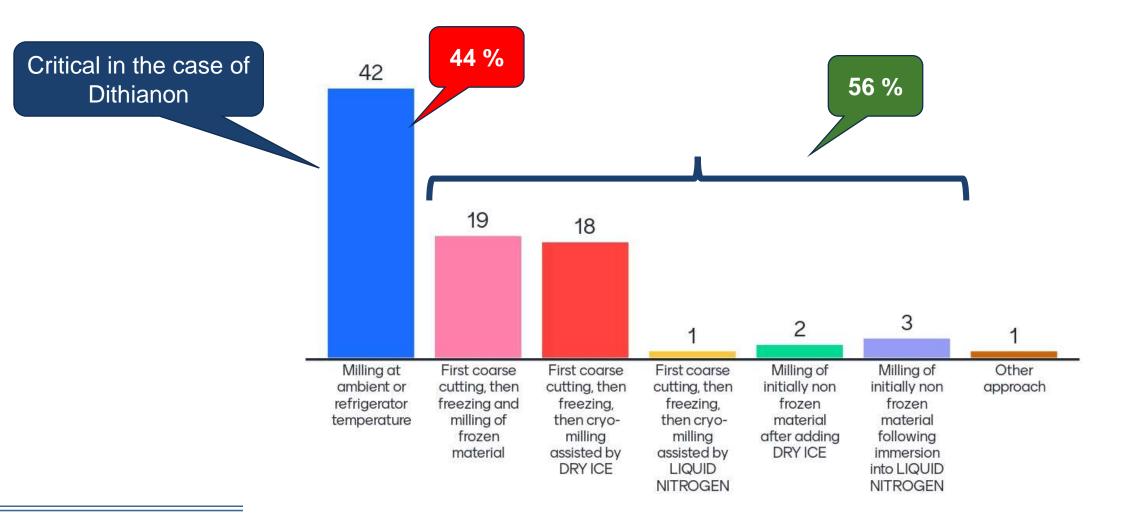

(keeping sample frozen prior to extraction)

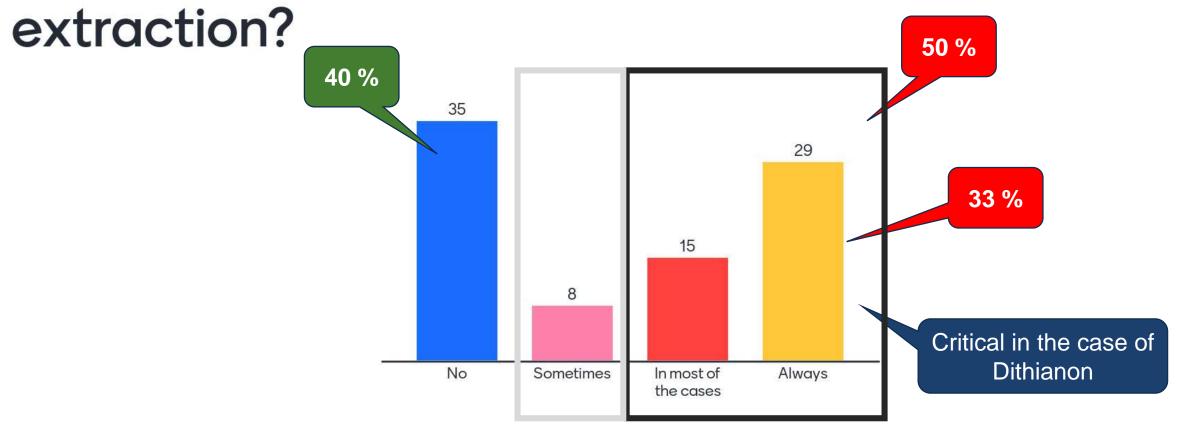
Preliminary Evaluation based of whole population of results


EURL-SRM

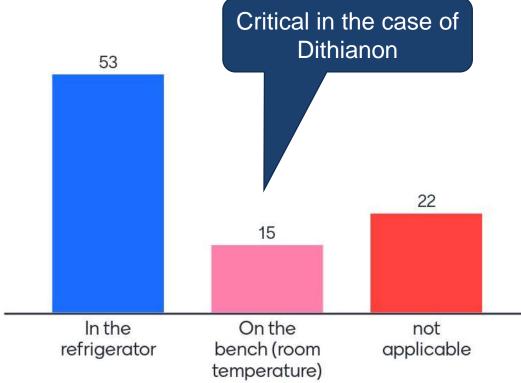
European Commission

TAKE HOME MESSAGE:ILIS will only correct forlosses in steps followingits addition.Any looses priot to itsaddition are not addressed.


Limitations of ILIS

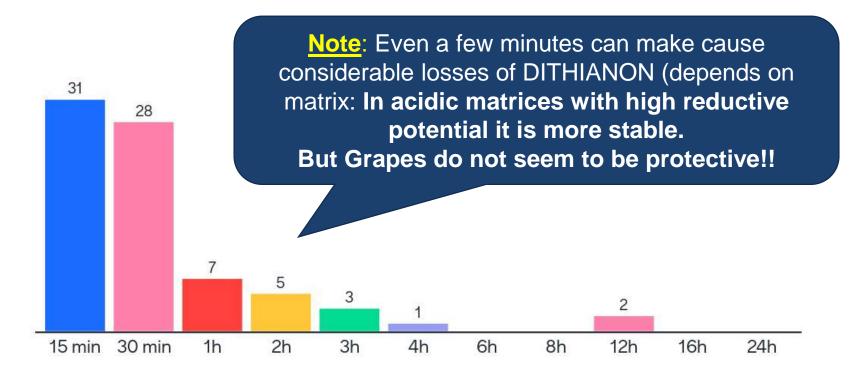

Joint Workshop-Survey 2023

Which is the MAIN approach your lab follows to HOMOGENIZE FRESH PRODUCE?

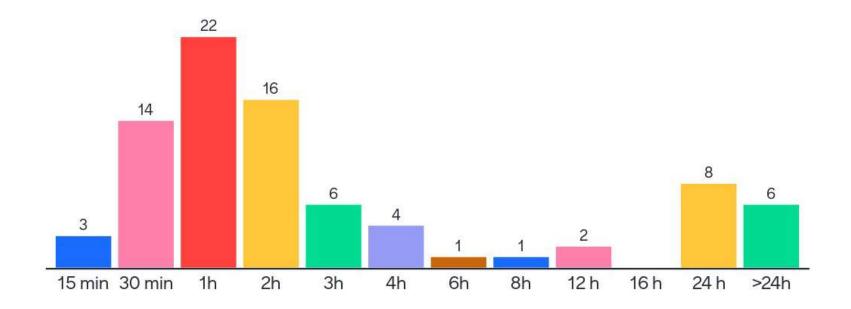

EURL-SRM Joint Workshop-Survey 2023

Do you let previously frozen homogenates OF FRESH PRODUCE to DEFROST prior to

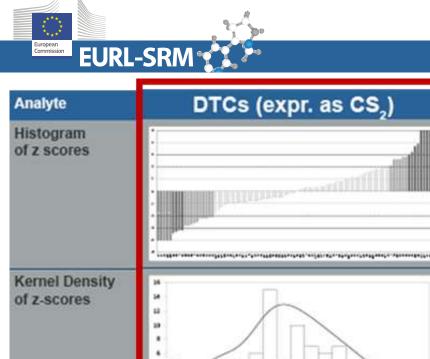
EURL-SRM Joint Workshop-Survey 2023


If you leave non-frozen homogenates standing before starting analysis, where do you typically leave them?

Abandoned


In a TYPICAL CASE, how long do you leave NON-FROZEN HOMOGENATES of fresh produce standing before starting analysis, (chose closest value)

In a RATHER BAD CASE, how long do you leave NON-FROZEN HOMOGENATES standing before starting analysis, (chose closest value)



EURLs for Residues of Pesticides

DTC

87

5

5

Whole population

excl. outliers 0.068

46.7%

0.01

No. of

Outlier(s)

numerical results

False negatives

AV based on

AV [mg/kg]

UAV Test

MRRL [mg/kg]

CV*

Analytical Approaches used by SRM19 Participants

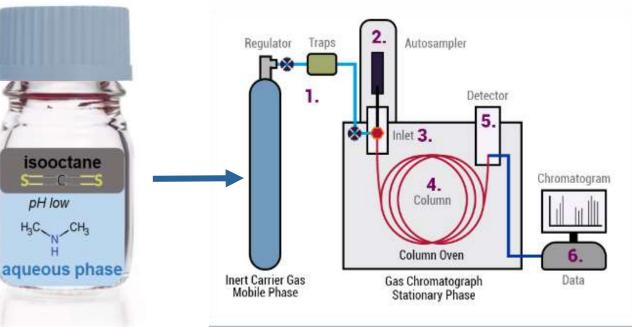
Appoach	No. Labs	% of Labs
LLP (isooctane)	48	47%
Headspace	26	25%
Headspace-SPME	10	10%
Spectroph. (Xanthogenate)	11	11%
Spectroph. (Cu-Acetate)	5	5%
Derivatization + QuEChERS	2	2%
ALL	102	100%

AdvG considers that the **Overall Robust Mean** cannot be used for evaluation as it most propably underestimates the real level of DTC as CS₂

DTCs – Modified Procedure of Reductive Cleavage

Reductive cleavage with SnCl₂/HCl

Former conditions:


50 g of sample homogenate +150 mL hydrolysis agent (Agent:Sample-Ratio: 3:1) + 25 mL isooctane (2g sample/mL) \rightarrow 2 h @ 80 °C in a water bath

New conditions:

10 g of sample homogenate +75 mL hydrolysis agent (Agent:Sample-Ratio: 7.5:1) + **10 mL** isooctane (1g sample/mL)

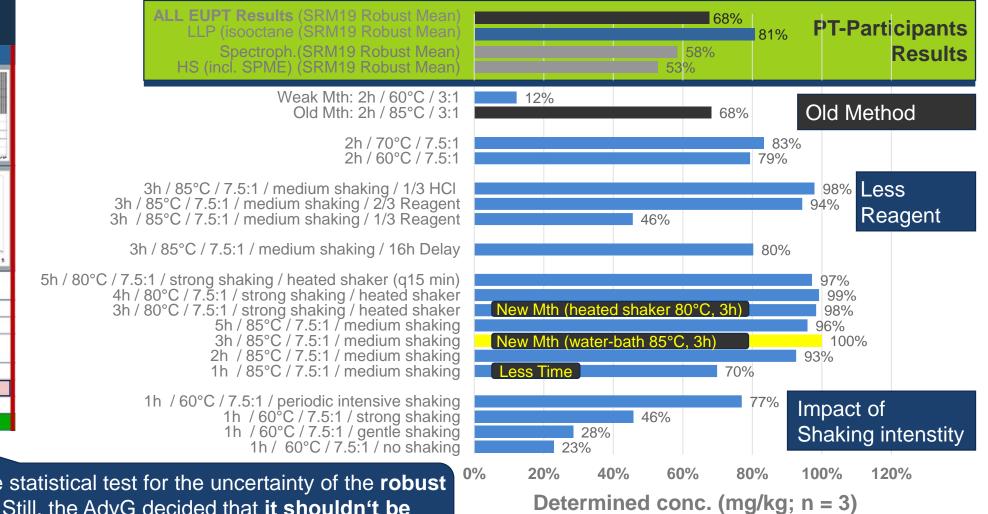
→3 h @ 80-90 °C in a water bath or heated shaker

Hydrolysis agent (0.66 M SnCl₂/4 M HCl)

Preliminary Report Note on DTC (Metiram to CS₂)

Overall, the experiments have shown that the robust mean value of the entire population of results (0.0677 mg/kg) is considerably lower than the actual concentration of DTCs in the EUPT-SRM19 test item.

Based on a large number of experiments conducted by the EURL-SRM, and taking into account results submitted by participants employing strong reaction conditions, **the EURL-SRM estimates that the actual concentration of DTCs in the test item (expressed as CS₂) is around 0.10 mg/kg.** This value was therefore taken as the **preliminary reference value** and the **preliminary z-scores** in this report were calculated based on this value.

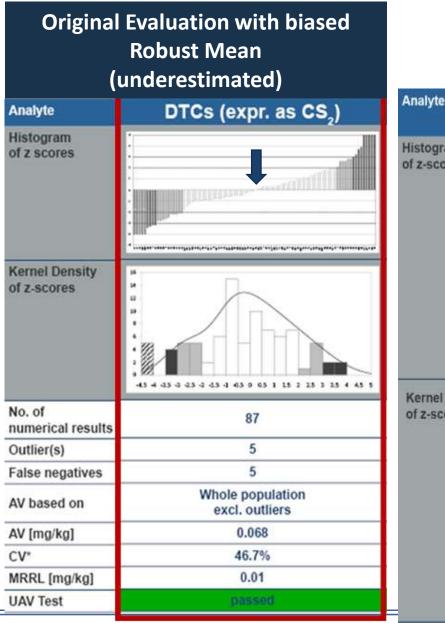

Laboratories having been allocated abs. z scores > 2 for this analyte within this report are requested to seek for the sources of errors and to undertake corrective actions. This information is to be reported in the Poor Performance Surve of the organizer (see page 6).

The decision about the final assigned value, and on whether an official scoring will be allocated to the labs, will be taken following consultations with the EUPT advisory group.

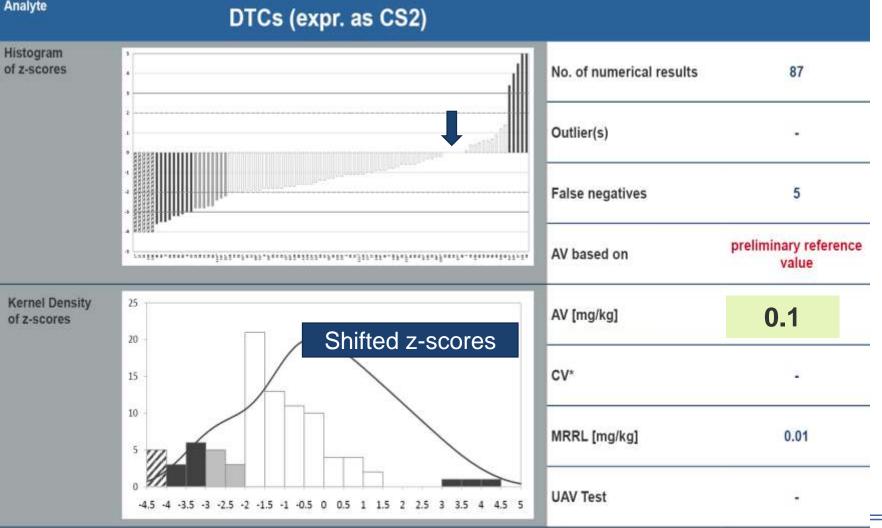
EURL-SRM 🚺 🐂 DITHIOCARBAMATES

EURL-SRM Experiments using SRM19 Material

Impact of Sample Treatment on Conversion yields of Metiram to CS₂

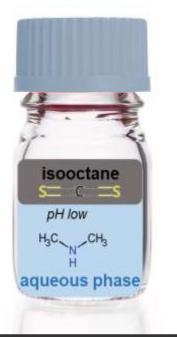


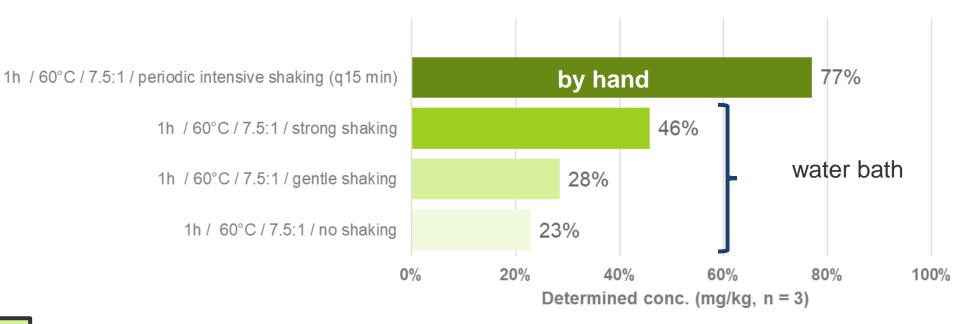
Original Evaluation with biased Robust Mean (underestimated)


Analyte	DTCs (expr. as CS ₂)					
Histogram of z scores						
Kernel Density of z-scores						
No. of numerical results	87					
Outlier(s)	5					
False negatives	5					
AV based on	Whole population excl. outliers					
AV [mg/kg]	0.068					
CV*	46.7%					
MRRL [mg/kg]	0.01					
UAV Test	passed					

Despite the large variation, the statistical test for the uncertainty of the **robust mean passed the threshold**. Still, the AdvG decided that **it shouldn't be used as the AV** for the official EUPT-evaluation of this parameter

EURL-SRM

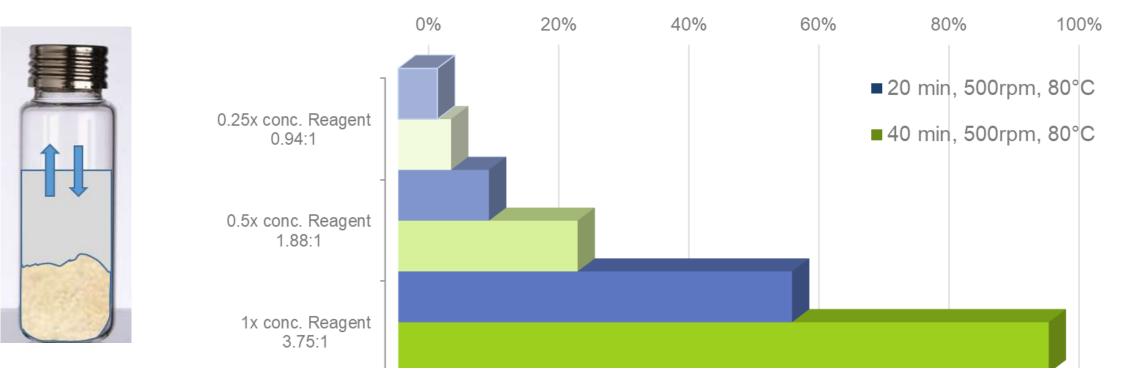

Alternative Reference Value for DTCs Set at 0.1 mg/kg considering all available Info


EURL-SRM Results Overview

Impact of Sample Treatment on Conversion yields of Metiram to $\ensuremath{\text{CS}}_2$

Impact of SHAKING in Method using LLP to Isooctan

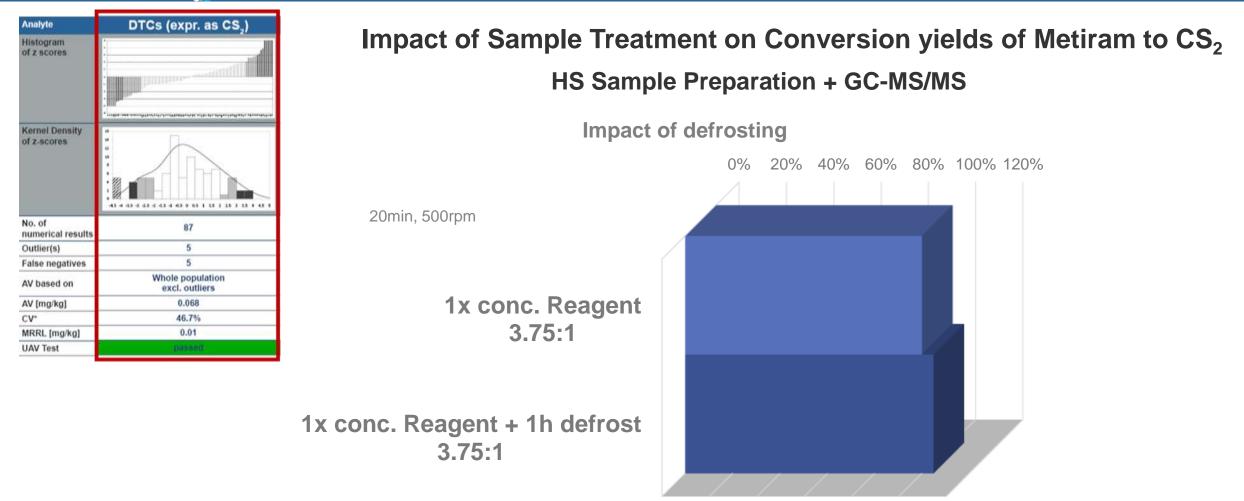
TAKE HOME MESSAGE: The shaking Intensity plays an important role in the conversion of DTC-polymers to CS₂



Low Reaction Temperature to better highlight the impact of shaking

Headspace Analysis – Impact of Reagent Concentration

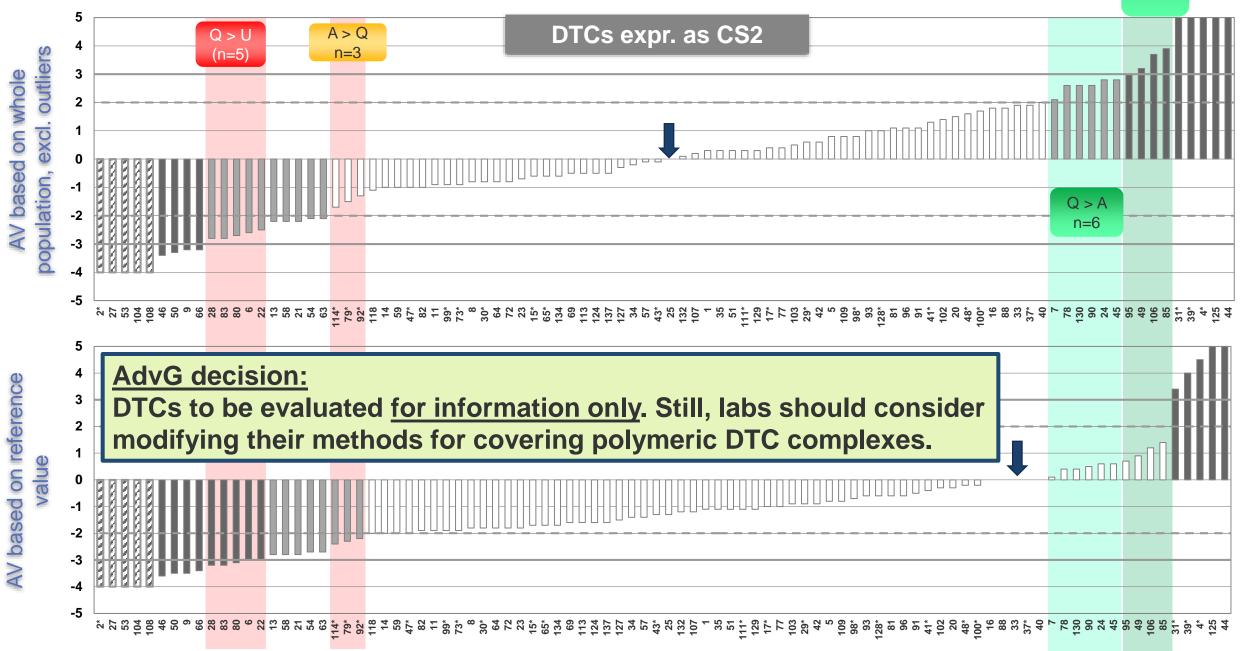
3 g Sample + 11,2 mL Reagent (Reagent double as concentrated as in new LLP procedure)


Concentration Hydrolysis Reagent

TAKE HOME MESSAGE:Reagent conc. also plays a role in Headspace analysis

SRM19 Grape, Metiram

EURL-SRM COMPANY Results Overview

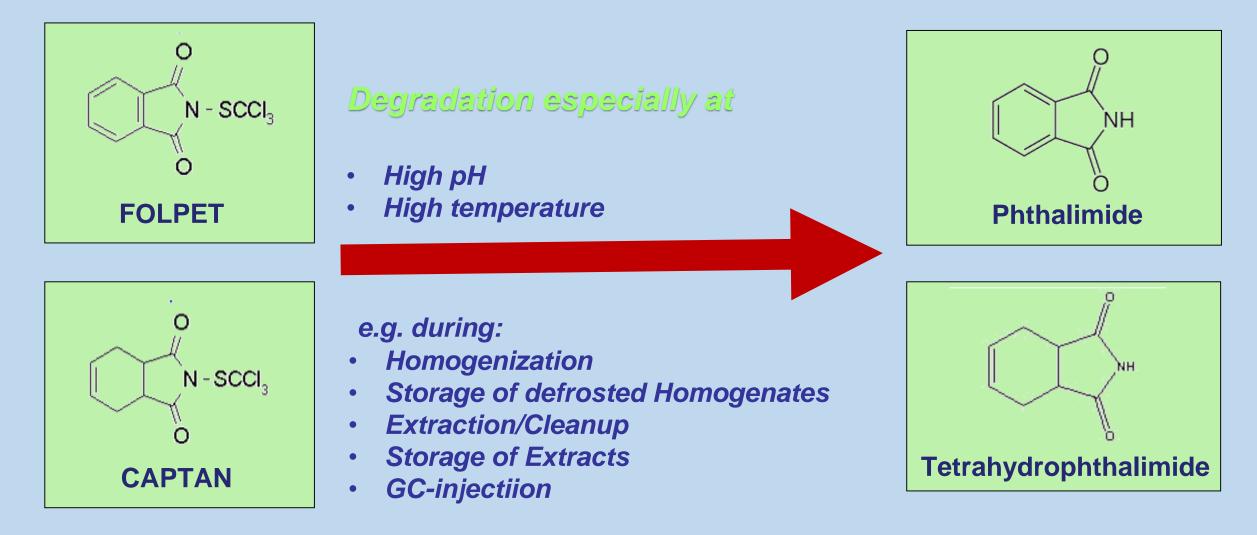

European Commission

TAKE HOME MESSAGE: In the case of polymeric DTCs (Maneb, Metiram etc.) DEFROSTING is not as critical as with Thiram and Ziram

SRM19 Grape, Metiram

Z-score Evaluation changes by using 0.01 mg/kg Reference Value

U > A n=4


EURLs for Residues of Pesticides

Folpet / Pl

DEGRADATION OF CAPTAN AND FOLPET DURING ANALYSIS

Analysis of Captan (sum) and Folpet (sum)

EU Residue Definitions since 2016:

Captan including tetrahydrophthalimid (THPI), calculated as captan

Folpet including phthalimid (PI), calculated as folpet

ERROR SOURCES IN THE ANALYSIS OF FOLPET AND PI

PT-Matrix was acidic (grapes) thus decomposition of Folpet to PI was moderate

Comparison of PT-Data: Labs protecting vs. labs defrosting >1h → Folpet Losses: ~5% ; PI increase: ~15% WHY ?

Reason: Folpet present at a higher molarity than PI (F=2.6)

Decrease of Folpet and corresp. increase of PI, exemplarily visualized for 2.6:1 mol-ratio (as in PT),

Folpet AV (mg/kg)	0,421	Folpet vs. Pl	PI AV (mg/kg)	0,082	
Loss	Folpet Losses	Conc. Factor 5,13	Generated PI	Increase PI	
0,021	-5%	Mol Factor	0,0105	13%	Assuming
,			· ·		quantitative
0,042	-10 <mark>%</mark>	2,6	0,0211	26%	
0,063	-1 <mark>5%</mark>		0,0316	39%	conversion
0,084	-20%		0,0421	51%	
0,126	-30%		0,0632	77%	
0,168	-40%		0,0842	103%	
0,211	-50%		0,1053	128%	
0,337	-80%		0,1684	205%	

GC-ANALYSIS: OVERESTIMATION OF PI AND THPI IN PRESENCE OF PARENTS

FOLPET	РІ		PI measured (calibrated w. PI)	overestimation of PI
spiked in one vial [ppm]			[ppm]	error [%]
0,1		0,1	0,11	27%
0,2		0,1	0,11	22%
0,3		0,1	0,14	53%
0,6		0,1	0,19	116%
1		0,1	0,24	178%
CAPTAN	тнрі		THPI measured (calibrated w. THPI)	overestimation of THPI
spiked in one vial [ppm]			[ppm]	error [%]
0,1		0,1	0,13	31%
0,2		0,1	0,12	20%
0,3		0,1	0,15	50%
0,6		0,1	0,19	102%
1		0,1	0,25	159%

Tomato blank extract (QuEChERS, d-SPE, AP) Spiked w. Folpet/ Captan and PI/THPI at different levels Simultaneous measurement by GC-MS/MS

Situation in PT-mate	erial		
		Captan/ THPI	Folpet/ Pl
Parent (mg/kg)		0,172	0,249
Degradant (mg/kg)		0,59	0,10
Ratio	Conc.	1:3.5	2.5 : 1
Ratio Parent/ Degradant	Conc. Mols	1:3.5 1:7	2.5 : 1 1.3 : 1

PROBLEM IN GC-ANALYSIS

THE HIGHER THE PARENT: DEGRADANT RATIO THE MORE PRONOUNCED THE OVERESTIMATION OF THE RESPECTIVE DEGRADANT !!!

Bias between robust mean values for Phthalimid depending on Analysis Approach

Analyte		Folpet			Phthalimid	
Population for Robust Mean (RM)	entire population	GC based	LC based	entire population	GC based	LC based
No. of numerical results	80	66	14	85	69	16
therein Outliers	3	3	0	3	1	2
No. results for RM	77	63	14	82	68	14
No. of FNs	8	8	0	2	1	1
Prelim. Assigned Value [mg/kg]	0.225	0.218	0.247	0.106	0.112 -27	% 0.082
CV*	26.8%	30.6%	14.5%	38.3%	38.1%	32.4%
AV Uncertainty	0.0086	0.01050	0.012	0.0056	0.00649	0.0089
AV Tolerance	0.0169	0.0164	0.0185	0.008	0.0084	0.0062
	passed	passed	passed	passed	passed	failed

Preliminary Report Note Phthalimide

In the case of **phthalimide**, despite the numerous appeals by the EURL-SRM to consider the risk of overestimating the levels when using GC-based methods, 69 of the 85 numerical results (81%) were generated by laboratories employing GC-based methods. In fact, only 16 numerical results were generated by LC-based methods. The overall distribution of the 85 numerical results was quite broad (CV* 38.3 %) and again a certain bimodality was noticed, due to the LC-results forming a slightly shifted population with a robust mean value of 0.082 mg/kg (N=14 after elimination of two outliers). This value is roughly

23% lower than the robust mean of the total population at 0.106 mg/kg (N=82 after elimination of 3 outliers) and roughly 27% lower than the robust mean of the GC-based results of 0.112 mg/kh (N=69). This trend was expected for the reasons explained above. Unexpectedly, the LC population was rather broadly distributed (CV* 32.4%), which increases the uncertainty of the robust mean. Still, considering that one of the main purposes of this preliminary report is to give labs the opportunity to timely localize and eliminate sources of errors, and taking into account the spiking levels, but also considering the results of numerous EURL-SRM experiments, the robust mean of the LC-results at 0.082 mg/kg was used as a the preliminary assigned value for calculating the preliminary z scores in this report. This value is close to mean value of the EURL-SRM homogeneity test (0.0785 mg/kg), which was also derived using LC-MS/MS measurement. Evaluating the results based on the robust mean of the entire population would be unfair towards laboratories having avoided practices leading to overestimated results for phthalimide.

Analyte

Histogram

of z scores

Kernel Density of z-scores

numerical results

False negatives

AV based on

AV [mg/kg]

UAV Test

MRRL [mg/kg]

CV*

No. of

Outlier(s)

Original Evaluation with biased

Robust Mean

(overestimated)

Phthalimide

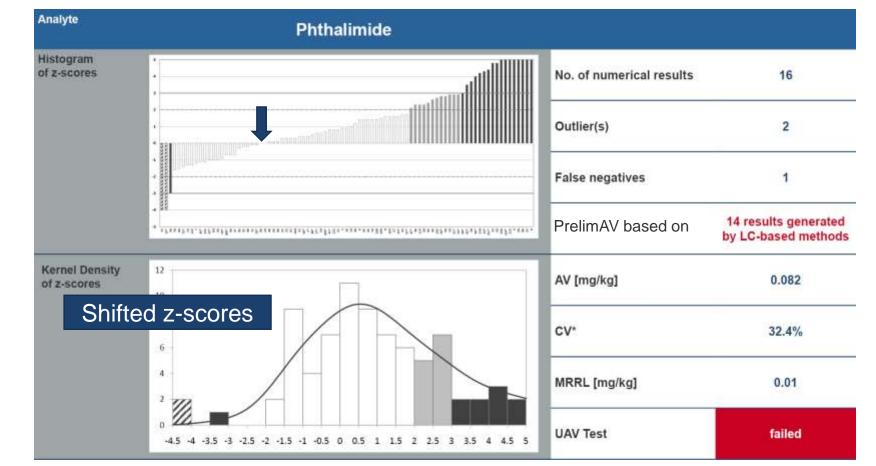
85

3

2

Whole population

excl. outliers

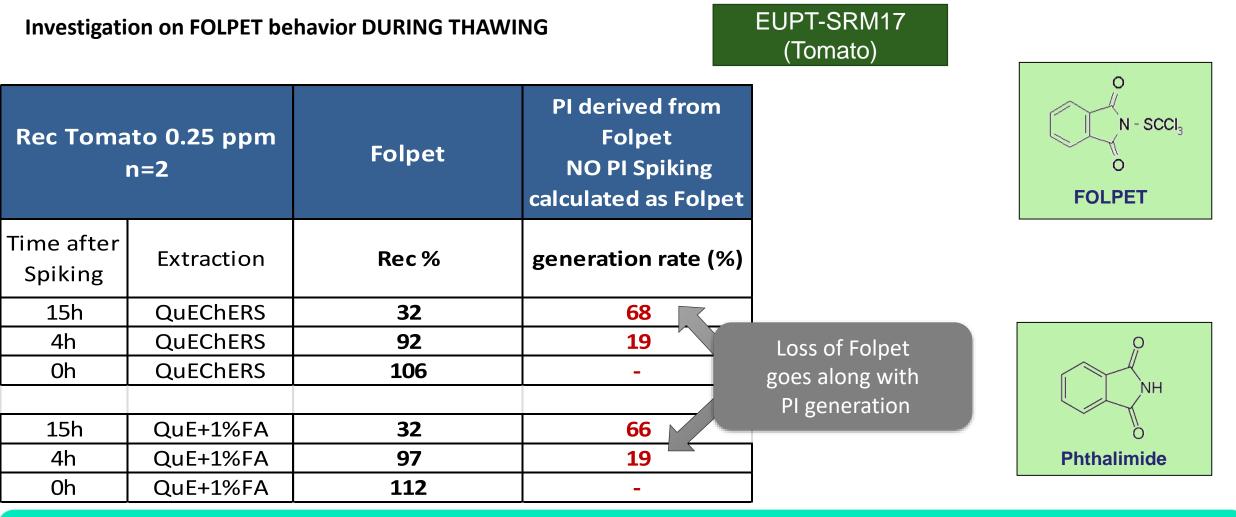

0.106

38.3%

0.01

Phthalimide

Alternative Reference Value for Phthalimide (0.082 mg/kg) considering all available information



The statistical test for the uncertainty of the robust mean passed the threshold. Still, the AdvG concluded that it does not qualify as an AV for the official EUPT-evaluation of this parameter

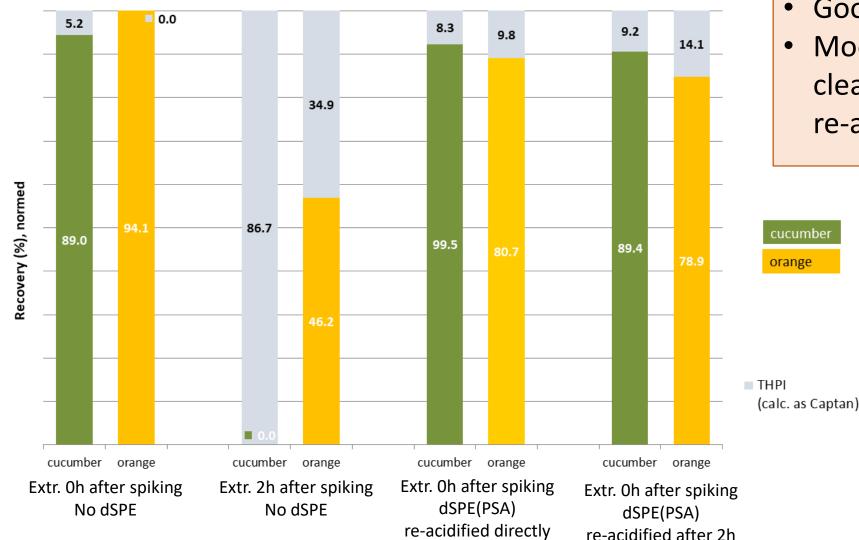
Phthalimide

EURL-SRM CONTRACTOR Results from EUPT-SRM17

Thawed tomato blank was spiked with folpet and left standing at RT; Analysis by LC-MS/MS: Sample Preparation QuEChERS (No d-SPE) OR FA- QuEChERS (No d-SPE)

**** *** European Commission

EURL-SRM CONTRACTOR REPORT: EURL-SRM EUPT-SRM17


Investigat	ion on CAPTAN	behaviour DURING	EUPT-SRM17		
Rec Tomato 0.25 ppm n=2		Captan	THPI derived from Captan NO THPI Spiking calculated as Captan	(Tomato)	O N - SCCI ₃ O
Time after Spiking	Extraction	Rec %	generation rate (%)		CAPTAN
15h	QuEChERS	-	102		
4h	QuEChERS	57	48		
0h	QuEChERS	104	-	Loss of Captan	l l l l l l l l l l l l l l l l l l l
				goes along with	NH
15h	QuE+1%FA	-	109	THPI generation	
4h	QuE+1%FA	59	48		
Oh	QuE+1%FA	91	-		Tetrahydrophthalimide

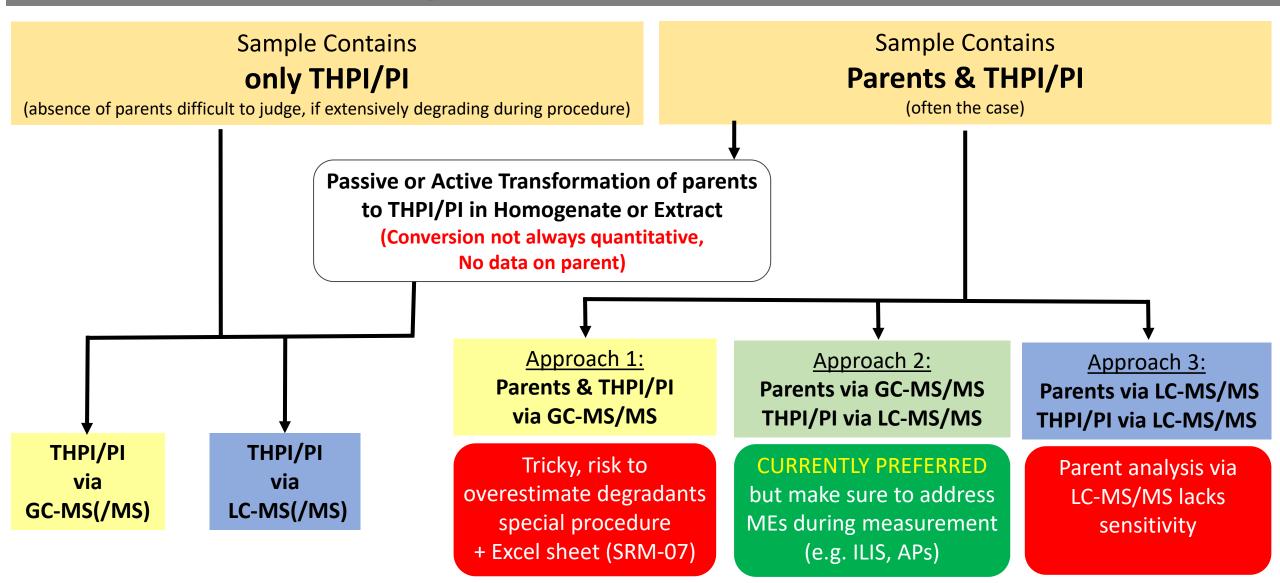
Thawed tomato blank was <u>SPIKED WITH CAPTAN</u> and left standing at RT; Analysis by LC-MS/MS: Sample Preparation QuEChERS (No d-SPE) OR FA- QuEChERS (No d-SPE)

**** **** European Commission

Stability of Captan during QuEChERS-Extraction:

Avoid prolongued standing of thawed homogenates !!

Good Rec. w. QuEChERS


Moderate losses during PSA cleanup and if extracts are not
 re-acidified

Similar results for Folpet, Captafol

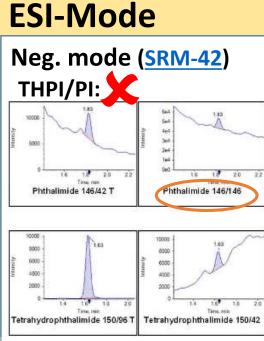
Both parents and degradants determined by LC-MS/MS in this experiment

DILEMMA 3: Which Techniques to use for Measurement

Direct Analysis of PI/THPI using GC or LC-MS/MS - OVERVIEW

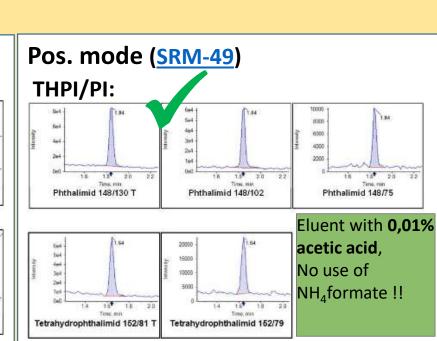
GC (see SRM-07)

Captan/Folpet (quant) **Need to Compensate MEs** (e.g. using AP+ ILIS)


THPI/PI (quant)

Risk of overestimation & FPs! Formed in inlet from parents + other potential sources, e.g. Phtalanhydride **PI**, Captafol **THPI**,

Special GC-Quantif. involving corr. of PI/THPI levels via calc. (Excel file linked in <u>SRM-07</u>)


THPI/PI (qual) Useful for routine screening !

LC-MS/MS (see <u>SRM-42</u> and <u>SRM-49</u>)

Lack of sensitivity depending on gradient and instrument, Only one useful MRM for PI

Parents:

 $[M+H]^+$ or $[M+NH_A]$ adducts sensitivity not bad but variable

APCI-Mode

Neg. mode (SRM-42)

THPI/PI and Parents *Possible but* **tricky**!! (insource effects), extra requirements, cross-interferences. e.g. Folpet D4 and PI-D4 interfere with Captan (analyzed as THPI) and THPI respectively

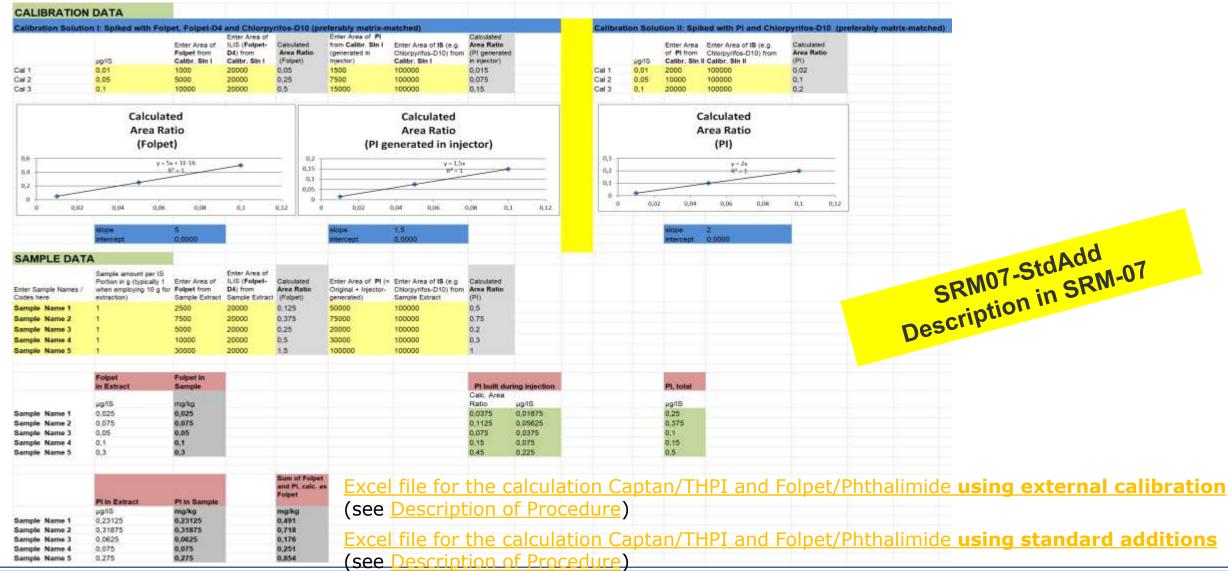
You are here: Home : Single Residue Methods

EURL-SRM - Analytical Observations Report

EURL EURL for Portal Fruits and Vegetables Cere	EURL for EURL for EURL for Single Residue Methods	Concerning the following		1
Topics	Latest News	 Compound(s): Phthalimide (PI), Tetrahydrophthalimide (THPI) Commodities: Plant origin Extraction Method(s): CEN-QuEChERS Instrumental analysis: LC-MS/MS 		
EURL-SRM Network NRL-SRM Network	19-04-2023 EURL-SRM Risk of False Positives of Chloridazon-Desphenyl in Honey by LC-MS/MS	Analysis of the folpet degradant phthalimide and th	he captan degradant	1
Proficiency Tests EUPT-SRM Overview	A new EURL-SRM Analytical Observations Report concerning the risk of false posit Various chromatographic separation methods for chloridazon-desphenyl were test	tetrahydrophthalimide by QuEChERS and Version 2 (16.03.2023)	LC-MS/MS	DM)
EUPT-SRM18 (Honey) EUPT-SRM17 (Tomatoes) EUPT-SRM16 (Sesame) EUPT-SRM15 (Rice)	17-03-2023 EURL-SRM QuPPe-PO-Method Version 12.1 The QuPPe-PO-Method has been updated (now includes more detailed information of	on Honey analysis).	CIRCA BC Login RASFF Portal DB (COM) How to Use CIRCA BC InfoNote: Processed Foo	nd/Feed (COM)
Workshop S Workshop Overview Joint Workshop 2023 Joint EURL/NRLs (SRM-FV) 2022	16-03-2023 EURL-SRM Analysis of the Folpet and Captan degradants Phthalimide (PI) and Tetrahyd The Analytical Observation Report (SRM-49) on the analysis of PI and THPI via LC- update also includes results of experiments concerning the transformation of Capta Phthalimide (PI), during various steps of the QuEChERS procedure and especially in	EUPT Registration Websi Pinboard		
Services ILISs Distribution CheckYourScope	03-03-2023 EURL-SRM Determination of fluoride ion in food Two approaches for the determination of Fluoride Ion via selective electrodes (ISE) measurement in diffusates derived by microdiffusion.	are described: a) direct measurement in QuPPe extracts and b)	Show more Pinboard Messa	iges
SRM-PinBoard EURL-SRM Methods Analytical Observations Residue Observations Downloads Sources of Standards	27-02-2023 EURL-SRM Compilation of Residue Observations Reports of QuPPe Compounds A new compilation of residue findings of QuPPe compounds in food products, analysed in 2022, was uploaded. The report additionally encompasses findings of ethylene oxide / 2-chloroethanol. Aim of these annual compilations of residue findings is to help OfLs to localize analyte/matrix combinations that are worthwhile monitoring.			
Internet EURL DataPool QuEChERS - Website	24-02-2023 EURL-SRM New Analytical Observations Report on QACs analysis The EURL report on QACs analysis in food via QuEChERS and LC-MS/MS, was updat background contaminations of QACs during LC-MS/MS analysis involving the use of			
QuPPe - Website PestiPedia	10-02-2023 EURL-SRM Joint EURLs/NRLs Workshop 18-20 October 2023 in Stuttgart (Fellbach)			

The Joint EURLs/NRLs Workshop for Pesticide Residues will be held from 18 to 20 October 2023 in Stuttgart.

The Data Submission


Compilation of Analytical Observations Reports

The table below compiles various observations made during the analysis of pesticide residues.

Compound(s)	No. of Method Finder List/Version/Date of Update	Link	
Captan & THPI (tetrahydrophthalimide) and Folpet & PI (phthalimide)	SRM-07/(V3)/06.07.2017 SRM-42/(V1)/30.06.2019 SRM-49/(V1)/16.03.2023	SRM-07 (GC-MS/MS) Excel files to calc. conc. of parents & degradants, based on GC-MS/MS data generated following calibration approaches described in SRM-07: SRM-07-ExtCal (parents+degrad. by GC-MS/MS) SRM-07-StdAdd (parents+degrad. by GC-MS/MS) SRM-42 (par.+degrad.; LC-MS/MS; APCI or ESI) SRM-49 (THPI+PI by LC-MS/MS; ESI-pos)	Excel Calculation Sheet
	Captan and Folpet in QuEChERS extracts via GC-MS or G parent molecules for matrix effects during GC analysis or discussed. In addition two approaches for analyzing Capt Tetrahydrophthalimide (THPI) and Phthalimide (PI) are p Short Description of SRM-42 (LC-MS/MS in APCI-ne MS/MS analysis of Captan/THPI and Folpet/PI were studi circumvents problems related to GC-analysis but further hydrolysis of Captan and Folpet to their respective degra number of analytes to be measured. Unfortunately, conve needed. Short Description of SRM-49 (LC-MS/MS in ESI-pos and THPI was developed based on QuEChERS extraction	resented and discussed. eg. and ESI-neg. modes): Various possibilities for the LC- ed employing APCI and ESI interfaces. LC-MS/MS analysis efforts to improve sensitivity are required. The active dants (THPI and PI), was also studied aiming to reduce the ersion yields were often not satisfacory and further studies are 5. mode): A simple and sensitive method for the analysis of PI and LC-MS/MS determination in the ESI-pos. mode using a ion of ammonium buffer salts for separation. Validations of t butter were successful down to 0.005 (~0.01 mg/kg	
	mg/kg was only successful for one single mass-transition interferences compromising identification. Further experi identification of THPI at low levels, both at the sample pr Overall Conclusion: The analysis of Captan (sum) and should not be left standing at elevated temperatures to a sensitivity in LC-MS/MS, not allowing accurate analyses a GC, Captan and Folpet can be sensitively analyzed but m lead to highly inaccurate results (see SRM-07). Also, care injector which would lead to false negative results (see S PI and THPI, and if this aspect is not considered the GC-r pronounced if the parents are present at excess levels (s parents is possible using a special calibration approach th decomposition of the parents within the GC-injector (see and GC-Analysis of Captan-Folpet-THPI-PI via Standard A can be accomplished via LC-MS/MS in the ESI pos. mode	i (m/z 152/81) as the second one (m/z 152/79) showed MS- ments are planned to increase selectivity and enable reparation (i.e. cleanup) and at the measurement stage. Folpet (sum) requires special care. Homogenates of samples avoid degradation. Captan and Folpet show a rather poor at low levels, so GC-analysis needs to be endeavored. Using matrix effects need to be properly addressed to as these may e should be taken to reduce thermal decomposition in the hot RM-07). This thermal decompositions leads to the formation of results of PI and THPI are overestimated. This effect is more see SRM-07). Accurate analysis of THPI and PI next to their	

APPROACH FOR GC-ANALYSIS OF PI AND THPI IN PRESENCE OF PARENTS

QUANTIFICATION OF PARENTS AND DEGRADANTS VIA GC-ANALYSIS

Principle of Approach

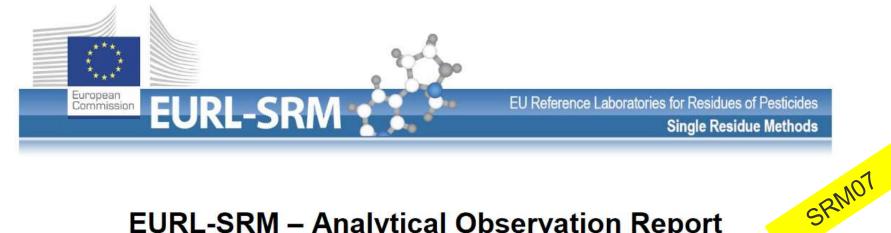
1) Parent conc. in sample extr. is quantified using external calbration and ILIS.

2) The rate with which the degradant is formed in the injector (through thermal decomp. of parent) is determined using standard solutions of parent (external calibration).

3) Based on the determined conc. of parent in the sample extract, the **expected signal-share of degradant** formed (through parent-decomposition in the injector) is calculated.

4) The **expected signal-share of degradant** is deducted from the degradant-signal measured in the sample extract.

5) Based on a separate external calibration of the degradant, the **original concentration of the degradant in the sample extract is determined**


Limitations:

Where the ratio between parent and degradant is very high, the quantification of the degradant is more prone to errors (quantification of parent and sum is less affected here)

At very low conc. of parent, the rate of decomposition may be higher than at higher conc.. And thus not accurately reflected by the rate determined at step 2)

GC-ANALYSIS OF PLAND THPL IN PRESENCE OF PARENTS

EURL-SRM – Analytical Observation Report

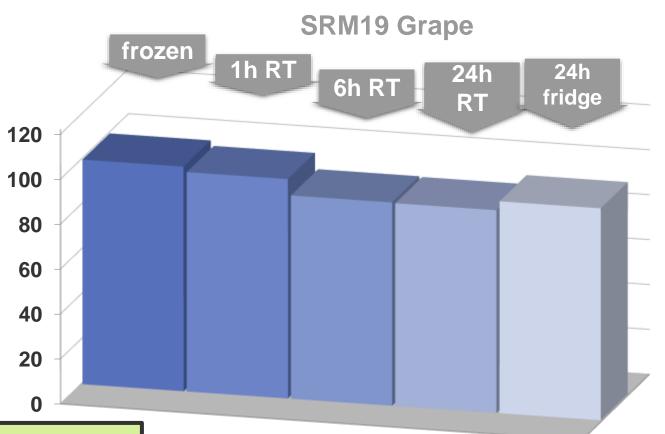
concerning the following...

- **Compound(s)**: Captan, Folpet, Phthalimide (PI), Tetrahydrophthalimide (THPI) 0
- Commodities: Fruit and vegetables, cereals
- Extraction Method(s): QuEChERS, A-QuEChERS
- Instrumental analysis: GC-MS, GC-MS/MS 0

Quantification of Residues of **Folpet and Captan in QuEChERS Extracts**

Version 3.1 (last update: 06.04.17)

EURLs for Residues of Pesticides


Meptyldinocap

EURL-SRM Results Overview

Analyte	Meptyldinocap	Meptyldinocap m. 2,4-DNOP
Histogram of z scores		
Kernel Density of z-scores		
No. of numerical results	18	12
Outlier(s)	5	1
False negatives	1	2
AV based on	Whole population excl. outliers	Whole population excl. outliers
AV [mg/kg]	0.086	0.065
CV*	29.6%	46.9%
MRRL [mg/kg]	0.01	0.01
UAV Test	failed	failed

Uncertaintly of AV exceeds the limit, due to small number of results

Impact Sample Treatment on Meptyldinocap

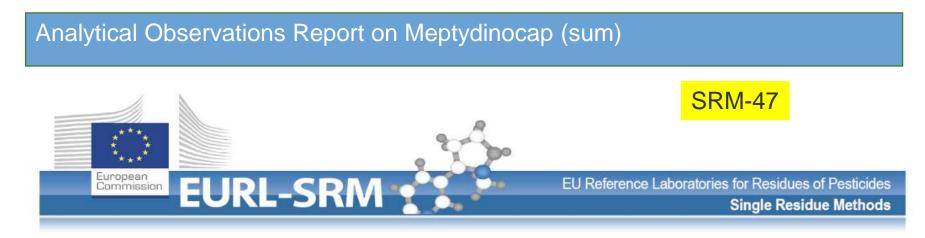
TAKE HOME MESSAGE:

Meptyldinocap was sufficiently stable in the grape matrix DEFROSTING not as critical as in matrices with high pH

Analytical Challenge in case of Meptyldinocap & Co.

In principle, there are two approaches for the analysis: a) analysis of *meptyldinocap* and *2,4-DNOP* separately; and b) Analysis following conversion of *meptyldinocap* to *2,4-DNOP*. The analysis of *meptyldinocap* next to its degradant *2,4-DNOP* is tricky as *meptyldinocap* is also analysed as *2,4-DNOP* as it readily degrades within the ESI ion source. So both compounds share the same MRM transitions and are not separated mass-spectrometrically. To avoid partial co-elution of the two compounds, it is recommended running comparably "slow" LC-gradients to ensure sufficient chromatographic separation. *Meptyldinocap* is sensitive to degradation and analytical standards need to be stabilized with some acid. Still, even freshly prepared *meptyldinocap* standards contain a small amount of *2,4-DNOP* (e.g. ~3%). Despite the small share of *2,4-DNOP* in *meptyldinocap* standards, *2,4-DNOP* forms the largest peak upon injection. The reason for this is that *2,4-DNOP* when analysed as such is ca. 50 to 100-fold more sensitive than *2,4-DNOP* originating

from *meptyldinocap* through in-source fragmentation which appears at a later retention time. Laboratories often get confused misallocating the retention time of *2,4-DNOP* to *meptyldinocap*. This leads to wrong quantifications. Even if retention times are correctly allocated, it can happen that the peak at the retention time of *meptyldinocap* is overlooked as the peak for *2,4-DNOP* is typically much-much larger, so that the *2,4-DNOP* peak is taken. This scenario may happen if the two compounds elute very closely ("fast" elution gradient) so that *2,4-DNOP* appears close to the centre of the data review window of *meptyldinocap*.


A method entailing conversion of *meptyldinocap* to *2,4-DNOP* was developed by the EURL-SRM (<u>Method</u> <u>SRM-47</u>).

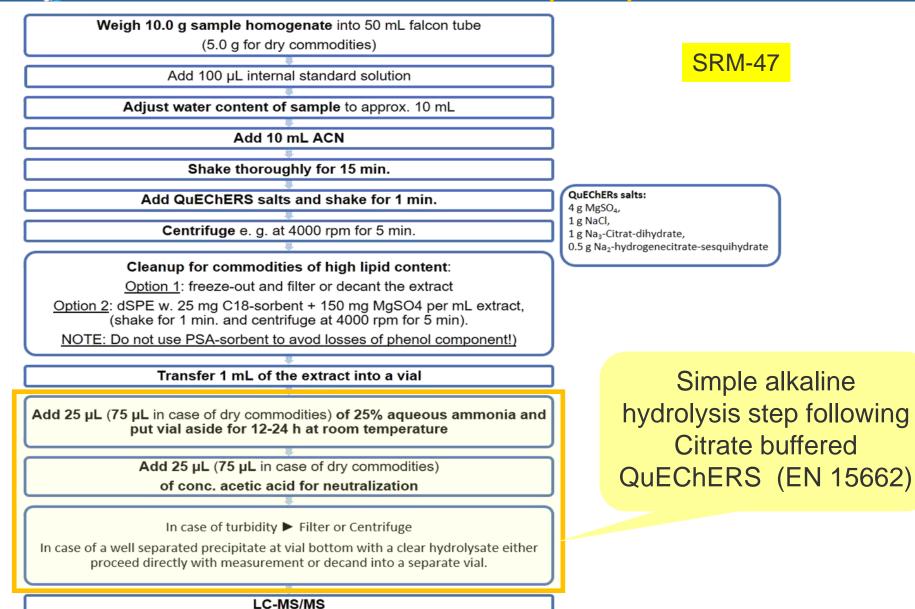
SRM17-Report

European Commission EURL-SRM

MEPTYLDINOCAP (SUM)

EURL-SRM - Analytical Observations Report

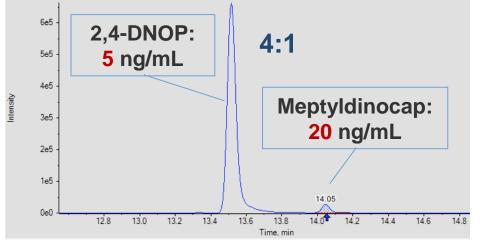
Concerning the following...


- Compound(s): Meptyldinocap
- Commodities: Plant origin, animal origin
- Extraction Method(s): CEN-QuEChERS, QuOil
- Instrumental analysis: LC-MS/MS

Analysis of Meptyldinocap by QuEChERS

followed by alkaline hydrolysis and LC-MS/MS measurement

MEPTYLDINOCAP (SUM)


EURL-SRM

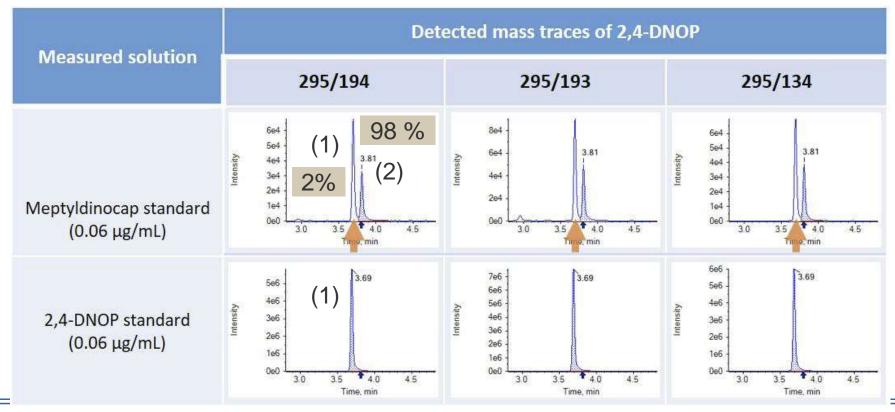
EURL-SRM 했 Meptyldinocap (SUM)

Meptyldinocap Analysis- ERROR SOURCES

- Instability of Meptyldinocap in solution (standard solutions, sample extracts): Degradation slows down at low pH → Acidify standards
- Risk of Peak-Mismatch between Meptyldinocap and 2,4-DNOP:
- LC-MS/MS : ESI (pos.)
 - Parent \rightarrow poor sensitivity;
 - 2,4-DNOP \rightarrow X
- LC-MS/MS : ESI (neg.)
 - Parent \rightarrow moderate sensitivity (in-source fragmention to 2,4-DNOP);
 - 2,4-DNOP → very high sensitivity (~ 80-fold more sensitive than parent !!)

Conc. Ratio of Meptyldinocap: 2,4-DNOP

- Here 4:1
- In PT-sample: ~ 2:1

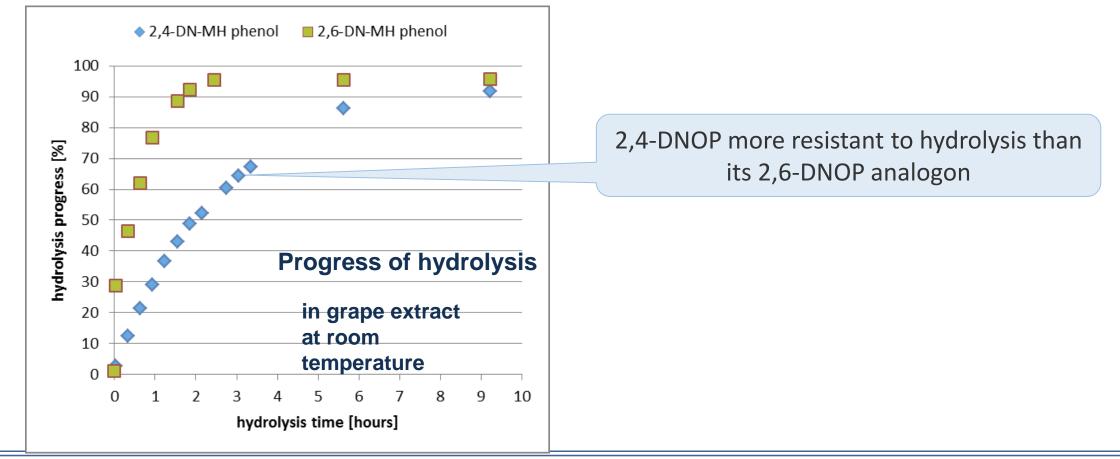

High Risk of Peak-Mismatch

(Meptyldinocap-peak could be overlooked)

EURL-SRM 🕵 🐂 meptyldinocap (Analytical Observation)

Meptyldinocap – Error Sources

- Meptyldinocap standards typically contain 1-2% 2,4-DNOP (as impurity):
- Meptyldinocap: In-source fragmentation to 2,4-DNOP in LC-MS/MS
- Two peaks within same mass-trace:
 - (1) 2,4-DNOP; (typically the larger peak despite being present at 1-2% !!)
 - (2) In-source fragment of Meptyldinocap

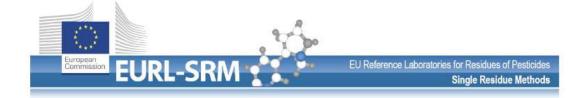


EURL-SRM **SET MEPTYLDINOCAP (Optimization of Hydrolysis)**

Meptyldinocap (sum) – Error Sources

Incomplete Hydrolysis

+ 500μL QuEChERS extract (spiked with Meptyldinocap (and its 2,6-analogon)) +10 μl of 25% aqueous ammonia solution



EURLs for Residues of Pesticides

CYHALOTHRIN

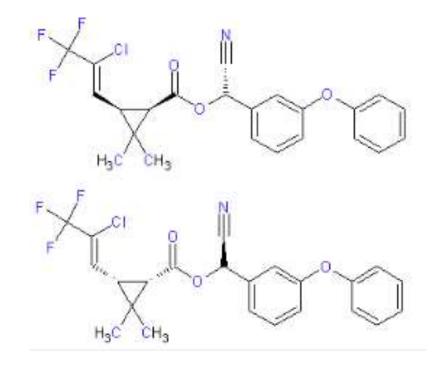
EURL-SRM - Analytical Method Report

Concerning the following ...

- o Compound(s): Lambda-Cyhalothrin (RS and SR constituent isomers)
- Commodities: Fruit and vegetables, cereals
- Extraction Method(s): QuEChERS modified
- Instrumental analysis: LC-MS/MS

Analysis of Lambda- and Gamma-Cyhalothrin involving QuEChERS Extraction and Enantioselective LC-Separation of RS and SR-Isomers

Version 1 (last update: 12.04.2019)


Short Description:

A QuEChERS-based procedure involving enantioselective LC-MS/MS analysis of the two isomers of lambda-cyhalothrin is presented. Separation is achieved on a cellulose-based stationary phase covered by an immobilized chiral selector.

Background information:

Cyhalothrin, is an insecticide belonging to the group of synthetic pyrethroids. It is currently not approved for use in agriculture within the EU but it is still approved for veterinary purposes against ectoparasites such as ticks and mites. Cyhalothrin consists of 4 stereoisomers (RS, SR, RR, SS) in a 1:1:1:1 ratio. **Lambda-cyhalothrin** is a 1:1 mixture of 2 of the 4 cyhalothrin components (RS and SR). Its

Cyhalothrin: 4 isomers Lambda Cyhalothrin: 2 isomers (one enantiomeric pair) Gamma-cyhalothrin: 1 enantiomer.

>

Compound details:

EURL-SRM

Parameter	Value	
Molecular Mass	449.9 g/mol	FS J N
Formula	C23H19CIF3NO3	
Exact mass	449.10055 Da	
Pka	not ionized [2]	
LogD	7 (20°C) [3]	
Residue definition EU	Lambda-cyhalothrin	(includes gamma-cyhalothrin) (sum of R,S and S,R isomers) (F)
ambda-cyhalothrin is approved in	AT, BE, BG, CY, CZ, D	E, DK, EE, EL, ES, FI, FR, HR, HU, IE, IT, LT, LU, LV, MT, NL, PL, PT, RO, SI, SK, U
ADI / ARfD	0.0025 mg/kg bw pe	er day / 0.005 mg/kg bw (Reg. (EU) 2016/146)
Name: Gamma-Cyhalothrin IUPAC: (S)-α-cyano-3-phenoxybenzyl (11		3-trifluoropropenyl]-2,2-dimethylcyclopropanecarboxylate
Parameter	Value	
Molecular Mass	449.9 g/mol	F. F. N
Formula	C23H19CIF3NO3	
Exact mass	449 10055 Da	

IUPAC: (S)-α-cyano-3-phenoxybenzyl (1R)-cis-3-[(Z)-2-chloro-3,3,3-	-trifluoropropenyl]-2,2-dimethylcyclopropanecarboxylate
Parameter	Value	
Molecular Mass	449.9 g/mol	F. F. N
Formula	C23H19CIF3NO3	
Exact mass	449.10055 Da	
Pka	not ionized	
LogD	7 (20°C)	нас сна —
Residue definition EU	Currently included in	the residue definition of lambda cyhalothrin
Gamma-cyhalothrin is approved in	BE, BG, CZ, DE, DK, FF	R, HR, HU, IE, RO, SK
ADI / ARfD	0.0012 mg/kg bw per	day / 0.0025 mg/kg bw (Reg. (EU) 2016/146)

35°C

Table 2: Instrumentation details

Column temperature

LC	WATERS Acquity UPLC IClass	WATERS Acquity UPLC IClass					
MS/MS	SCIEX 5500 QTrap, run in ES	SCIEX 5500 QTrap, run in ESI positive mode					
Column	ChiralArt Cellulose-SB, 100x	hiralArt Cellulose-SB, 100x4.6 mm, 3 μm					
Pre-column	None	None					
Mobile Phase		A: 5 mmol NH₄formate in purified water + 5% methanol B: 5 mmol NH₄formate in methanol					
Gradient	Time (min)	Mobile Phase A (%)	Mobile Phase B (%)				
	0	20	80				
15 20 8							
Flow	0.6 mL/min*						
Injection volume	5 μL**		omparison of Sciex 4000				

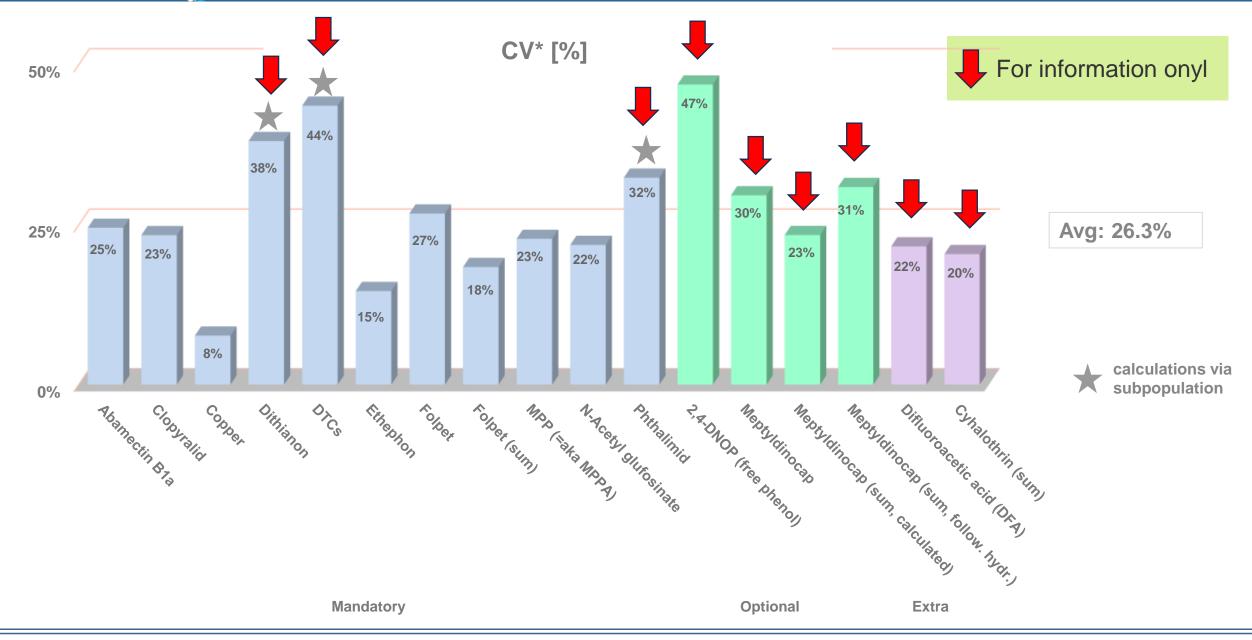
Figure 1: Sensitivity comparison of Sciex 4000 QTrap and 5500 QTrap instruments, exemplary using acetonitrile solutions of gamma-cyhalothrin and lambda-cyhalothrin at 0.1µg/mL each

Table 6: Validation of gamma-cyhalothrin respectively lambda-cyhalothrin on cucumber with PSA cleanup (ESI-pos. mode using Sciex API 5500 QTrap),

Compound	MRM used	Spiking Level* (mg/kg)	dSPE Cleanup (with PSA/C ₁₈)	Mean Recovery %
Gamma-Cyhalothrin	4675005	0.005	Yes	105
Gamma-Cynaiothnin		0.005	No	108
Lambda-Cyhalothrin	467>225	0.010	Yes	103
Lambda-Cynaiothnin		0.010	No	103

EURLs for Residues of Pesticides

OVERALL PT EVALUATION


Uncertainty of assigned value

<u>COMPULSORY / OPTIONAL / Extra</u> Compounds

EU+EFTA

	Compound	Population for AV, if not entire population	No. of FNs Outlier	No. of Numerical Results for AV (excl. outliers)	AV [mg/kg]	CV* [%]	Uncertainty of AV (UAV) [mg/kg]	UAV- Tolerance [mg/kg]	Judgement
	Abamectin B1a		2 1	96	0.0711	24.6%	0.0022	0.0053	passed
	Clopyralid		2 1	74	0.192	23.4%	0.0065	0.0144	passed
	Copper		0 1	74	29.9	7.7%	0.3334	2.2425	passed
	Dithianon	only strong protected	2 0	40	0.236	38.1%	0.0178	0.0177	failed
tory	DTCs	entire, but AV was set at 0.1	5 5	82	0.1	43.6%	-	0.0075	—
Mandatory	Ethephon		3 2	91	0.0582	14.7%	0.0011	0.0044	passed
Ra	Folpet		8 3	77	0.225	26.8%	0.0086	0.0169	passed
	Folpet (sum)		2 3	78	0.421	18.4%	0.011	0.0316	passed
	MPP (=aka MPPA)		2 2	71	0.0819	22.8%	0.0028	0.0061	passed
	N-Acetyl glufosinate		4 1	74	0.0773	21.9%	0.0025	0.0058	passed
	Phthalimid	only LC based results	1 2	14	0.082	32.4%	0.0089	0.0062	failed
	2,4-DNOP (free phenol)		2 1	11	0.0647	46.9%	0.0114	0.0049	failed
ona	Meptyldinocap		1 5	13	0.086	29.6%	0.0088	0.0065	failed
Optional	Meptyldinocap (sum, calculated)		1 3	10	0.15	23.4%	0.0139	0.0113	failed
	Meptyldinocap (sum, follow. hydr.)		1 3	15	0.188	30.9%	0.0188	0.0141	failed
Extra	Difluoroacetic acid (DFA)		1 0	9	0.146	21.7%	0.0131	0.011	failed
EX	Cyhalothrin (sum)		1 1	13	0.0773	20.5%	0.0053	0.0058	passed

EU+EFTA

COMPULSORY / OPTIONAL / Extra Compounds

No. of Subpopulation FNs Outliers AAZ CV* No. of \odot Compound Labs (all) for AV (therein) (therein) (excl. FNs) [%] 20% 40% 60% (excl. outliers) 0% 80% 100% Abamectin B1a 99 2 1 1.0 24.6% 77 2 0.9 23.4% Clopyralid 1 75 0 1 0.2 7.7% Copper Dithianon 81 42 2 0 1.2 38.1% 92 5 5 43.6% DTCs 1.8 Ethephon 96 3 2 1.0 14.7% Folpet 88 8 3 1.2 26.8% 83 0.8 3 18.4% Folpet (sum) 2 MPP (=aka MPPA) 75 2 2 1.9 22.8% N-Acetyl glufosinate 79 4 21.9% 1 1.6 Phthalimid 87 17 32.4% 1 2 3.3 14 2.2 46.9% 2,4-DNOP (free phenol) 2 1 19 5 24.9 29.6% Meptyldinocap 1 Meptyldinocap (sum, calculated) 14 1 3 6.4 23.4% 30.9% Meptyldinocap (sum, follow. hydr.) 19 1 3 2.9 Difluoroacetic acid (DFA) 10 1 0 0.6 21.7% Cyhalothrin (sum) 15 0.8 1 1 20.5%

Overall Performance II

Rules for Category A:

- Analysed for at least <u>17 out of 19 compulsory pesticides</u>
- Correctly found at least <u>10 out of 11 compulsory pesticides present in test item</u>
- No FPs among compulsory analytes

	No. of Labs [%]			
	EU/EFTA / (3'	rd C)		
Category A	50 (3)	41 % (25%)		
Category B	73 (9)	59 % (75%)		

Overall Performance II

Rules for Category A:

- Analysed for at least <u>17 out of 19 compulsory pesticides</u>
- Correctly found at least <u>10 out of 11 compulsory pesticides present in test item</u>
- No FPs among compulsory analytes

	No. of Labs	[%]
	EU/EFTA / (3'	rd C)
Category A	56 / (3)	46 % / (25%)
Category B	67 / (9)	54 % / (75%)

Methods used (according to information provided by participants, which may not be		QuEChERS-Style	Mini-Luke/S19	EtAc-Mth	QuPPe-Style	Deriv (ethylene)	ALL
fully accurate)	2,4-DNOP (free phenol)	100%	0%	0%	0%	0%	100%
· /	Meptyldinocap	100%	0%	0%	0%	0%	100%
	Meptyldinocap (sum, calculated)	100%	0%	0%	0%	0%	100%
	Meptyldinocap (sum, follow. hydr.)	95%	0%	5%	0%	0%	100%
	Gamma Cyhalothrin	95%	0%	5%	0%	0%	100%
	Dithianon	93%	2%	2%	2%	0%	100%
	Abamectin B1a	93%	2%	3%	2%	0%	100%
	Folpet (sum)	89%	6%	6%	0%	0%	100%
	Phthalimide	89%	5%	3%	2%	0%	100%
	Folpet	88%	6%	5%	0%	0%	100%
	Clopyralid	88%	2%	0%	10%	0%	100%
	Ethephon	2%	0%	0%	97%	1%	100%
	MPP (=aka MPPA)	4%	0%	0%	96%	0%	100%
	N-Acetyl glufosinate	2%	0%	0%	98%	0%	100%
	Difluoroacetic acid (DFA)	0%	0%	0%	100%	0%	100%

EURL-SRM Method used for Dithiocarbamates

Methods used

(according to information provided by participants, which may not be fully accurate)

DTCs

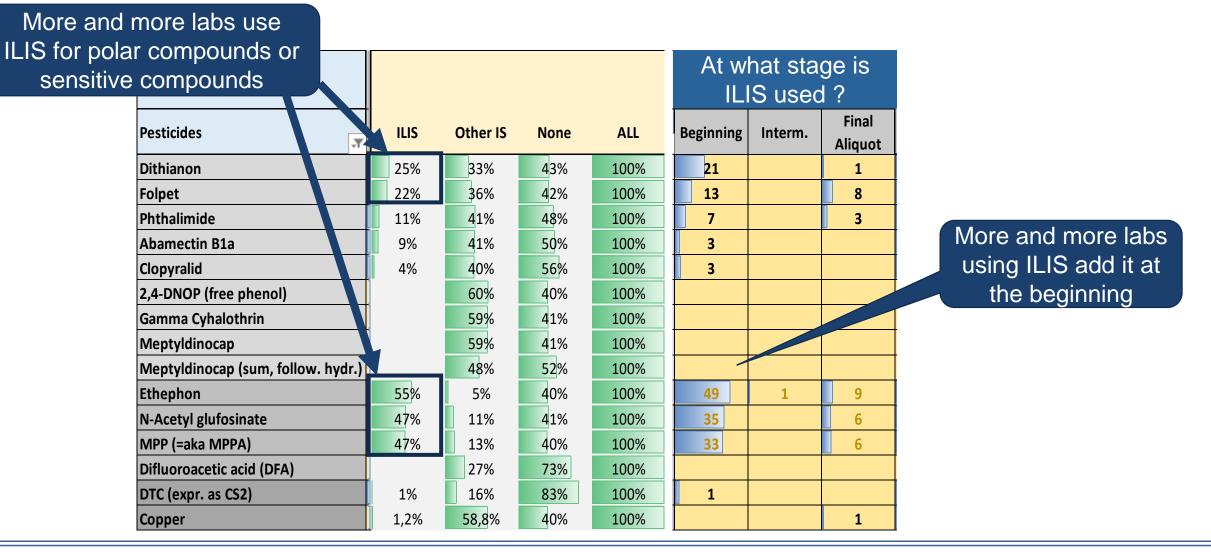
Appoach	No. Labs	% of Labs
LLP (isooctane)	48	47%
Headspace	26	25%
Headspace-SPME	10	10%
Spectroph. (Xanthogenate)	11	11%
Spectroph. (Cu-Acetate)	5	5%
Derivatization + QuEChERS	2	2%
ALL	102	100%

EURL-SRM Method used for Copper

Methods used

(according to information provided by participants, which may not be fully accurate)

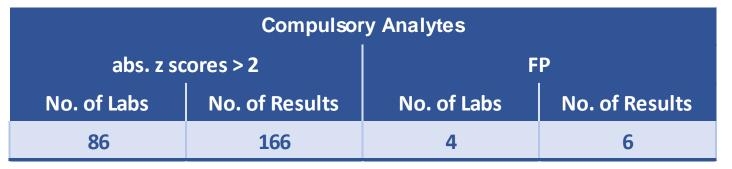
Cu


Approach	No. Labs	% of labs	
ICP-MS	60	71%	
ICP-MS (SF)	3	4%	
AES	10	12%	
FAAS	5	6%	
IC-MS/MS	6	7%	
IC-Conductivity	1	1%	
ALL	85	100%	

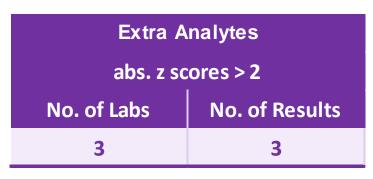
Use of ILIS

Use of ILIS

(according to information provided by participants, which may not be fully accurate)



EURL-SRM Poor performance and Feedback


Poor performance

88 EU/EFTA OfLs reported 200 results indicating poor performance

(therein 47 FNs/FN* and 7 FPs)

Optional Analytes				
abs. z scores > 2		FP		
No. of Labs	No. of Results	No. of Labs	No. of Results	
13	24	1	1	

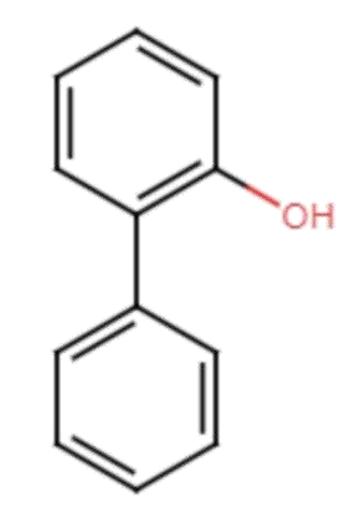
EU+EFTA

Feedback on Poor Performance

51 EU/EFTA OfLs gave feedback for poor performance in 108 cases (as of 14 June)

No. cases	Reasons	
40	Analytes losses (e.g. during transport, sample preparation); therein 13 in case of decomposition of folpet in GC injection resulting to overestimation of PI	
27	Analytical procedure was inappropriate; therein 21 cased using GC to determine folpet and/or PI in the presence of both analytes	
23	Others/Miscellaneous	
20	Lack of experience	
12	Transcription- / documentation-/ communication-/ error	
9	Calculation error (e.g. use of wrong factor, to express residue as required in PT; to address dilutions etc.)	
8	Measurement problems (e.g. poor chromatographic separation, poor sensitivity, signal interfered by matrix)	

Feedback on Poor Performance


51 EU/EFTA OfLs gave feedback for poor performance in 108 cases (as of 14 June)

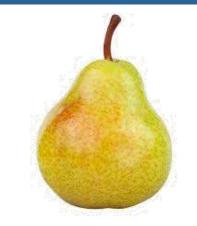
No. cases Reasons

- 8 Inappropriate / erroneous calibration approach (e.g. matrix effects not properly compensated)
- Froneous analytical standard (e.g. due to degradation, wrong purity, wrong dilution)
 (One lab reported erroneous purity of purchased avermectibe std. (confirmed by EURL-SRM)
- 5 **Misinterpretation / Misevaluation** of measurement data
- 4 **Analytical procedure was appropriate but it was not properly performed** (e.g. important component - e.g. water - was not used, extraction time too short/long)
 - 1 Result not or not properly corrected for recovery
- 1 **Deficient QC-measures** that would have helped to recognize that method generates FNs, FPs or strongly biased results (e.g. no recovery test)

Analysis of OPP (sum)

2-Phenylphenol in Pears

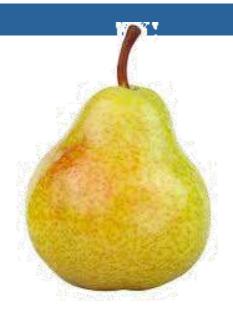
From EFSA Reasoned opinion


EFSA Journal 2017;15(2):4696

In <u>pears</u>, analysed **28 weeks after treatment**, the main residues found in extracts of the different fractions of the fruits were **2-phenylphenol (6% of TRR)** and **its conjugates (74% of TRR)**. ...

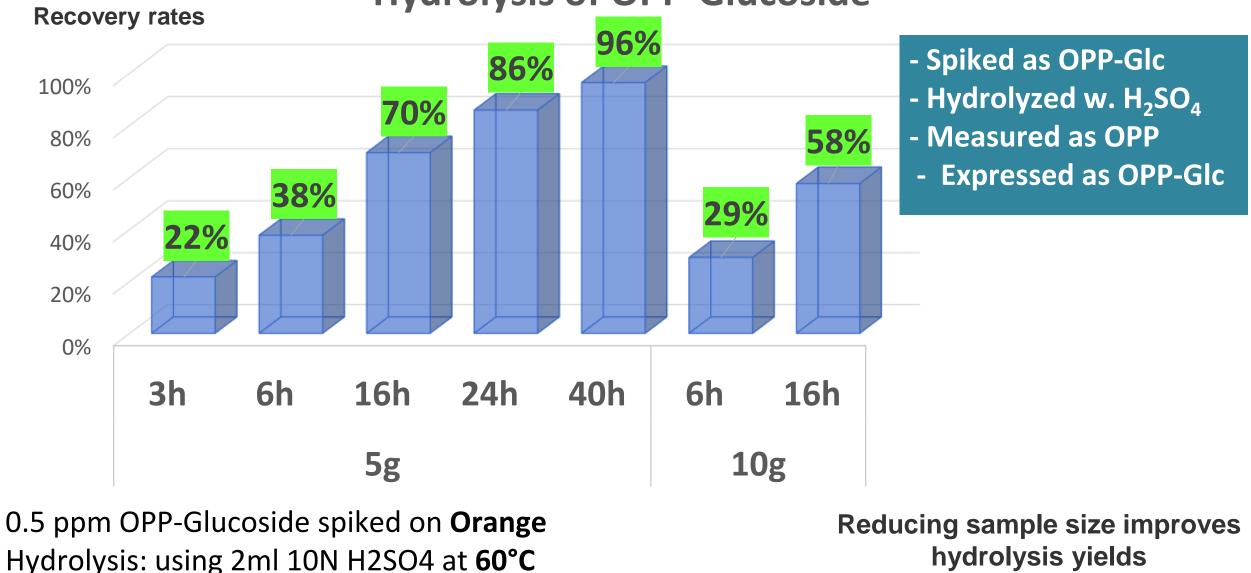
Post-extraction **solids** of peel and pulp were further characterized by hydrolysis steps which **released conjugates of 2-phenylphenol**.

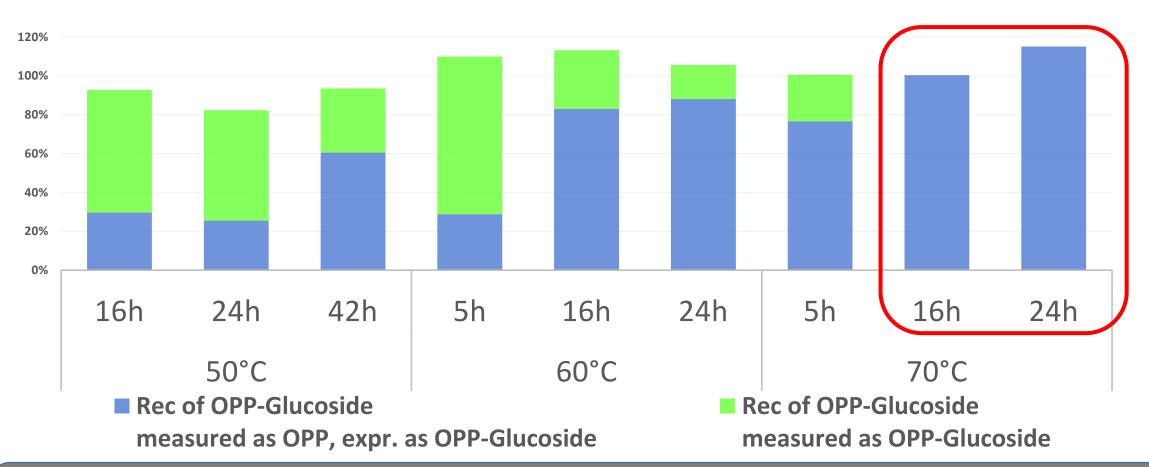
Residue Definition finally <u>Established</u>:


2-phenylphenol (sum of **2-phenylphenol and its conjugates**, expressed as 2-phenylphenol)

2-Phenylphenol in Pears

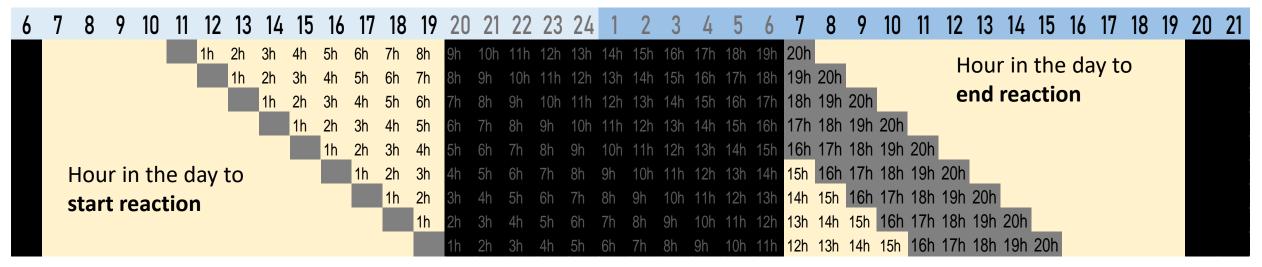
Experiment: Treatment of Pears in Lab with OPP


- Pears dipped in aqueous OPP-Na-salt solution and stored
- In parallel non-treated pears stored (to use as blank)
- Storage: ca. 2 weeks at RT in dark
- Cryomilling (treated and blank)
- Extracted via QuEChERS (with and without hydrolysis)
- Matrix-matched calibration
- Additionally use of ILIS



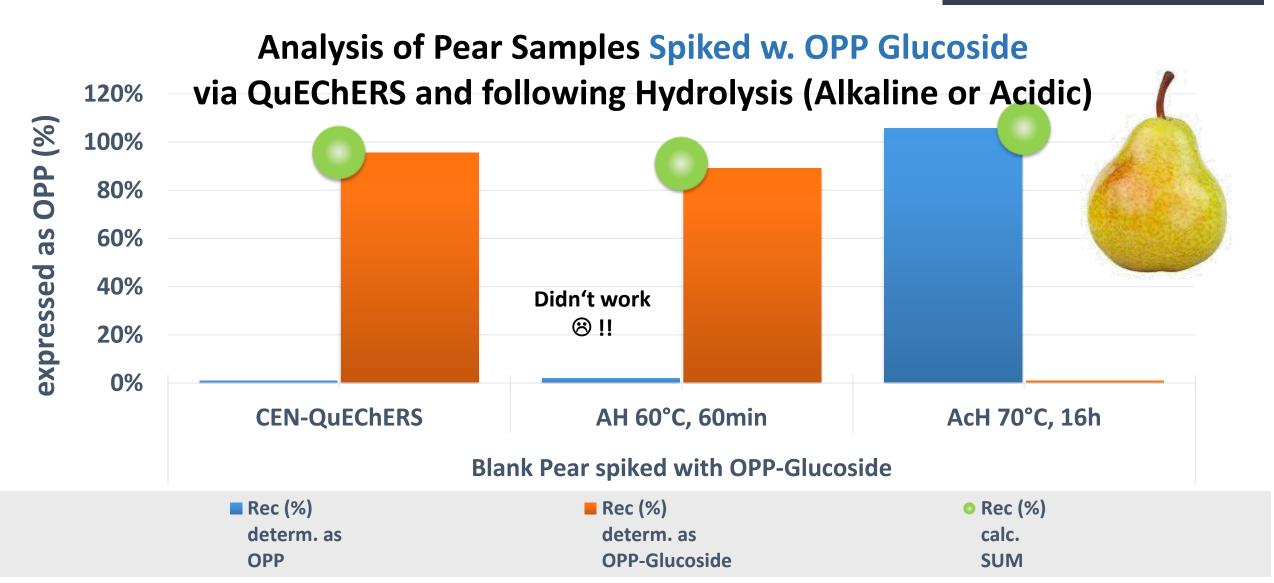
Hydrolysis of OPP-Glucoside

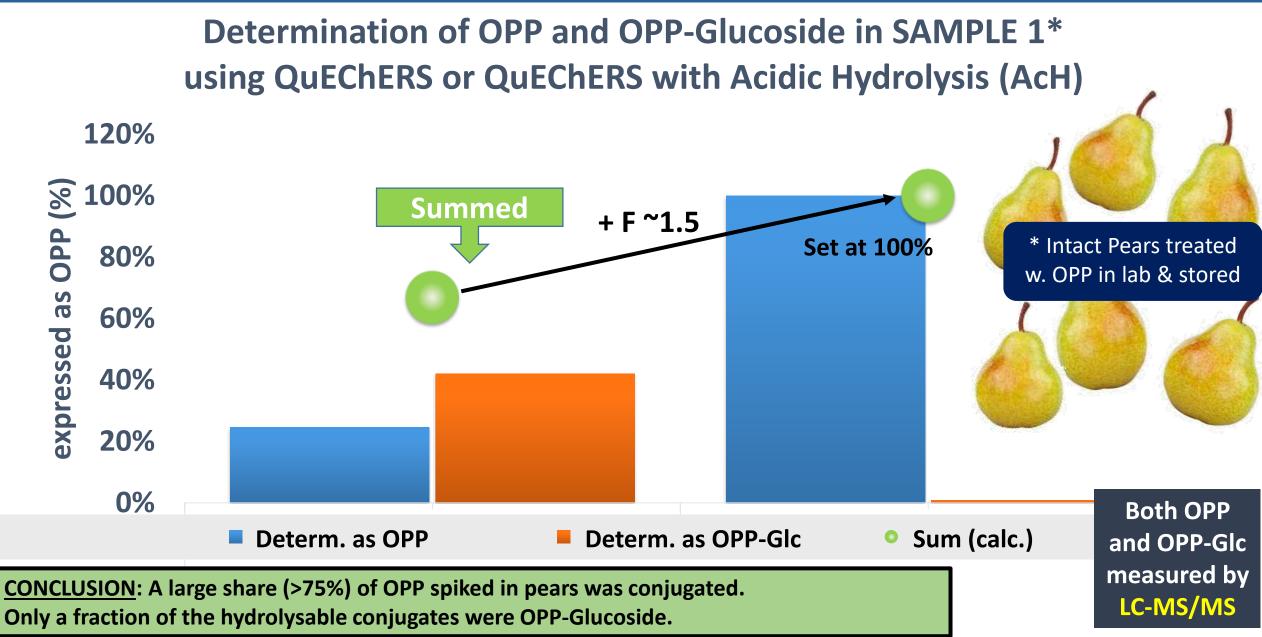
Acidic Hydrolysis of OPP Glucoside – Very Challenging !!


5g sample spiked OPP-Glucosid. Hydrolysis by adding 2 mL H₂SO₄ 10N <u>Measurement</u>: OPP-Glucoside and OPP via LC-MS/MS

5g Matrix + 2 mL H₂SO₄ 10N + 1mL water, 16-24h at 70°C Neutralize with 2 mL NaOH 10 N Continue with normal QuEChERS

Lab logistics -> Overnight (unattended) Reaction


EURL-SRM



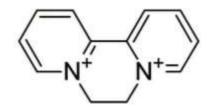
Analysis of OPP (sum) following hydrolysis to OPP

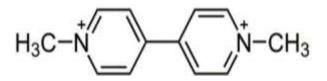
Both OPP and OPP-Glc measured by LC-MS/MS

Determination of OPP and OPP-Glucoside in SAMPLE 2* using QuEChERS and QuEChERS with Acidic Hydrolysis (AcH) 120% 100% + F~5 80% Summed 60% * Intact Pears treated 40% **Free OPP** w. OPP in lab & stored only traces ! 20% 0% **CEN-QuEChERS** AcH 70°C, 16h Pear (2018) "incurred" **Both OPP** o Sum (calc.) Determ. as OPP-Glc Determ. as OPP and OPP-Glc measured by **CONCLUSION:** Almost all the OPP spiked in pears was conjugated. LC-MS/MS Only a very small fraction of the hydrolysable conjugates were present as OPP-Glucoside.

OPP (%) Expressed as

EURLs for Residues of Pesticides


PQ/DQ


Analysis of Diquat (DQ) and Paraquat (PQ)

- Both are non-selektive herbicides
- Both are banned in the EU ... but are still widely used elswhere (e.g. as crop-desiccants (e.g. on potatoes, oilseeds, cereals)

Diquat (DQ)

Paraquat (PQ)

EURL-SRM

Analysis of Diquat (DQ) and Paraquat (PQ)

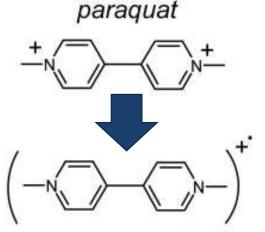
• EU-MRLs mostly at LOQ with some exeptions

e.g.:

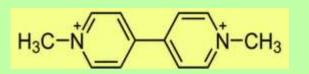
- PARAQUAT
 - **Rice**: 0.05 ppm
- DIQUAT
 - **Oats**: 2 ppm
 - Potatoes: 0.1 ppm
 - Oil seeds: Linseed 5 ppm, Rapeseed: 1.5 ppm, Sunflower seed 0.9 ppm, Soy 0.3 ppm, Oat 2 ppm
 - Pulses: 0.2 ppm (Peas 0.3 ppm),
 - Tree nuts: 0.2 ppm
 - Tree fruits: Citrus, Pome fruit, Stone fruit ...: 0.02 ppm
 - Other fruits: Strawberries: 0.05 ppm; Bananas 0.02 ppm

Vázquez C (2015)

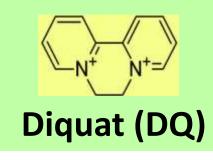
CHALLENGES IN THE ANALYSIS OF PQ and DQ:


MRM-Ion-Ratios Variable Depending on Matrix

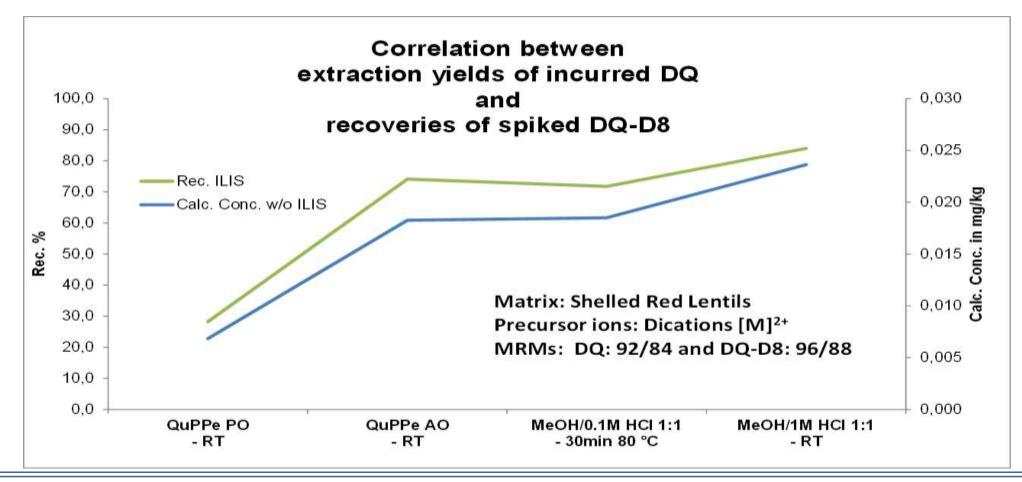
DQ and PQ form various precursor ions:


- Dications [M]²⁺
- Radical cations [M]^{+*}
- Deprotonated cations [M-H⁺]⁺

Share of different precursor ions depends on:


- Composition of mobile phase during elution (incl. co-eluting matrix)
- Design and condition of the LC-MS/MS interface

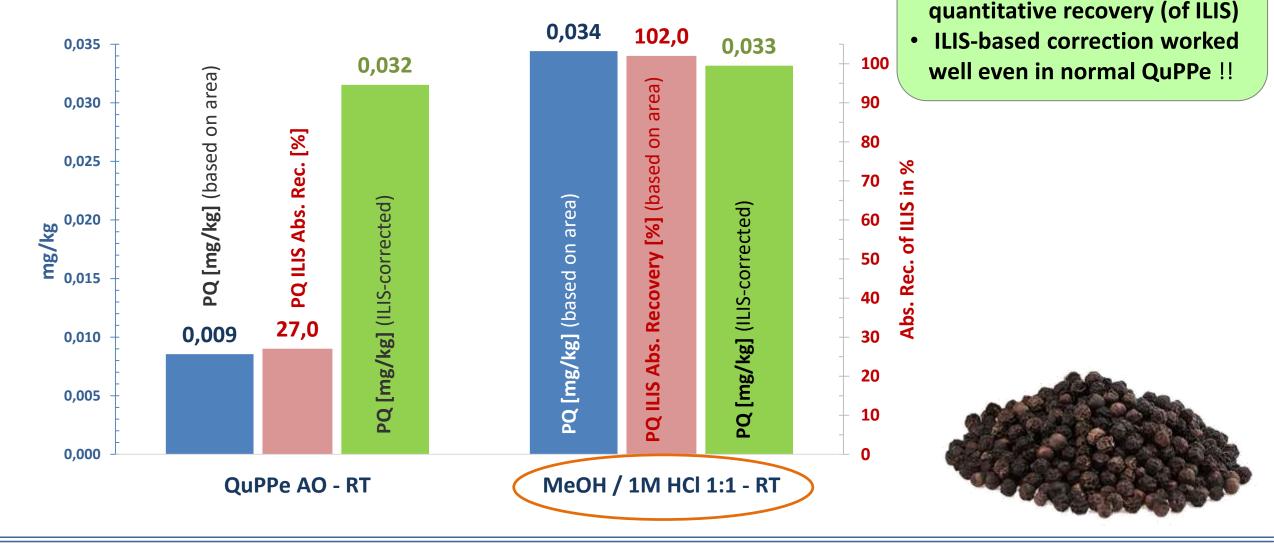
paraquat radical

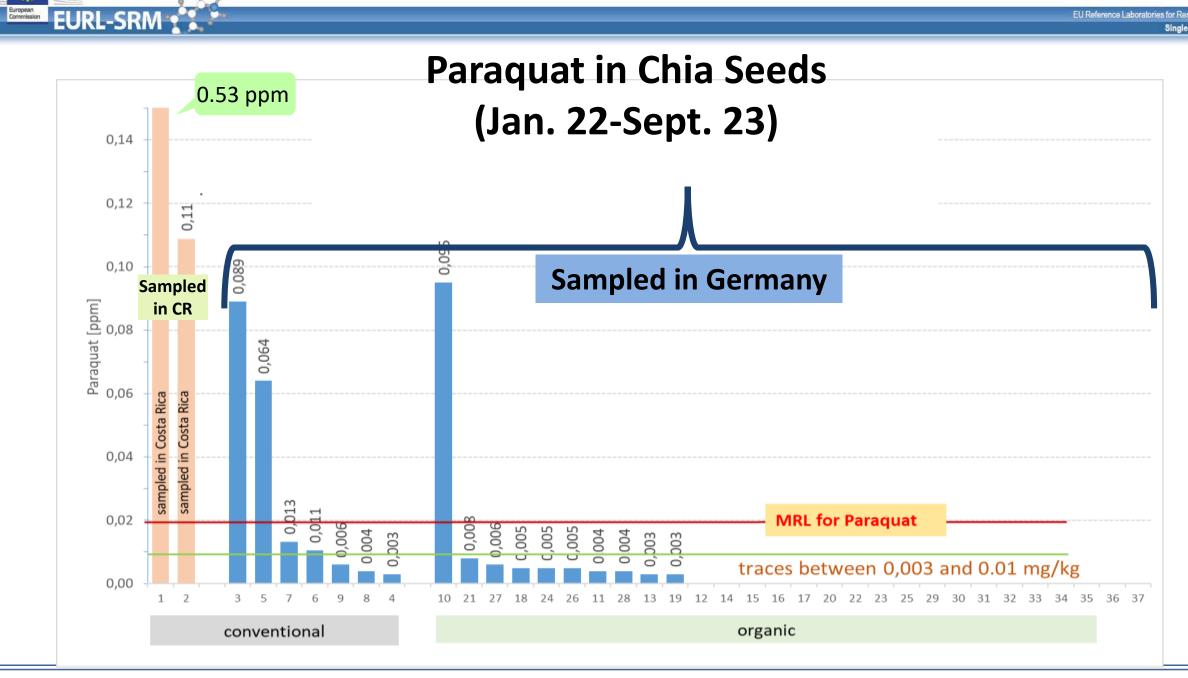

Paraquat (PQ)

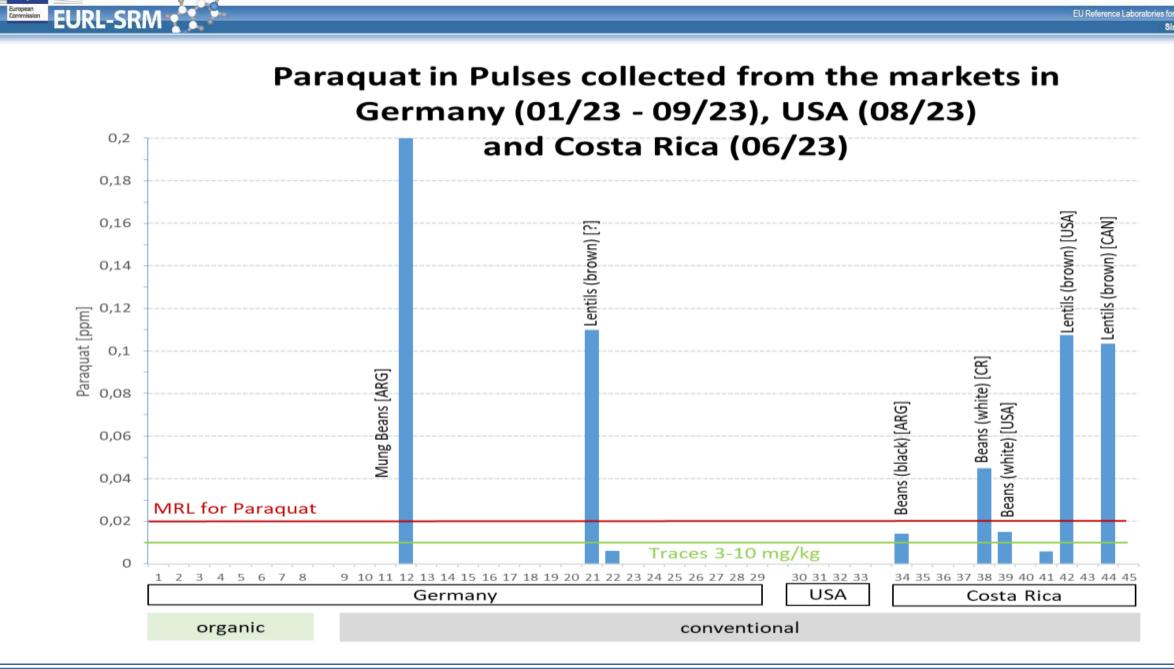
EURL-SRM

QuPPe: Diquat and Paraquat – Extractability

- Yields of incurred residues correlate well with the recoveries of spiked DQ/PQ
 - \rightarrow incurred residues and spiked residues are subject to the same equilibria




Message:

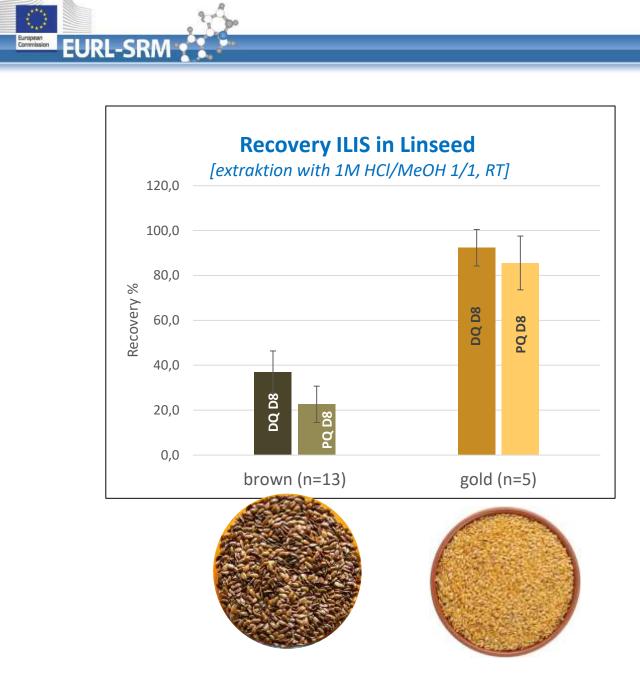

1% HCl was sufficient for

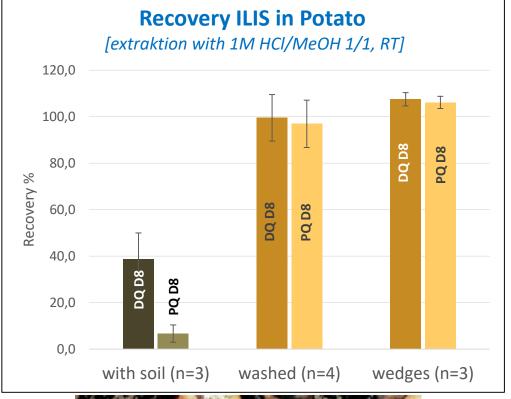
Black Pepper with Incurred Residues of Paraquat

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

 $\langle \rangle$

Monitoring extraction efficiency of PQ/ DQ based on ILIS recoveries Samples analyzed for Diquat and Paraquat (05/22 - 04/24)

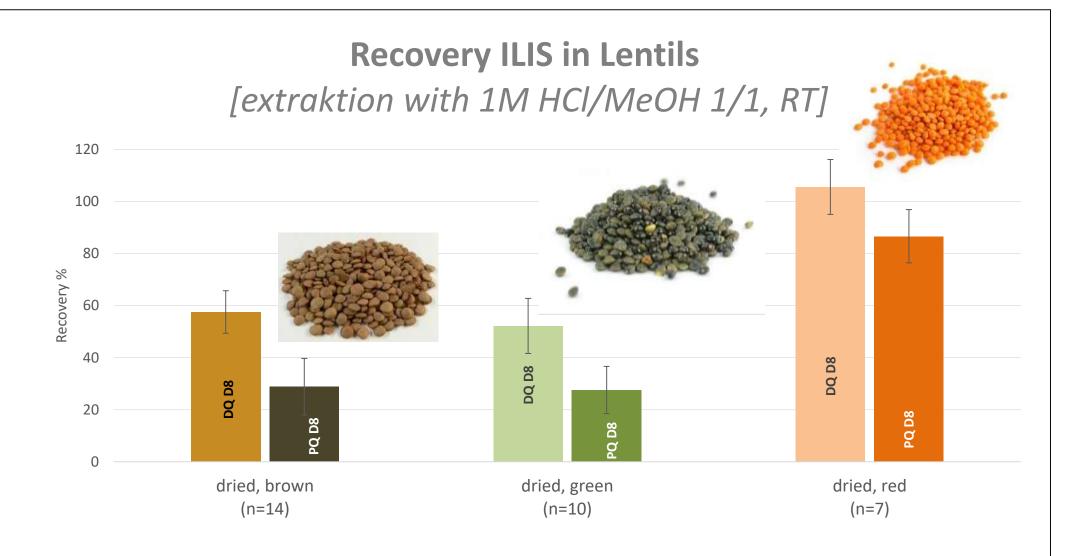

Matrix	No. of samples
Beans	62
Chan	2
Chia	47
Chickpeas	15
Coffee	1
Corn	3
Lentils	31
Linseed (flax)	18
Moringa	1
Mustard	2
Peanut	11
Peas	11
Potato	11
Quinoa	1
Rye	2
Sesame	20
Soybeans	3
Spelt	2
Spices	47
Sunflower	4
Sweet Potato	8
Tapiaoca	1
Wheat	8
TOTAL	311

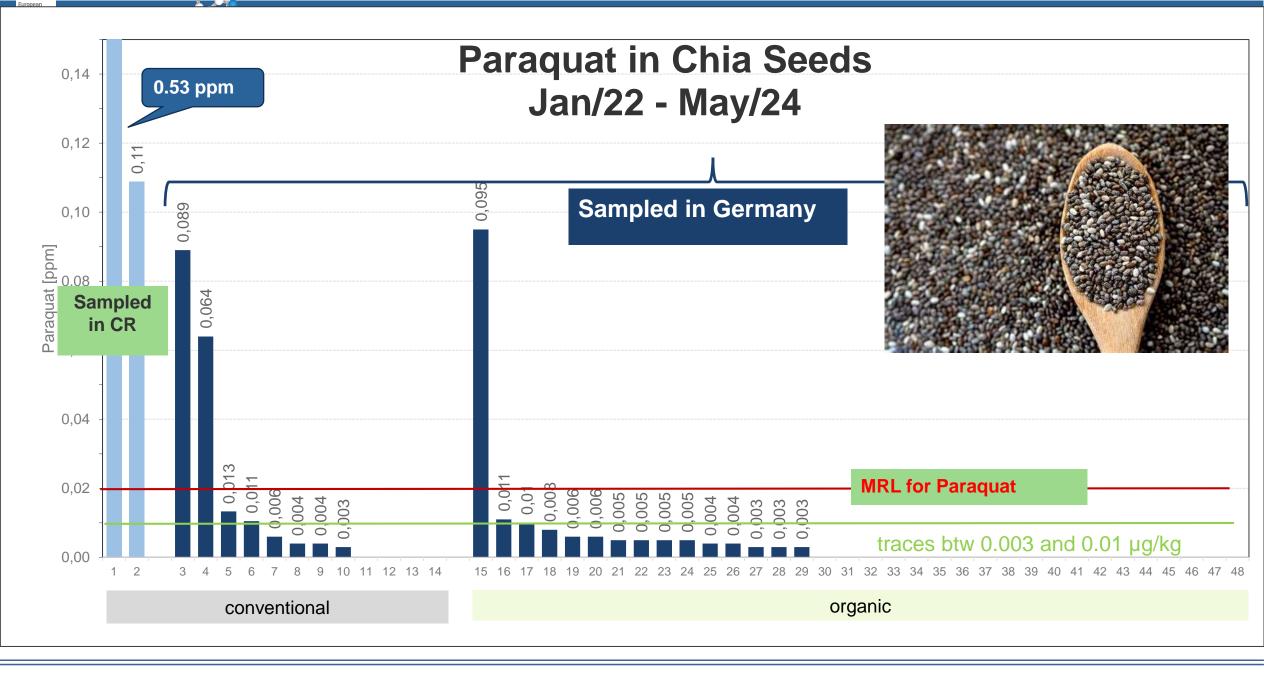

EURL-SRM

Extraction Conditions currently employed by EURL-SRM:

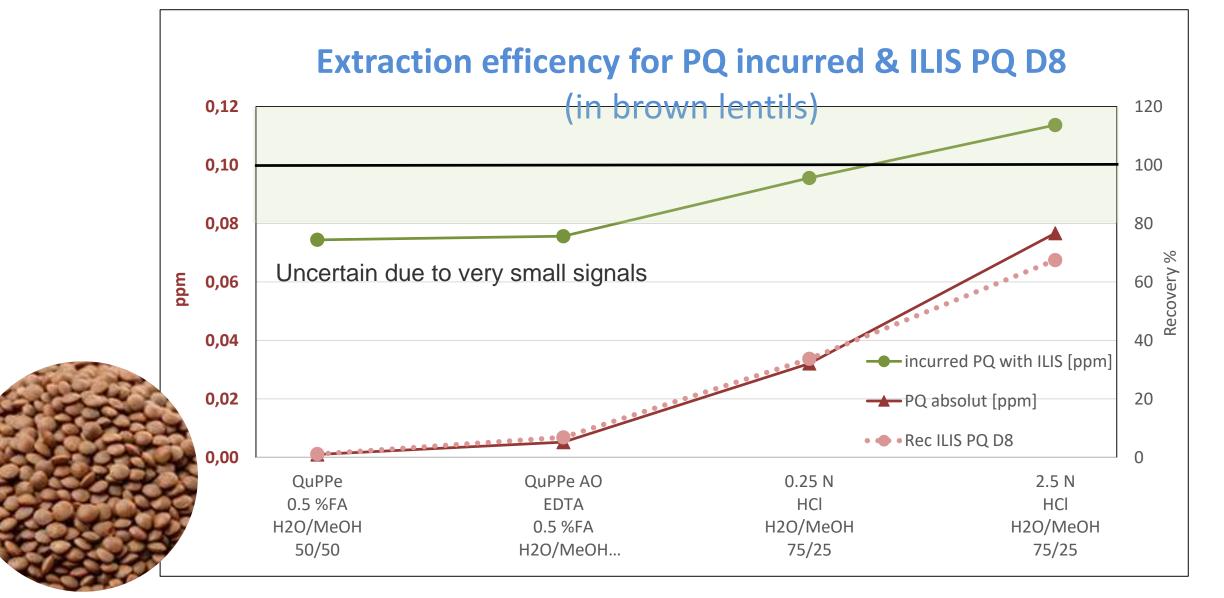
- Solvent: 10 mL 1 M HCI / MeOH 1/1
- (+ 10 ml water for dry commodities)
- (= 0,25 M HCl in water/MeOH 75/25 in final extract)
- Extraction temperature: RT
- ILIS: DQ D8 and PQ D8

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

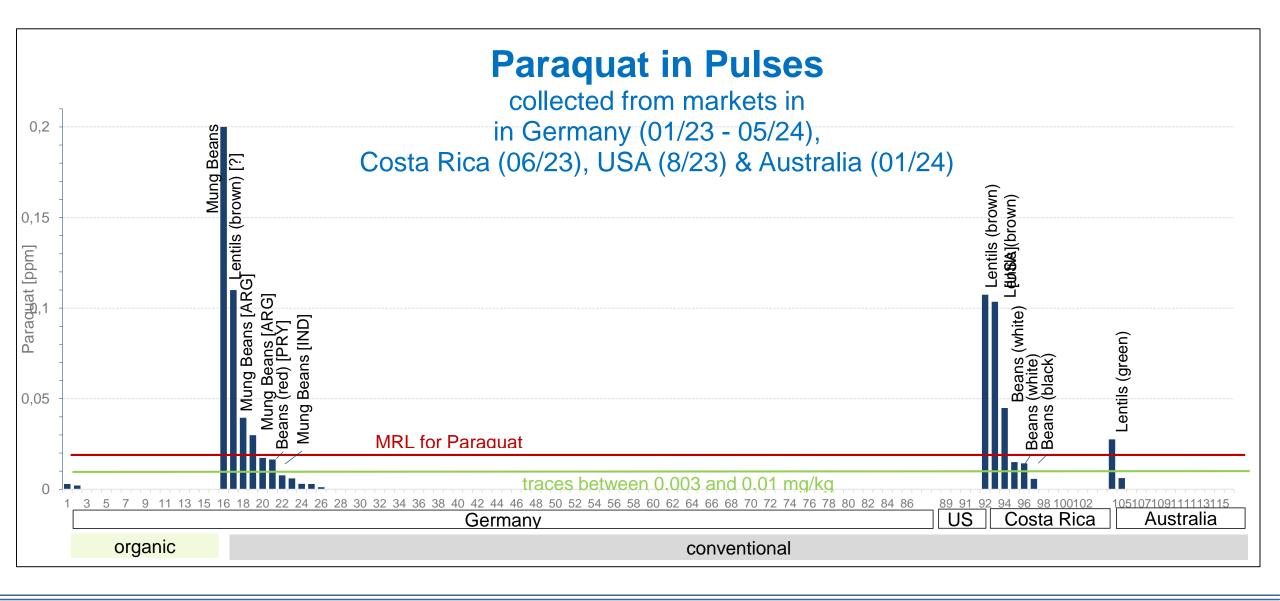




Extraction Efficiency – Recovery ILIS Lentils

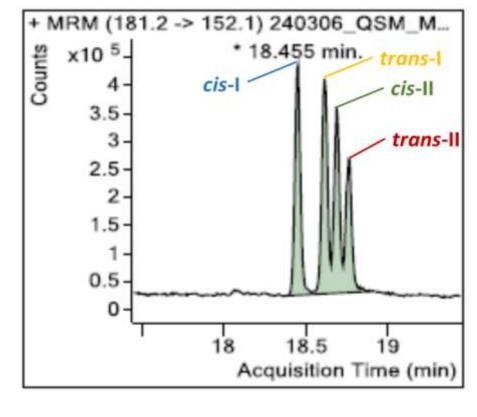

European Commission

EURL-SRM



European EURL-SRM

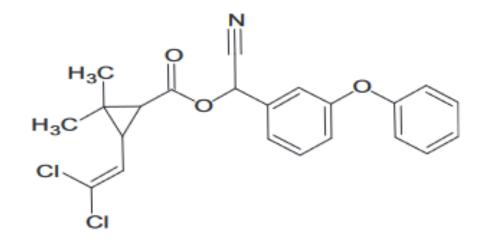
EURLs for Residues of Pesticides



Cypermethrin Alpha- Cypermethrin

Composition of Active Substances (Isomer Mixtures)

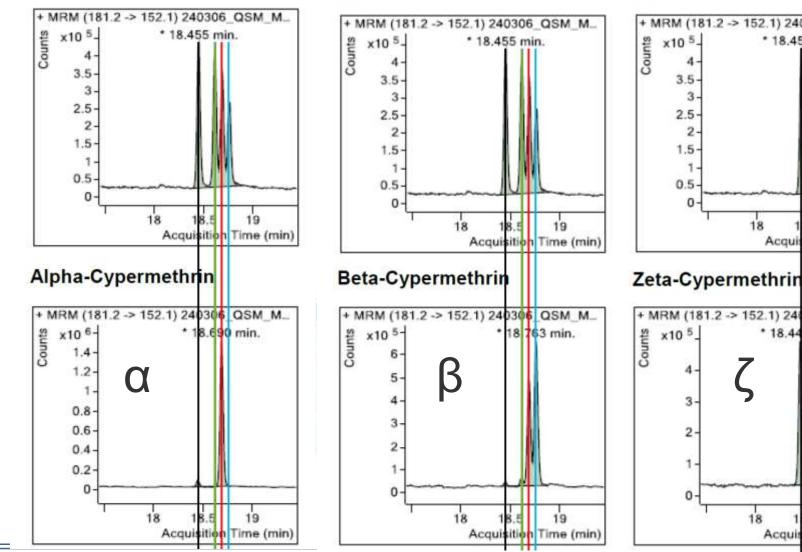
GC-MS/MS – Cypermethrin - (m/z 181/152)



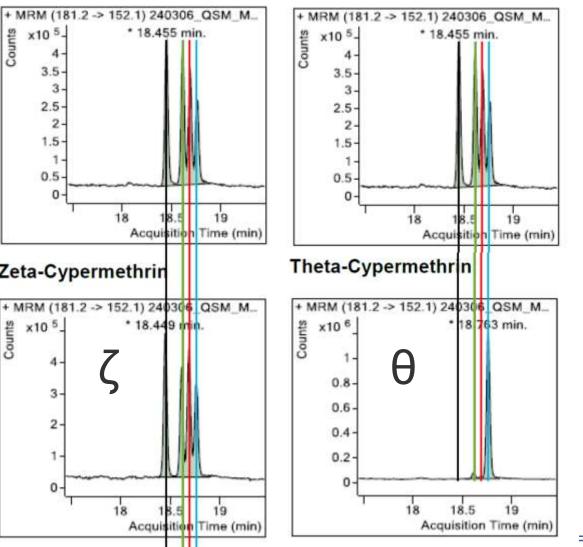
General Info:

- Cypermethrin: 3 chiral ventres 8 isomers (4 enantiomeric pairs)
- Conventional (non-enantioselective) Chr/phy, 4 peaks
- α-cypermethrin (=alphamethrin) composed of enantiom. pair "1R cis α-S" / "1S cis α-R" (cis-II pair) at racemic composition

Toxicology:

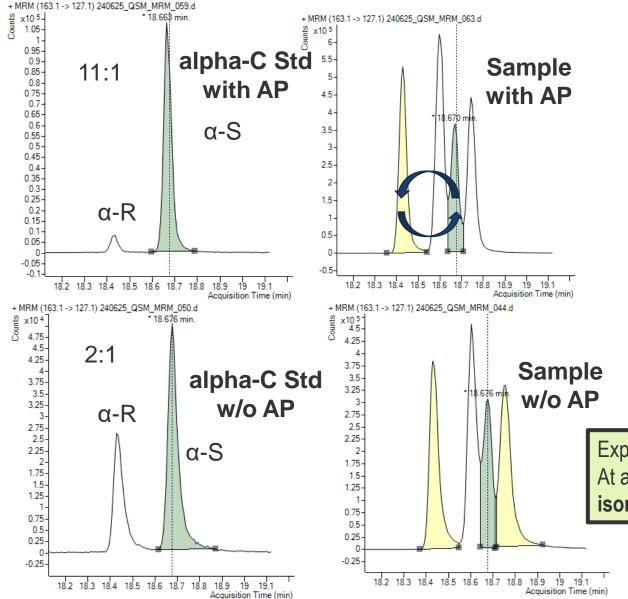

- Highest mammalian toxicity: 1*R cis* and α-S-configurations (50% of α-cyp.; 11 % of cyp.)
- ARfD : α-Cyp. 0.00125 vs. Cyp: 0.005 mg/kg bw
- ADI: α-Cyp. 0.00125 vs. Cyp: 0.005 mg/kg bw/day.
- EU-Approval:
 - Cypermethrin: still approved
 - Alpha-cypermethrin (till June 2021)
 - zeta-cypermethrin (till December 2020)

GC-MS/MS


Cypermethrin

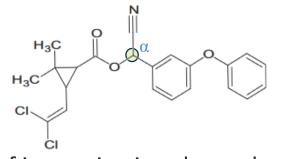
Cypermethrin

Cypermethrin


Peak 1 "Cis-I": 1R, 3R α R (=1R cis α R) + 1S, 3S α S (=1S cis α S)

- Peak 2 "Trans-I": 1R, 3S αR (=1R trans αR) + 1S, 3R αS (=1S trans αS)
- Peak 3 "Cis-II": 1R, 3R αS (=1R cis αS) + 1S, 3S αR (=1S cis αR)

Peak 4 "Trans-II": 1R, 3S αS (=1R trans αS) + 1S, 3R αR (=1S trans αR)


EURL-SRM

Analysis via GC

In hot GC-injector epimerization on $\alpha\text{-Carbon}$

Extent of isomerisation depends on ...

- Injection conditions, e.g. injection mode, temp.
- Status of Liner
- Amount & type of co-extractants (i.e. matrix-type)
- Presence of Analyte Protectants ("APs")

Experience w. Deltamethrin: Isomerization is bidirectional (α -S $\leftarrow \rightarrow \alpha$ -R). At a similar isomeric composition between sample extracts and calibr. Std., isomerization-related errors will equalize accurate quantification is possible.

Thank You for Your Attention

www.eurl-pesticides.eu