

Voivodeship Sanitary-Epidemiological Station in Warsaw

Inside the Polish National Reference Laboratory -News on SRM

Iwona Bartosiewicz

A laboratory structure of control system for pesticide residues

National Reference Laboratory in Warsaw

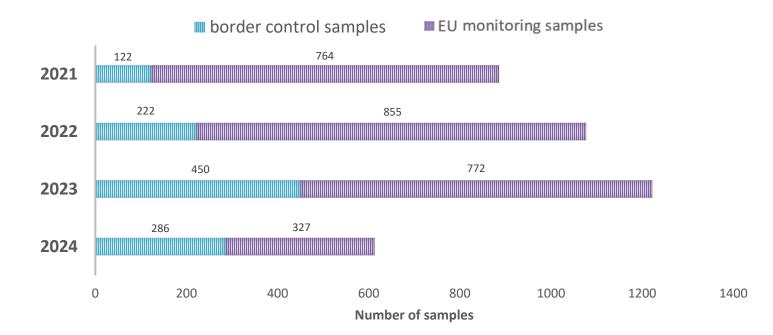
5 Official Laboratories in

- Bydgoszcz
- o **Łódź**
- Opole
- Wrocław
- o Rzeszów

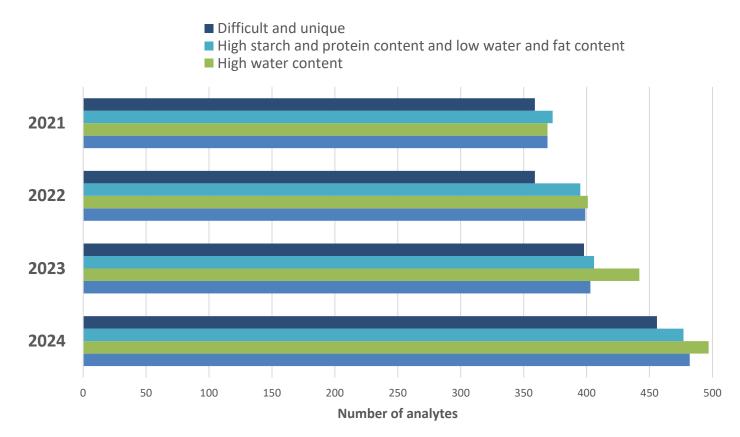
Types of analyzed samples

Food samples of plant origin

Commodity groups:


- High water content
- High acid and high water content
- High oil and very low water content
- High starch and protein content and low water and fat content
- High oil content and intermediate water content
- Difficult and unique
- Food additives
- ✤ Water

Types of analyzed samples (only food)


NUMBER OF ANALYZED SAMPLES

The total number of samples under official control and monitoring is consistently rising by approx. 15 % each year.

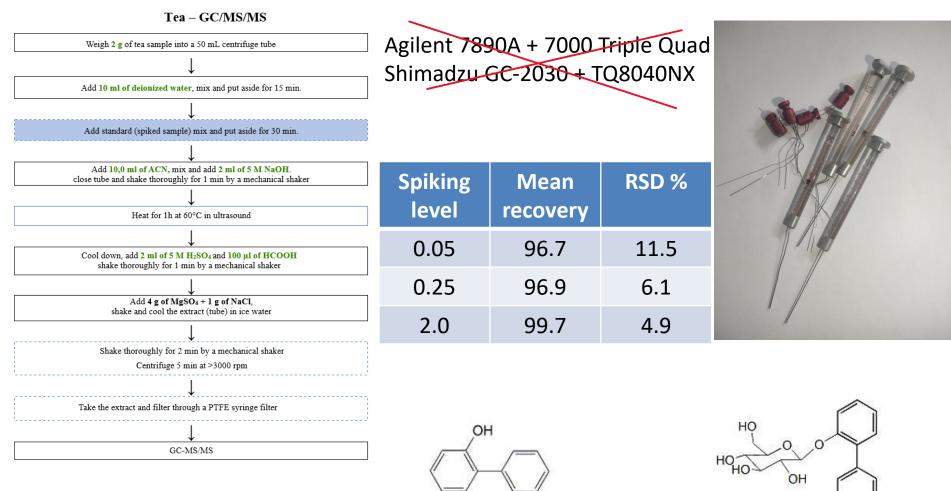
Laboratory progress in pesticide residue determinations

NUMBER OF ANALYSED PESTICIDE RESIDUES

Expanding the scope of pesticide residue determinations in MRM and SRMs up to **nearly 500 compounds,** which covers all mandatory compounds required by EU Regulation 2023/731.

Implemented methods for pesticide residue determination

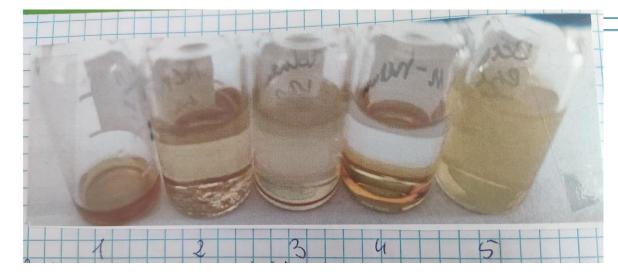
Technical equipment: LC/MS/MS (4) GC/MS/MS (3) GC/MS (1) SRM: Highly polar pesticides (base QuPPE method) SRM: Pesticides entailing conjugates or esters in their RD SRM/MRM method Multi-residue methods SRM: Ethylene oxide SRM: Dithiocarbamates


• ICP-MS (1) _____ SRM: Copper compounds

Laboratory progress in pesticide residues determinations over last three years:

- Implementation of a new method for ethylene oxide determination (GC/MS/MS) in food samples, as well as in food additives (HS-GC/MS/MS)
- Implementation of a new method for highly polar pesticide residues (QuPPE)
- Implementation of a new method for residues of pesticides entailing conjugates or esters in their RD
- Implementation of a new method for copper compound residues (ICP-MS) after initial microwave mineralization

Alkaline hydrolysis 2-phenylphenol (sum of 2-phenylphenol and its conjugates, expressed as 2-phenylphenol)


Thermo Scientific Trace 1300 + TSQ 900 (GC-MS/MS) ≈OK

2-Phenylphenol

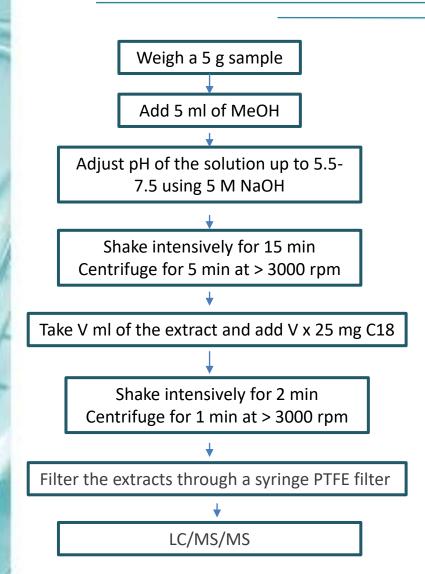
o-Phenylphenol-glucoside

Dilution / Filtration / Needle wash



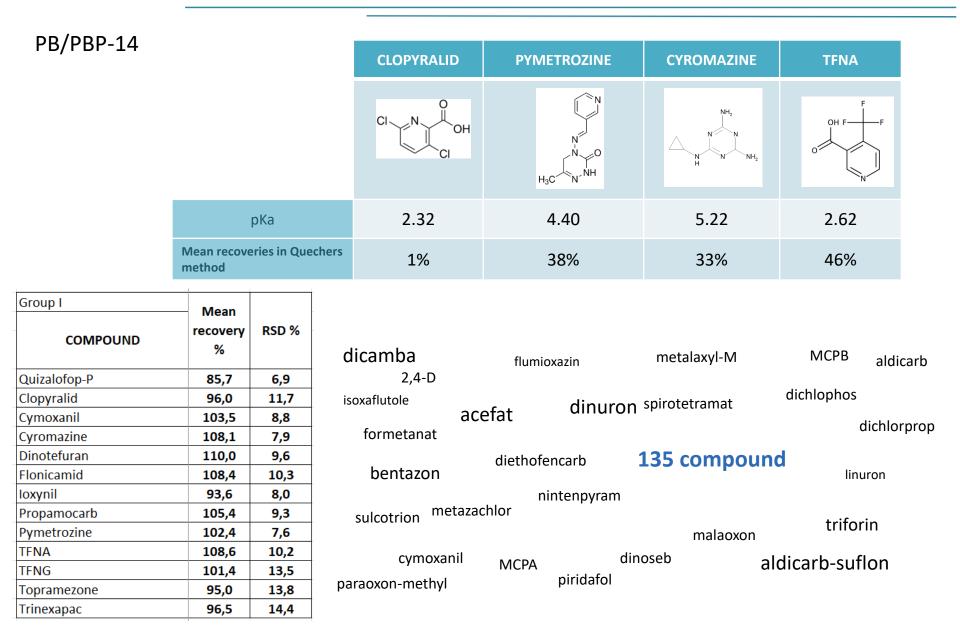
- 1 raw extract
- 2 actonitrile "fluffy" precipitate
- 3 toluene a yellow precipitate has precipitated
- 4 hexane two phases

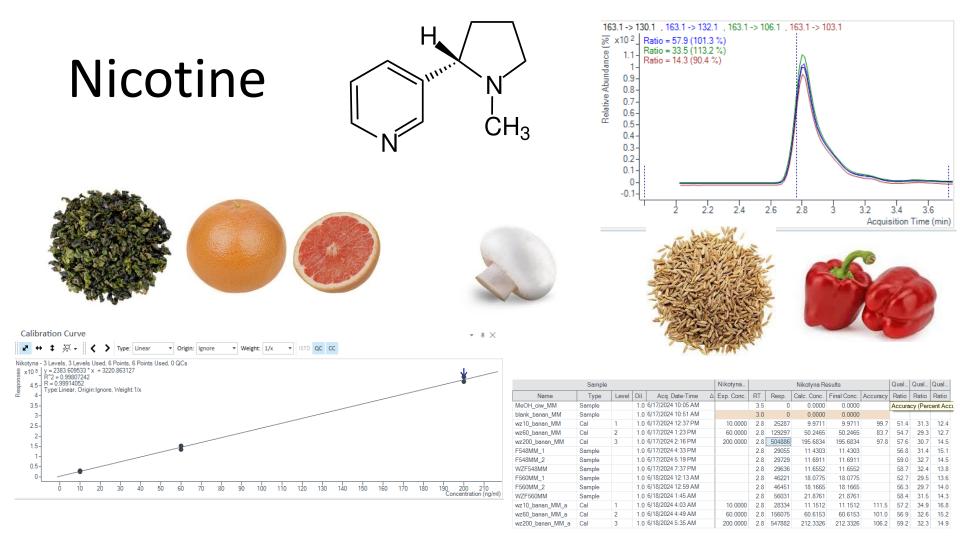
5 – ethyl acetate – turbidity of the extract (probably due to residual water – increase of MgSO4 in the procedure)


*methanol – total dissolution – caused very rapid degradation of the column

https://aga-analytical.com.pl/wp-content/uploads/2024/03/silicycle-brosam-brochure-sample-preparation-web-1.pdf

Analysis of acidic pesticide residues in fruit and vegetables with methanol extraction using LC/MS/MS




LC/MS/MS measurement parameters

Column:	Agilent ZORBAX Eclipse Plus C18, 2.1x150mm, 1.8 μm,
Eluent A:	$H_2O + 0.01\%$ formic acid + 5mM ammonium formate
Eluent B:	Methanol
Analysis time:	45 min

Time [min]	A [%]	B [%]	Flow rate [mL/min]	Max. pressure limit [bar]
0.00	95.0	5.0		
0.10	95.0	5.0		
16.00	10.0	90.0	0.2	600
24.00	10.00	90.0		
24.10	95.0	5.0		

Analysis of acidic pesticide residues in fruit and vegetables with methanol extraction using LC/MS/MS

	Compound	Spiking level	Spiking level x	x Bias (systematic error) (%)			Moon	SD	RSD %		
lp.	Compound	mg/kg	LÕQ	test 1	test 2	test 4	test 4	test 5	Mean _{recovery}	30	K3D %
1	Nicotine	0.010	1.0	102.9	102.9	103.4	102.4	101.7	102.7	0.7	0.6

Preparation of sample for ethylene oxide (RD) analysis

sesame

Weigh 2 g of a homogenated sesame sample into 50 mL centrifuge tube + 1 ml saturated solution NaCl

Shake Vortex, leave for 15 min.

Add standards (spiked sample) mix and put aside fo 30 min.

Add 10 ml of 0.2 M HCl in ACN

Shake thoroughly for 30 min. by a mechanical shaker

Place the test tube in water ice and add 0.5g MgSO₄

Shake for 2 min. Centrifuge 5 min. at > 3000 rpm

Take 8 ml of extract from the precipitate, add 400 mg C18 and 400 mg PSA (to 8 ml of extract)

> Shake for 2 min Centrifuge 5 min. at >3000 rpm

Take the maximum amount of the extract from above the precipitate.

The extract obtained is ready for analysis GC-MS/MS

spices, cereals, processed cereal-based products Gum arabic, Xanthan gum, Cellulose gum, Konjac, Tara gum, Konjac, Guar gum, Locust bean gum

Weigh 4 g of a homogenated sample into 50 mL centrifuge tube

Add standards (spiked sample) mix and put aside for 30 min.

Add 10 ml of 0.2 M HCl w ACN

Shake Vortex

Add 1 ml of saturated NaCl solution

Shake thoroughly for 30 min. by a mechanical shaker

Place the test tube in water ice and add 0.5g MgSO₄

Shake for 2 min. Centrifuge 5 min. at > 3000 rpm

Take 4 ml of extract from the precipitate, add 200 mg C18 and 200 mg PSA (to 4 ml of extract)

> Shake for 2 min. Centrifuge 5 min. at >3000 rpm

Take the maximum amount of the extract from above the precipitate.

The extract obtained is ready for analysis GC-MS/MS

Preparation of specific samples for ethylene oxide (RD) analysis

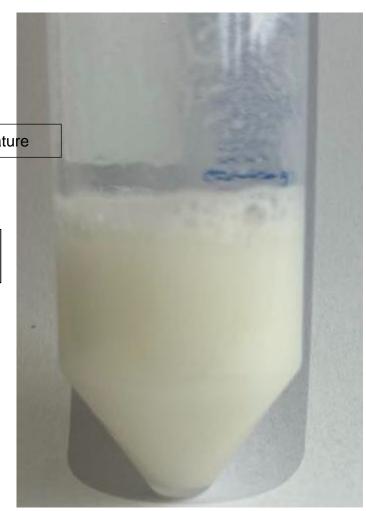
- calcium carbonate
- sodium hydroxymethyl cellulose

Weight 4 g of a homogenated sample into 50 mL centrifuge tube

Add 10 ml of cold hexane

Add standard (spiked sample) mix and put aside for 30 min. in a low temperature

Shake for 2 min. Centrifuge 5 min. at > 3000 rpm with cooling


Take 5 ml of the extract from the precipitate, add 125 mg C18, 125 mg PSA and 750 mg $MgSO_4$ (to 5 ml of the extract)

Shake for 2 min. Centrifuge 5 min. at > 3000 rpm

Take 4 ml of the extract from the precipitate

HS-GC-MS/MS

J&W HP-VOC GC Column, 30 m, 0.20 mm, 1.12

 $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$

HS-GC-MS/MS

J&W HP-VOC GC Column, 30 m, 0.20 mm, 1.12

Analysis	
Syringe Tool	HS 1
Incubation Temperature	70 °C
Incubation Time	10 min
Syringe Temperature	70 °C
Agitator Speed	250 rpm
Pre Purge Time	0 s
Injector	Injector 2
Injection Flow Rate	25 mL/min
Post Purge Time	60 s
Analysis Time	18 min

Temperature:

Equilibration Time: Column Information(HP-VOC) Column ID: Installation Date:

9/7/2021

🕑 Setup	
Gas Chromatograph	GC1
Sync Before Incubation	0 min
Agitator	Agitator 1
Do Agitation	False
Heat Agitator	True
Wait For Readiness Agit	True
Sample Vial Depth	25 mm
Heat Syringe	True
Wait For Readiness Syrin	True
Injection Signal Mode	PlungerUp
Injector Penetration Dep	40 mm
Continuous Purge	False

40.0 °C 0.5 min	23 18 13 80 30			000 14.00 16.00 18.0 Program Time: 17.30	min
		Rate	Temperature	Hold Time	^
		-	40.0	2.50	
	1	50.00	150.0	0.00	
Set	2	50.00	280.0	10.00	
	3	0.00	0.0	0.00	
	4	0.00	0.0	0.00	
	5	0.00	0.0	0.00	
	6	0.00	0.0	0.00	
	7	0.00	0.0	0.00	
	8	0.00	0.0	0.00	~
	Oven C	cooling Rate: Mid	dle v	200.0 °C.	/min

🕙 Advanced		
Enable Pre Filling	True	
Filling Strokes Count	5	
Filling Strokes Volume	1.2	mL
Filling Strokes Aspirate F	6	mL/min
Delay After Filling Strokes	30	s
Sample Aspirate Flow Ra	6	mL/min
Sample Post Aspirate De	0	s
Sample Vial Penetration	25	mm/s
Injector Penetration Spe	25	mm/s
Pre Injection Dwell Time	3	s
Post Injection Dwell Time	10	5
Agitator On Time	5	s
Agitator Off Time	2	5

Loop Time ...

0.

Temperature:	180.0	°C
Injection Mode:	Split	\sim
Sampling Time:	1.00	min
Carrier Gas: He		
Flow Control Mode:	Linear Velocity	\sim
Pressure:	151.3	kPa
Total Flow:	8.0	mL/min
Column Flow:	1.01	mL/min
Linear Velocity:	34.5	cm/s
Purge Flow:	3.0	mL/min
Split Ratio:	4.0	
High Pressure Injection Off OAuto Pressure: 250.0	kPa Time:	2.00 min
Carrier Gas Saver		
On ⊚Off		
Split Ratio: 20.0	Time:	1.00 min

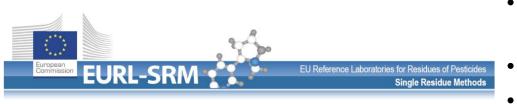
	Compound	Start Time	End Time	Ac		-	ent
			GC Progra	am Time :	17.30	min	Loop
🗸 Acquire Data	without Using CID Ga	as(Q3Scan)	Threshold	l:	0		
Use MS Prog	ram : Set				0.9	kV	
Solvent Cut Time		min	Detector	voitage :	Relative to	the Tunir	ng Ke
			D-t- t	(-h		и. т . :	P
Interface Temp. :	200	°C					
lon Source Temp	.: 225	°C					
GCMS-TQ Series	i -						
		Oven Cooling Rate:	Middle \vee	200.0 °C/min			1
		8	.0.00	0.00 ¥		-	1
		7	0.0 00.0	0.00			
		5	0.0 00.0		2	b	-
		3	0.0 00.0		-1		(Θ)
	Set	2	50.00 280.0	10.00	1-		1º in
Comment:		1	- 40.0 50.00 150.0			CH-4	LU/
Film Thickness:	1.12 μm	Rat		Hold Time 🔨		A STATE	
Inner Diameter:	0.20 mm ID	Column Oven Temp	erature Program. 10t	al Program Time: 17.30 min		1-1-1-	
Longin	00.011		aratura Program Tut	LD T: 17.00 .			and a
Column Max Temp: Length:	33.0 m	30.00.00 2.0		2.00 14.00 16.00 18.0(min			-

Ch1 m/z	Ch1 CE	Ch2 m/z	Ch2 CE	Ch3 m/z	Ch3 CE
44.00>14.00	18.00	44.00>29.00	6.00	44.00>28.00	6.00
80.00>31.00	6.00	80.00>44.00	5.00	82.00>31.00	6.00
84.00>33.00	6.00	86.00>33.00	6.00	0.00>0.00	0.00

	Compound Name	Start Time (min)	End Time (min)	Acq. Mode	Event Time(sec)	Scan Speed
1-1	Ethylene oxide	1.20	4.00	MRM	0.100	
2-1	2-chloroethanol	4.00	16.50	MRM	0.100	
2-2	2-chloroethanol-d4	4.00	16.50	MRM	0.100	

Product	Number of analyses in 2023	Number of detections	Content (range) [mg/kg]
Beta carotene	13		
Brown Rice	63		
Cellulose Gum	6		
Chili powder	2		
Coriander	1		
Cumin seeds	2		
Curry	1		
Fenugreek	2		
Ginger	3	1	0.024
Guar gum	43	1	0.039
Gum arabic	7		
Konjac	1		
Locust bean gum	9		
Nigella seeds	6		
Noodles & instant soups	103	6	(0.017-0.056)
Nutmeg	1		
Paprika powder	8		
Pepper	5	2	(0.015-0.066)
Sesame	89		
Turmeric powder	11		
Xanthan gum	1		
Xanthan gum	37	12	(0.011-0.055)
Total	414	22	

Ethylene oxide (RD) LOQ = 0.011 mg/kg MRL = 0.1 mg/kg


+ 8 dietary supplements

LGC – FC306 - 857 Ethylene oxide in sesame paste (z-score 0.0) PROOF-ACS GmbH Ring test P2201-RT Ethylene oxide in locust bean gum (z-score 0.2)

LGC - FC316 - 868 -Ethylene oxide in spices (z-score 0.0)

Own testing procedure, based on the QuPPe document

Quick Method for the Analysis of Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC- or IC-MS/MS Measurement I. Food of Plant Origin (QuPPe-PO-Method)

Version 12 (22.07.2021, Document History, see page 98)

Check for latest version of this Method under www.quppe.eu ; older versions: obsolete versions

Authors: M. Anastassiades; A.-K. Wachtler; D. I. Kolberg; E. Eichhorn; H. Marks; A. Benkenstein; S. Zechmann; D. Mack; C. Wildgrube; A. Barth; I. Sigalov; S. Görlich; D. Dörk; G. Cerchia

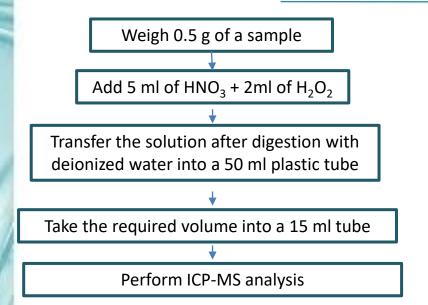
EU Reference Laboratory for pesticides requiring Single Residue Methods (EURL-SRM) Contact: CVUA Stuttgart, Schaflandstr. 3/2, DE-70736 Fellbach, Germany, www.eurl-pesticides.eu; EURL@cvuas.bwl.de

Note: Changes from V11.1 to V12 are highlighted in yellow

1. Scope and Short Description	2
2. Apparatus and Consumables	
3. Chemicals	4
4. Disclaimer	
5. Procedure	7
5.1. Sample preparation	7
5.2. Extraction / Freeze-Out / Centrifugation / Cleanup / Filtration	8
5.3. Preparation of blank extracts	13
5.3. Preparation of balibration standards	13
5.5. Preparation of calibration standards	13
5.5.1. Solvent-based calibration standards	13
5.5.2. Matrix-based and matrix-matched calibration standards	
5.5.3. Standard-Additions approach 5.5.4. Procedural calibration standards	14
5.5.4. Procedural calibration standards	15
5.6. LC-and IC-MS/MS analysis	15
5.6.1. General hints on analytes to avoid pitfalls	21
5.6.2. Method 1.1 (M1.1): "Gly&Co. AS 11"	32
5.6.3 Method 1.2 (M1.2): "Glv&Co_AS.11-HC"	34
5.6.4. Method 1.3 (M1.3): "Gly&Co. Hypercarb" 5.6.5. Method 1.4 (M1.4): "PerChloPhos"	36
5.6.5. Method 1.4 (M1.4): "PerChloPhos"	38

- Eluent A 1% formic acid in water
 + 5% methanol
 - Eluent B 1% formic acid in methanol
 - 1:10 dilution
- Injection volume 25uL

	Pesticide	[mg/kg]
1.	AMPA	0,050 – 2,5
2.	Chlorate	0,050 – 2,5
3.	Chlormequat	0,010 - 0,50
4.	Ethephon	0,050 – 35,6
5.	HEPA (ethephon-hydroxy)	0,020 — 15,0
6.	Fosetyl-Al	0,20 - 10,0
7.	Glyphosate	0,10 - 20,0
8.	Glufosinate ammonium	0,030 - 1,5
9.	Maleic hydrazide	0,10 - 40,0
10.	Bromide ion	1,0-40,0
11.	Trimethyl-sulfonium cation	0,10 - 1,0
12.	Cyanuric acid	0,040 - 2,0
13.	Phosphonic acid	0,10 - 60,0
14.	Matrine	0,020 - 0,40
15.	Mepiquat	0,010 - 0,50
16.	MPPA	0,010 - 0,50
17.	N-acetyl-glyphosate	0,030 – 1,5
18.	N-acetyl-glufosinate (NAG)	0,010 - 0,50


Residue findings of QuPPe-compounds

Compound	Num	nber of sa	mples
Chlormequat	<= MRL	> MRL	Compliant due to the uncertainty interval
Pears	3		
Wheat flour	1		
Rye flour	2		
Brown rice	1	1	2
Rye grain	18		
Glyphosate	<= MRL	> MRL	Compliant due to the uncertainty interval
Onions	1		
Beans	8		
Pears	1		
Maleic hydrazide	<= MRL	> MRL	Compliant due to the uncertainty interval
Onions	28		
Potatoes	1		Compliant
Mepiquat	<= MRL	> MRL	Compliant due to the uncertainty interval
Pears		2	
Rye grain	1		
Chlorate	<= MRL	> MRL	Compliant due to the uncertainty interval
Beans	1		
Bromide ion	<= MRL	> MRL	Compliant due to the uncertainty interval
Oranges	1		

	-
Cyanuric acid	Number of samples
Beans	1
Pears	3
Kiwi	2
Potatoes	11
Phosphonic acid	Number of samples
Pears	26
Kiwi	7
Carrots	4
Cucumbers	1
Oranges	21
Potatoes	4
Fosetyl	Number of samples
Pears	14
Carrots	2
Cucumbers	1
Oranges	7
Potatoes	2

Copper compounds – a high-pressure microwave system

Washing only with high purity nitric acid V, preferably distilled.

No. step	Time [min.]	MW [W]	Temperature [°C]
1	20	1800	210
2	15	1800	210
3	20	0	30

Copper compounds – ICP-MS

We determine Cu-63 in the KED mode. We use an internal standard – indium or germanium. The matrix effect is small. Calibration standards in a solution of 1% nitric acid.

EUPT-SRM 19 Copper in grape (z-score 0.2) FAPAS FCCM45-FRU51 Copper in Grapefruit Purée (z-score 0.5)

Purchases and plans to develop methods

- Amitrol
- Oxymatrine,
- Diketonitrile-metabolite
- Dinoterb (sum of dinoterb, its salts and esters, expressed as dinoterb)
- Fluroxypyr (sum of fluroxypyr, its salts, its esters, and its conjugates, expressed as fluroxypyr)
- Quizalofop (sum of quizalofop, its salts, its esters (including propaquizafop) and its conjugates, expressed as quizalofop (any ratio of constituent isomers)

Thank you for your attention

200 ml

m1