

EU Reference Laboratories for Residues of Pesticides

Single Residue Methods

News on Single Residue Methods

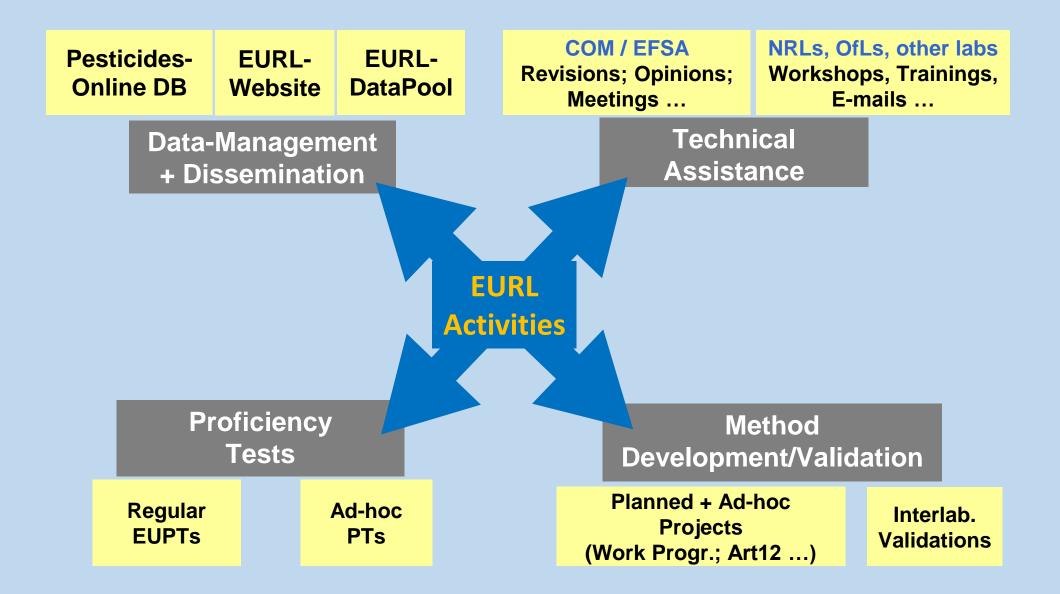
- 1) M. Anastassiades (various aspects), slides 1-93
- 2) E. Eichhorn (Screening of DTC-markers), slides 94-150
- 3) H. Zipper (Derivatisation of DTCs), slides 150-179

Contributions by the entire Pesticide Residues Team

European Union Reference Laboratory for Pesticides requiring Single Residue Methods, located at the Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, Fellbach, Germany

Overview of Current Activities

Michelangelo Anastassiades


EURL-SRM

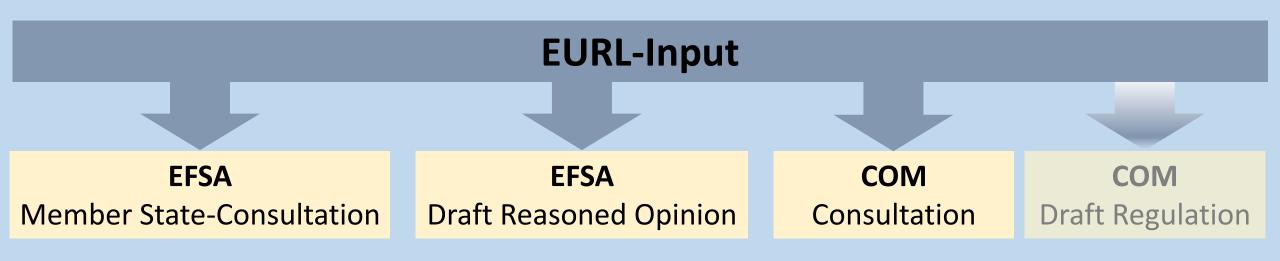
Enabling a more judicious and efficent analysis of alkylene-bis-DTC fungicides by screening for marker substances

Eric Eichhorn

Facing analytical challenges DTC analysis – step by step

Hubert Zipper

EURL-SRM



Technical Assistance to COM/EFSA

Pesticide (re-)evaluations

MRL-Re-evaluations (periodic): Art. 12 of Reg. 396/2005/EC

- MRL-Re-evaluations in case of exposure concerns: Art. 43 of Reg. 396/2005
- Renewal Assessments: Art. 12 of Reg. 1107/2009/EC (Reg. 844/2012/EC)
- Other (e.g. Background levels evaluation, Evaluation of substances not requiring MRLs ...)

Technical Assistance to COM/EFSA

Pesticide (re-)evaluations (Art. 12, Art. 43, New Active Substances,..)

- Check proposed RDs & suggest improvements if needed
 - Analytical feasibility = monitorability (can RD be reasonably covered using typical routine instrumentation, are necessary analytical standards commercially available ...),
 - Specificity (check if analytes can originate from other sources)
 - Plausibility (view residue findings and check whether proposed markers are all relevant and if other markers are more relevant; check lipophilicity for "(F)" symbol)
- **Propose analytically feasible LOQs** for main commodity groups (used for setting the MRL*s)
- Prepare **Draft Evaluation Report** and submit to EFSA
- Prepare Comments on Draft Reasoned Opinion (drRO) and submit to EFSA
- Address open points during preparation of **draft Reg. by COM**
- Comment on draft Regulation (sometimes)

Technical Assistance to COM/EFSA

Pesticide (re-)evaluations

In 2022-23 alone (until end of August '23)

→ 136 Requests by COM / EFSA, concerning 111 Active Substances

Requests by EFSA

coordinated by

EURL-SRM

Requests by COM

coordination shared between

EURL-SRM & EURL-CF

Technical support to DG-SANTE and EFSA

Evaluation / re-evaluation of pesticides (Context: Art.12 of Reg. 396/2005 and other)

EURL-SRM

Active Substance		••••													_							uctod	
		Request EFSA COM			Experiments condu				Active Substance	Request EFSA COM				Experiments conducted Method Metabolite(s) Standard Hydrolysis developm to consider unlid (c) unlid unger Other									
	ED	EFSA COM ER dRO DAR RAR LOQs Other		Method Metabolite(s) Standard Hydrolys developm. to consider valid.(s) valid./exp		Hydrolysis	drolysis Other Active Substance		FD			DAD		JM Othor	developm.	to consider	Jandard	valid./exper.	Other				
(Z)-13-Hexadecen-11yn-1-ylacetate	ER	anu				Uther	developin.	to consider	valiu.(s)	valiu.rexper.		Flutriafol					8	Otter	deretopin.	to oblisider	Tana.(5)	rana.renper.	
(Z,Z,Z,Z)=7,13,16,19=Docosatetraen=1-ylisoburyrate			_	_	8							Fosthiazate				×							
1-Methylcyclopropene (1-MCP)				×	ň							gamma-Cuhalothrin	8							8	8		
2-Phenylphenol			-	8		-				×		Glufosinate					×			8	8		
8-Hydroxyquinoline			-	8	-					×		Halosulfuron-methyl				8							8
Acetolachlor			-	×	-						×	Haloxyfop-P	8	×								8	
Acetolachior Acrinathrin		×	_	_		×						Indolyĺbutyric acid				8							
Acrinathin Azimsulfuron			-	-	8							Indoxacarb	8	×							х		*
			_	_	×							Isopyrazam					х						
Azocyclotin	×	×	_	_	_						×	Isoxaben					х	х			×		
Bacillus paralicheniformis strain FMCH001			×	_								Lemon essential oil					х						
Bensulfuron-methyl				×								Lufenuron					х						
Benzobicyclon			×									Maltodextrin				8							
Bifenazate					×							MCPA				8						8	
Bifenthrin	×	×										MCPA-Thioethyl				×						×	х
Bispyrac					х							MCPB				8						8	
Bixlozone			×				×		×			Mecoprop-P				×							
Buprofezin				×								Metalaxyl					х			×	8	8	
Calcium phosphide					×							Methyl-nonylketone		_			х						1
Capric acid (decanoic acid)				×								Metosulam					х						
Caprylic acid (octanoic acid)				8								Metyltetraprole		_	×								1
Carbetamide					8							Myclobutanil		_			х			8	х	8	
Carboxin plus 2 metabolites					8							Nicotine		_			х	×			×		×
Chlorfenapyr	8	×										Novaluron		_			х	х					
Chlorsulfuron					8							Oryzalin					×						
Clove oil				×	<u> </u>							Oxamyl		_			х	х					
Cybexatin	8	×	-	+ ^							×	Oxasulfuron					×						
Cypermethrins	8										×	Paraffin oil		_		8							
Cyproconazole		×	-	_	8							Penconazole				×							
			-	-	8							Pencycuron					×						
Cyromazine			_	_	×							Penoxsulam		_			х						
Deltamethrin			-	_	8							Penthiopyrad+PAM					×						
Desmedipham			_	_	8			×	8			Phosmet	×	×	_		×						
Diazinon	×	×	_	_	_							Phosphane/phosphine				×					×		
Dicofol	×	×		_			×	×	×			Potassium permanganate	_	_	_		х						
Diethofencarb				_	×							Prochloraz	_	_	_		×						
Difenacoum					×							Profenofos	×	×	_								
Difenoconazole	×	×										Profoxydim	_	_	_		×						
Dimetholachlor				×								Proquinazid	_	_		×							↓
Dithianon		×			×							Pyrethrins				×							↓
Dithiocarbamates		х					×		×			Pyriproxyfen	_	8			х			×	х		+
Diuron					8							Quinoxyfen	_				×						+
Elemental iron			×									Sodium aluminium silicate					х						↓↓
Endosulfan	×	×	1									Sodium hypochlorite					×						+
Epoxiconazole			1		8							Sodium silver thiosulfate	_				х						↓
Etridiazole			1		8							Spirodiclofen	_	-			×			×	8		×
Eugenol				×	1	1						Tee tree oil	_			8							+
Famoxadone			1		8							Teflubenzuron	_	-			×						+
fat distillation rersidues			1	×	1							Tetraconazole Thisk and soul	_	_			8	×					↓ ₩
Fenamiphos			1	+ ^	8		8		8			Thiabendazol	_	-			×			×	8		+
Fenarimol	×	×	1		1 °		^ ^					Thymol	_	-		8			×		8		↓
Fenbuconazole	Ň		1			-						Topramezone	_	-			×				8		+
Fenoxycarb			1		8							Triazoxide	_				×						+
			-		8	-						Trifloxystrobin	_	-			х			×	8		+
Fenpropathrin	×	×			_	-						Triflumizole	_				×						+
Fluazaindolizine			×	_	_				8			Triflumuron		_			х						+
Flurochloridone				8								Zoxamide	8	×					х	×	×		

Evaluation Report

Prepared under Article 12 of Regulation (EC) No 396/2005 Example Zoxamide

6 February 2023

Analytical validations by the EURLs and capability of official laboratories to be considered for the review of the existing MRLs for zoxamide

IIRNAL

Draft-RO

APPROVED: dd Month 20YY

doi:10.2903/j.efsa.20YY.NNNN

REASONED OPINION

Circulated for Consultation

EU-MSs and EURLs

Review of the existing maximum residue levels for zoxamide according to Article 12 of Regulation (EC) No 396/2005 and setting of an import tolerance for onions, garlic and shallots Example Zoxamide

European Food Safety Authority (EFSA)

Authors' list

Report on the MS Consultation for EFSA-Q-2008-00649, EFSA-Q-2019-00404

EFSA Question Number:

Type of assessment:

Active Substance:

Subject:

Commenting period started on:

Commenting period ended on:

Comments received from:

Comments evaluated by EFSA on:

Pesticides MRL Expert Meeting on:

Document finalised on:

No.	Reference	MS Comment	EFSA Co
1.	Summary and Section 2 and Conclusions	EU Please take notice of the RL updated ER by the EURLs, s introducing new validation data for <u>zoxamide</u> in honey .	
		Also, validation data for the metabolite RH-141452 in the four main matrix groups of plant origin as well as in liver and milk as well as validation data for RH-141455 in high water content commodities is provided.	

EFSA-Q-2008-00649, EFSA-Q-2019-00404

MRL Review (Reg. 396/2005 - Art. 12.2, Art 10)

zoxamide

24 July 2023

Example Zoxamide Review of the existing MRLs for zoxamide and setting of an import tolerance for onions, garlic and shallots

Evaluation Report

Prepared under Article 12 of Regulation (EC) No 396/2005

6 February 2023 Update: 31 August 2023 Considering **Metabolites RH-141452 RH-141452**

Analytical validations by the EURLs and capability of official laboratories to be considered for the review of the existing MRLs for zoxamide

Analysis of Fluoride

FLUORIDE

Anthropogenic sources

- Coal burning, steel production, brick manufacuring, fertilizer production
- Contained in a variety of products, e.g. tooth paste, table salt (to prevent caries)

Natural Presence

- Minerals (apatite, fluorite, fluorapatite, cryolith ...)
- Water (fluoride ion, hexafluorosilicate complex ...), higher levels in calcium deficient waters

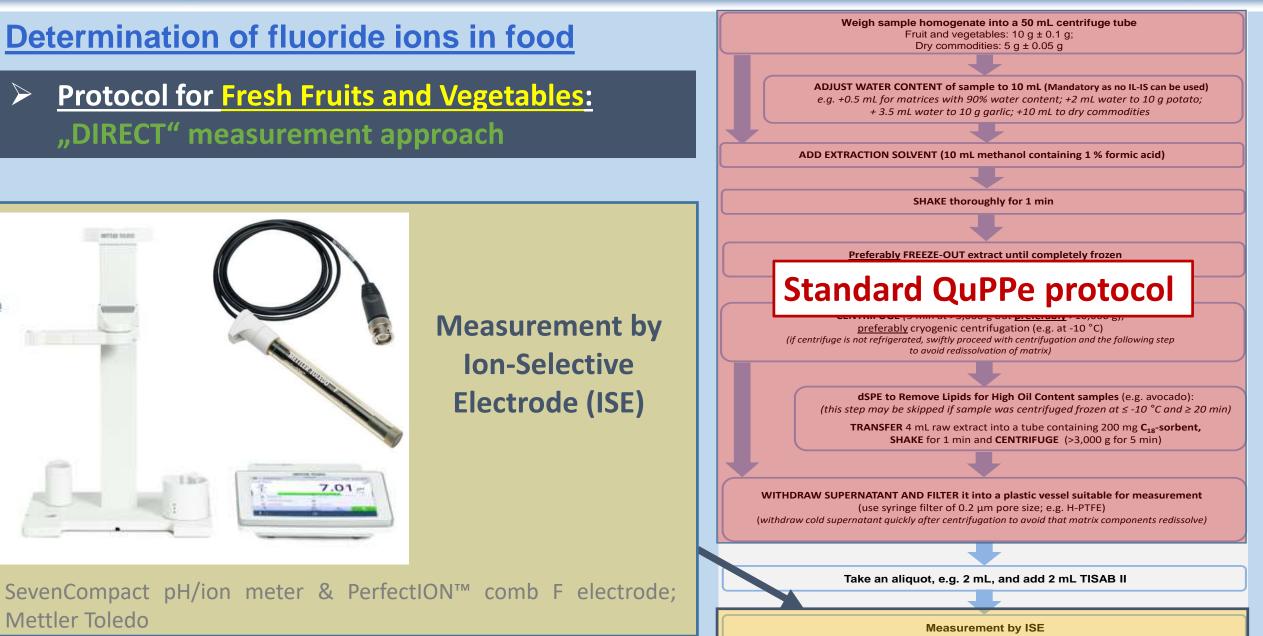
Uptake by all living organisms.

Background levels in food

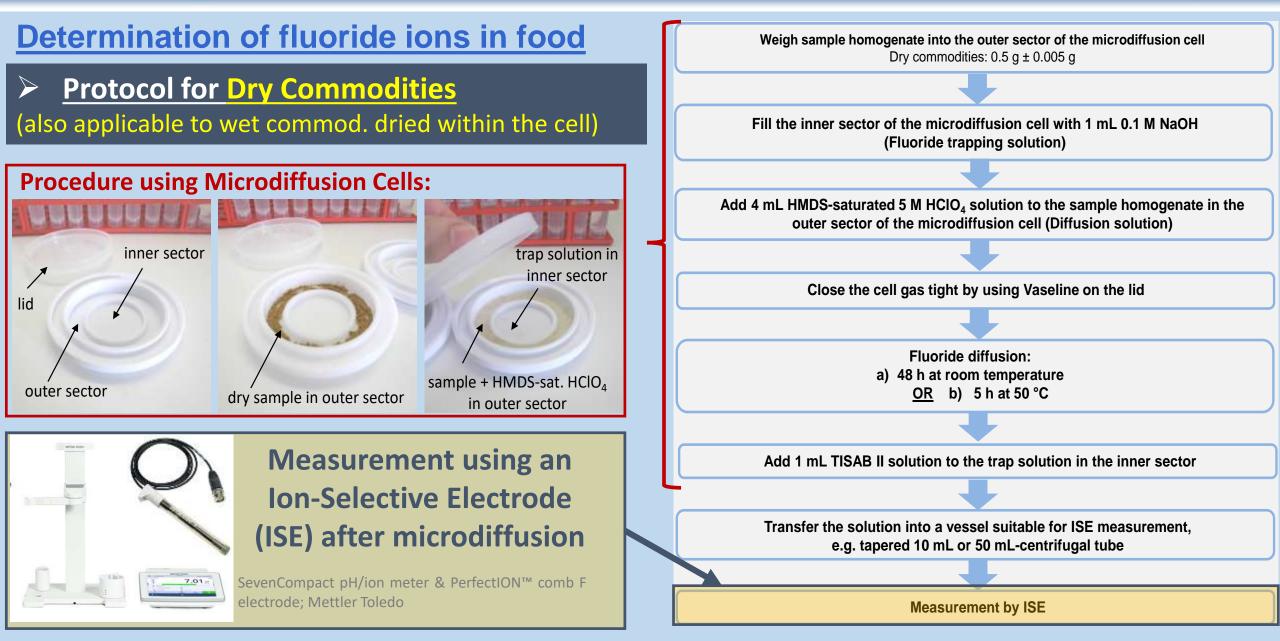
need to be considered when setting MRLs !!

Pesticide Use

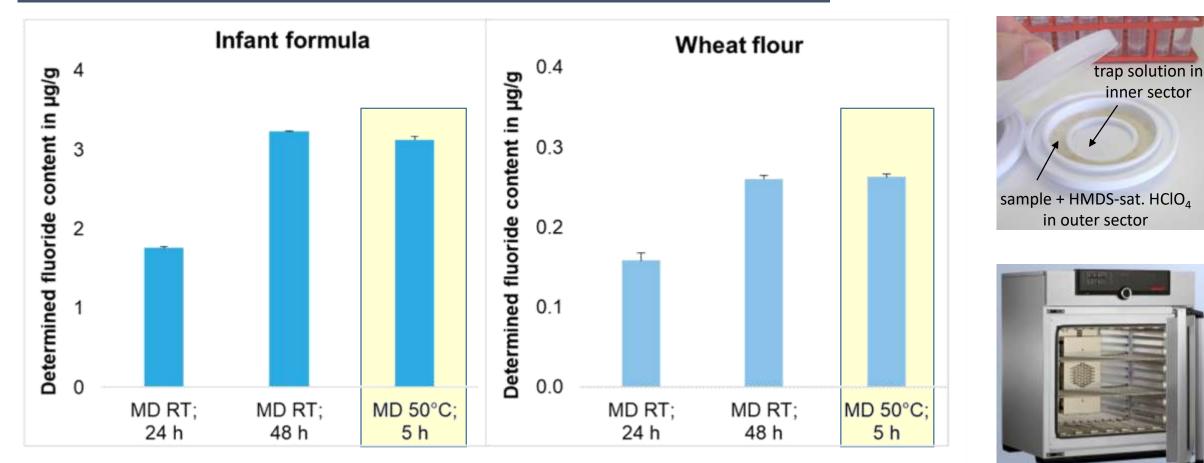
Degradation product of sulfuryl fluoride


- > Approved A.S. within the EU
- Fumigant for disinfestation of dry products, e.g. before transportation, storage, packing, custom clearance
- Separate MRLs for sulfuryl fluoride & fluoride anion [recently revised by Reg. (EU) 2022/1321],

Several MRLs were lowered!


	Old MRL (mg/kg)	New MRL (mg/kg)
Coconuts	30	15
Cocoa beans	10	5
Animal tissues	1	0.3
Fruits and vegetables	2	0.2

EU Reference Laboratories for Residues of Pesticides Single Residue Methods



Determination of fluoride ions in food

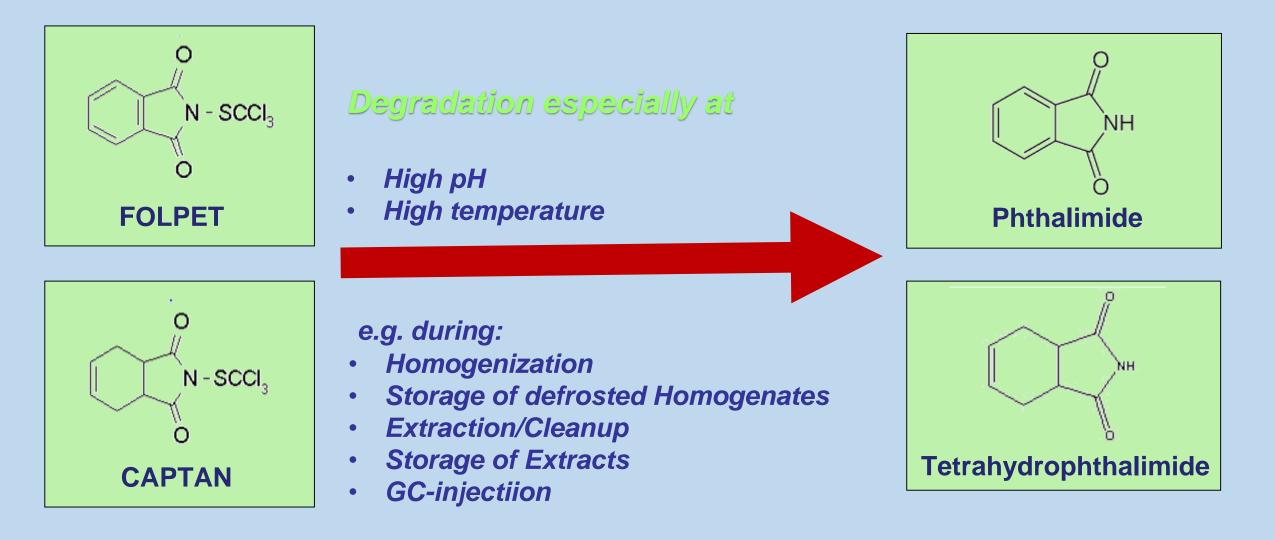
Impact of Temperature to Speed up Microdiffusion

Figure 6: Comparison of measurement and microdiffusion conditions for infant formula powder and wheat flour. MD = microdiffusion; MeOH-FA = methanol containing 1% formic acid.

EU Reference Laboratories for Residues of Pesticides

Go!

You are here: Home : Single Residue Methods EURL EURL for Portal Fruits and Vegetables Topics	EURL for EURL for EURL for Single Residue Methods	EURL-SRM EURL-SRM Single Residue Methods					
 EURL-SRM Network NRL-SRM Network Proficiency Tests EUPT-SRM Overview EUPT-SRM18 (Honey) EUPT-SRM17 (Tomatoes) EUPT-SRM16 (Sesame) EUPT-SRM15 (Rice) 	19-04-2023 EURL-SRM Risk of False Positives of Chloridazon-Desphenyl in Honey by A new EURL-SRM Analytical Observations Report concerning the ris Various chromatographic separation methods for chloridazon-desph 17-03-2023 EURL-SRM QuPPe-PO-Method Version 12.1 The QuPPe-PO-Method has been updated (now includes more deta 16-03-2023 EURL-SRM	 concerning the following Compound(s): Fluoride (from sulfuryl fluoride applications and from natural sources) Commodities: Fruit and vegetables (fresh and dried), dry commodities Extraction Method(s): a) Direct measurement; b) QuPPe; c) Microdiffusion Cell Approach 					
Workshops Workshop Overview Joint Workshop 2023 Joint EURL/NRLs (SRM-FV) 2022	Analysis of the Folpet and Captan degradants Phthalimide (P. The Analytical Observation Report (SRM-49) on the analysis of PI i update also includes results of experiments concerning the transfo Phthalimide (PI), during various steps of the QuEChERS procedure	Determination of fluoride ions in food Version 1 (last update: 02.03.2022)					
Services ILISS Distribution CheckYourScope SRM-PinBoard EURL-SRM Methods Analytical Observations Residue Observations Downloads Sources of Standards	measurement in diffusates derived by microdiffusion. 27-02-2023 EURL-SRM Compilation of Residue Observations Reports of QuPPe Compo A new compilation of residue findings of QuPPe compounds in food p findings of ethylene oxide / 2-chloroethanol. Aim of these annual co that are worthwhile monitoring.	electrodes (ISE) are described: a) direct measurement in QuPPe extracts and b)					
 Internet EURL DataPool QuEChERS - Website QuPPe - Website PestiPedia Data Submission 	24-02-2023 EURL-SRM New Analytical Observations Report on QACs analysis The EURL report on QACs analysis in food via QuEChERS and LC-MS, background contaminations of QACs during LC-MS/MS analysis invol 10-02-2023 EURL-SRM Joint EURLs/NRLs Workshop 18-20 October 2023 in Stuttgard The Joint EURLs/NRLs Workshop for Pesticide Residues will be held fr	t (Fellbach)	語				



Analysis of Captan/THPI & Folpet/PI

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Determination of phthalimide and tetrahydrophthalimide using LC-MS/MS

Analysis of Captan (sum) and Folpet (sum)

New EU Residue Definitions since 2016:

Captan including tetrahydrophthalimid (THPI), calculated as captan

Folpet including phthalimid (PI), calculated as folpet

Analysis of Captan (sum) and Folpet (sum)

DILEMMA 1: Convert Parents to THPI/PI or Not?

a) Transform Parents into THPI/PI prior to Measurement

- ✓ Circumvent Problems in GC (analysis by LC-MS/MS or by GC in absence of parents not problematic)
- ✓ One analyte per RD quantified (→ LOQ clear)

EURL-SRM

- × In case of preliminary screening LOQs/SDLs not clear (LOQs important for negative findings)
 - Both parents and THPI/PI initially measured/screened (→ summed LOQ (by consensus) or summed SDL (?))
 - Only parents initially measured/screened (→ LOQ/SDL does't cover full RD)
 - Only THPI/PI initially measured/screened (→ LOQ/SDL does't cover full RD)
- No info about presence of parents (unless screened separately) (presence provide usefull evidence about use of parents, e.g. PI has multiple sources)
- **× Risk asessment compromized** (no info about residue levels of individual components)

b) Measure all Components Individually (Captan/Folpet and THPI/PI)

✓ Full information about residue situation and LOQs of all components (accurate risk asessement possible)

✓ Difficulties in GC-analysis (need to compensate ME of parents, avoid overestimation of THPI/PI)

Analysis of Captan (sum) and Folpet (sum)

DILEMMA 2: How to Transform Captan/Folpet into THPI/PI

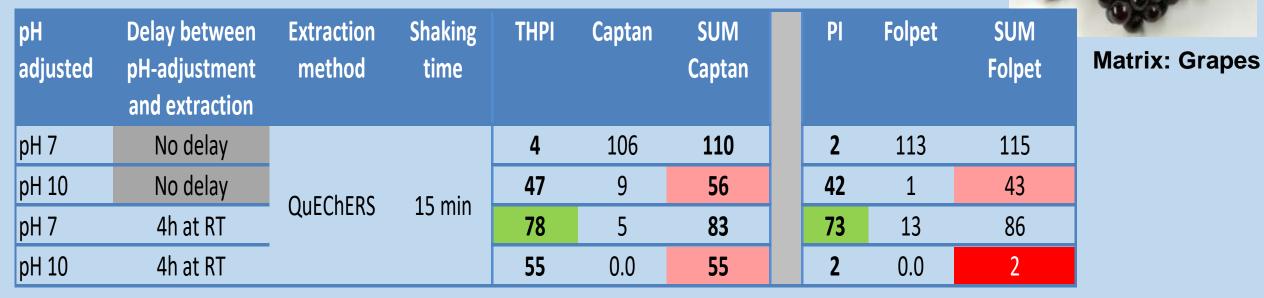
Transformation in wet homogenates:

- Passive transformation
- Active transformation (at higher pH)

Typically good conversion yields,

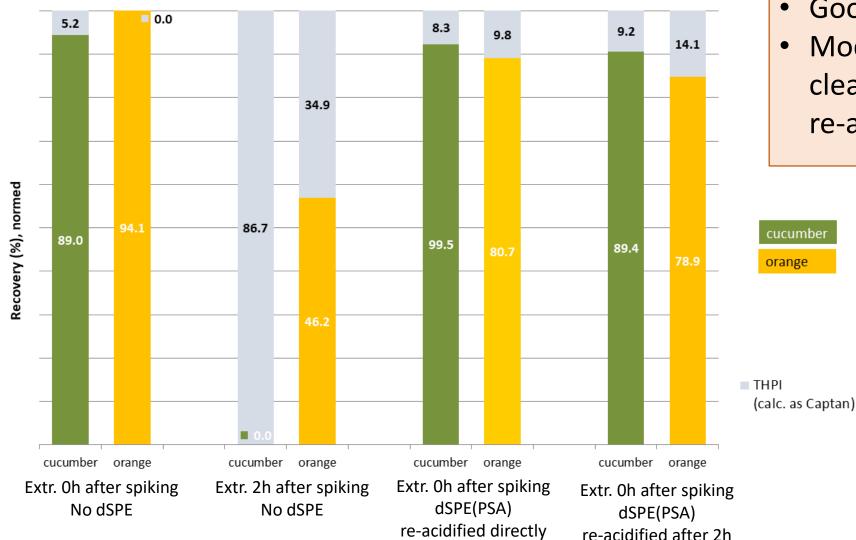
but ... not suitable for a multiresidue setup (other analytes get lost)

Transformation QuEChERS extracts:


- Passive: non-re-acidified extracts after PSA
- Active: adding base to extract)

Conversion in non-acidified extracts too slow. At more harsh conditions (pH ▲, Temp. ▲), conversion yields drop ▼ (further degradation of THPI/PI ?)

Determination of phthalimide and tetrahydrophthalimide using LC-MS/MS

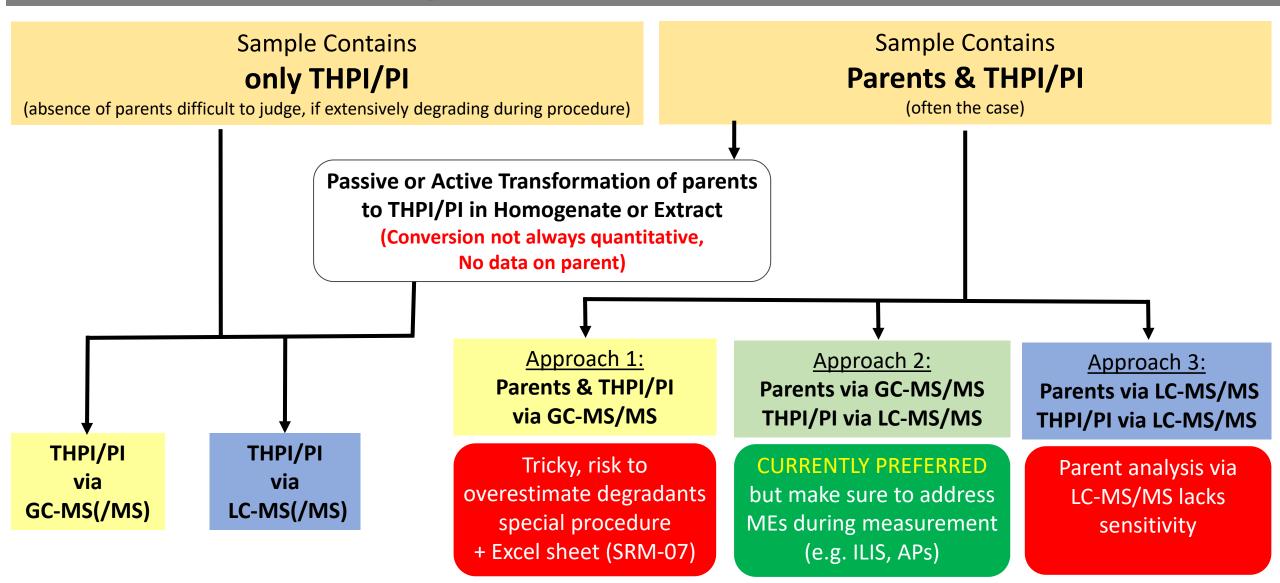

Hydrolysis in Homogenates Prior/During Extraction (at increased pH)

 \rightarrow Conversion Yields not quantitave

Stability of Captan during QuEChERS-Extraction:

Avoid prolongued standing of thawed homogenates !!

• Good Rec. w. QuEChERS


 Moderate losses during PSAcleanup and if extracts are not re-acidified

Similar results for Folpet, Captafol

Both parents and degradants determined by LC-MS/MS in this experiment

DILEMMA 3: Which Techniques to use for Measurement

GC-ANALYSIS: OVERESTIMATION OF PI AND THPI IN PRESENCE OF PARENTS

FOLPET	Ы		PI mea (calibrate		overestimation of PI		
spiked in one vial [ppm]			[pp	m]	error [%]		
0,1		0,1		0,11		27%	
0,2		0,1		0,11		22%	
0,3		0,1		0,14		53%	
0,6		0,1		0,19		116%	
1		0,1		0,24		178%	
CAPTAN	ТНРІ		THPI me	easured	ove	erestimation	
CAFTAN			(calibrated	l w. THPI)		of THPI	
spiked in or	ne vial [ppm	n]	[pp	m]		error [%]	
0,1		0,1		0,13		31%	
0,2		0,1		0,12		20%	
0,3		0,1		0,15		50%	
0,6		0,1		0,19		102%	
1		0,1		0,25		159%	

Tomato blank extract (QuEChERS, d-SPE, AP) Spiked w. Folpet/ Captan and PI/THPI at different levels Simultaneous measurement by GC-MS/MS

Situation in PT-mate	erial			
		Captan/ THPI	Folpet/ Pl	
Parent (mg/kg)	0,172	0,249		
Degradant (mg/kg)	0,59	0,10		
Ratio	Conc.	1:3.5	2.5 : 1	
Parent/ Degradant	Mols	1:7	1.3 : 1	
			rtionally parent	

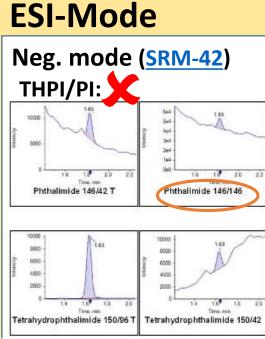
PROBLEM IN GC-ANALYSIS

THE HIGHER THE PARENT: DEGRADANT RATIO THE MORE PRONOUNCED THE OVERESTIMATION OF THE RESPECTIVE DEGRADANT !!!

Direct Analysis of PI/THPI using GC or LC-MS/MS - OVERVIEW

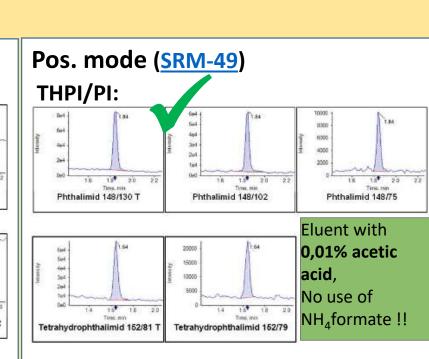
GC (see <u>SRM-07</u>)

Captan/Folpet (quant) Need to Compensate MEs (e.g. using AP+ ILIS)


THPI/PI (quant)

Risk of overestimation & FPs! Formed in inlet from parents + other potential sources, e.g. Phtalanhydride ▶ PI, Captafol ▶ THPI,

Special GC-Quantif. involving corr. of PI/THPI levels via calc. (Excel file linked in <u>SRM-07</u>)


THPI/PI (qual) Useful for routine screening !

LC-MS/MS (see <u>SRM-42</u> and <u>SRM-49</u>)

Lack of sensitivity depending on gradient and instrument, Only one useful MRM for PI

Parents: 🗶

Х

Parents:

[M+H]⁺ or [M+NH₄] adducts sensitivity not bad but variable

APCI-Mode

Neg. mode (<u>SRM-42</u>)

THPI/PI and Parents Possible but tricky!! (insource effects), extra requirements, cross-interferences. e.g. Folpet D4 and PI-D4 interfere with Captan (analyzed as THPI) and THPI respectively

You are here: Home : Single Residue Methods

EURL-SRM - Analytical Observations Report

EURL EURL for Portal Fruits and Vegetables Cere	EURL for EURL for EURL for Single Residue Methods	Concerning the following		1			
Topics	Latest News	Compound(s): Phthalimide (PI), Tetrahydrophthalimide (THPI) Commodities: Plant origin Extraction Method(s): CEN-QUECHERS Instrumental analysis: LC-MS/MS					
EURL-SRM Network NRL-SRM Network	19-04-2023 EURL-SRM Risk of False Positives of Chloridazon-Desphenyl in Honey by LC-MS/MS	Analysis of the folpet degradant phthalimide and the captan degradant					
Proficiency Tests EUPT-SRM Overview	A new EURL-SRM Analytical Observations Report concerning the risk of false posit Various chromatographic separation methods for chloridazon-desphenyl were test	tetrahydrophthalimide by QuEChERS and Version 2 (16.03.2023)	LC-MS/MS	DM)			
EUPT-SRM18 (Honey) EUPT-SRM17 (Tomatoes) EUPT-SRM16 (Sesame) EUPT-SRM15 (Rice)	17-03-2023 EURL-SRM QuPPe-PO-Method Version 12.1 The QuPPe-PO-Method has been updated (now includes more detailed information of	CIRCA BC Login RASFF Portal DB (COM) How to Use CIRCA BC InfoNote: Processed Foo	nd/Feed (COM)				
Workshops Workshop Overview Joint Workshop 2023 Joint EURL/NRLs (SRM-FV) 2022	16-03-2023 EURL-SRM Analysis of the Folpet and Captan degradants Phthalimide (PI) and Tetrahyd The Analytical Observation Report (SRM-49) on the analysis of PI and THPI via LC- update also includes results of experiments concerning the transformation of Capta Phthalimide (PI), during various steps of the QuEChERS procedure and especially in	EUPT Registration Websi Pinboard					
Services ILISs Distribution CheckYourScope	03-03-2023 EURL-SRM Determination of fluoride ion in food Two approaches for the determination of Fluoride Ion via selective electrodes (ISE) measurement in diffusates derived by microdiffusion.	Show more Pinboard Messa	ges				
SRM-PinBoard EURL-SRM Methods Analytical Observations Residue Observations Downloads Sources of Standards	27-02-2023 EURL-SRM Compilation of Residue Observations Reports of QuPPe Compounds A new compilation of residue findings of QuPPe compounds in food products, analys findings of ethylene oxide / 2-chloroethanol. Aim of these annual compilations of re that are worthwhile monitoring.		Passed 04-Oct-2023				
Internet EURL DataPool QuEChERS - Website		24-02-2023 EURL-SRM					
QuPPe - Website PestiPedia	10-02-2023 EURL-SRM Joint EURLs/NRLs Workshop 18-20 October 2023 in Stuttgart (Fellbach)						

The Joint EURLs/NRLs Workshop for Pesticide Residues will be held from 18 to 20 October 2023 in Stuttgart.

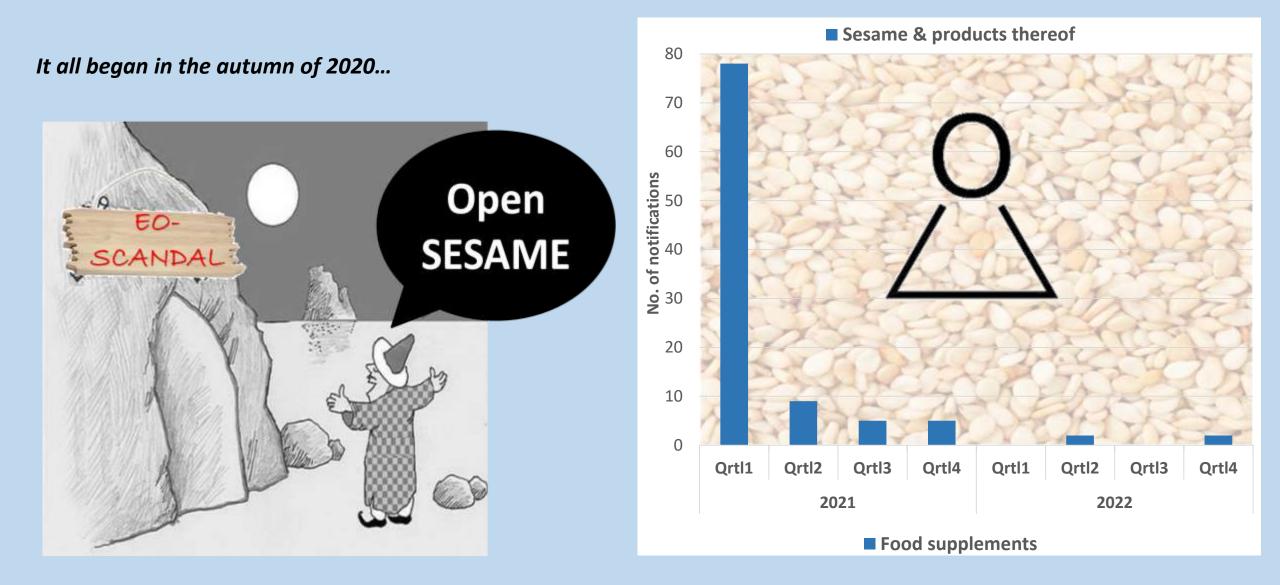
The Data Submission

Compound(s)	No. of Method Finder List/Version/Date of Update	Link	Compilat					
Captan & Tetrahydrophthalimid, Folpet & Phthalimid	SRM-07/(V3)/06.04.2017 and I Report SRM-07 (GC)							
	 Short Description of SRM-07: This document of QuEChERS extracts via GC-MS or GC-MS/MS. Diff molecules for matrix effects during GC analysis of discussed. In addition two approaches for analyzi metabolites Tetrahydrophthalimide (THPI) and PP Short Description of SRM-42: Various possibilit Folpet/Phthalimide were studied employing APCI related to GC-analysis but further efforts to impm and Folpet to their respective degradants (THPI a analytes to be measured. Unfortunately, conversineeded. Short Description of SRM-49: This report description of SRM-49. This approach it may also run as a standalone proced compound during routine GC analysis (e.g. detect SRM-07). Based on validation experiments on Captan and Folper SRM-49. This scheme of labs unsing the procedure SRM-49. This proved it may also run as a standalone proced compound during	ties for the LC-MS/MS analysis of Captan/THPI and and ESI interfaces. LC-MS/MS analysis circumvents problems ove sensitivity are required. The active hydrolysis of Captan and PI), was also studied aiming to reduce the number of on yields were often not satisfacory and further studies are ribes a simple and sensitive method for the analysis of PI and tion and LC-MS/MS determination in the ESI-pos. mode using and PI were conducted on various commodities at 0.005 and .02 mg/kg when expressed as Folpet and Captan ree mass-transitions (m/z 148/130 and 148/102 and anut butter. Validation of THPI was successful for both /79) in cucumber and grapes at both tested levels teat flour and peanut butter, THPI validation at 0.005 mg/kg le mass-transition (m/z 152/81). The second mass transition tification of THPI at very low low levels. The parent r sensitivity in LC-MS/MS not allowing accurate analyses at a GC methodology is thus recommended (see SRM-07). As t various stages of the procedure, it is important to analyse						
	non-acidic commodities of high water content (at	1999년 2월 20일 1월 2월						

0.07* seem well achievable for PI whereas more experiment are required for THPI.

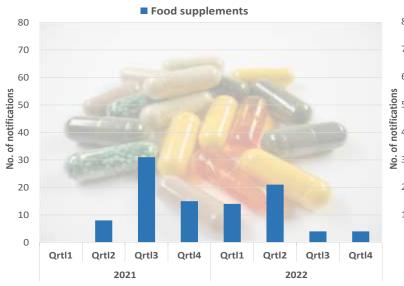
Compilation of Analytical Observations Reports

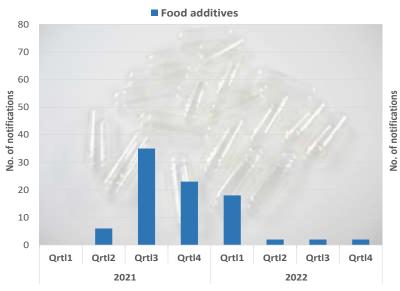
The table below compiles various observations made during the analysis of pesticide residues.

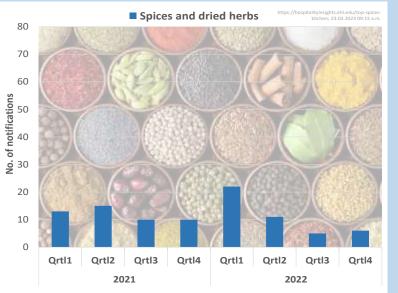


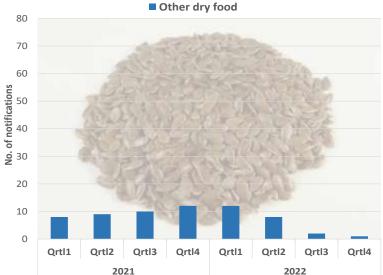
EU Reference Laboratories for Residues of Pesticides Single Residue Methods

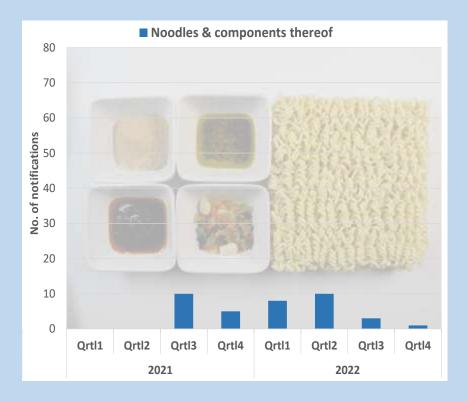
Analysis of Ethylene Oxide

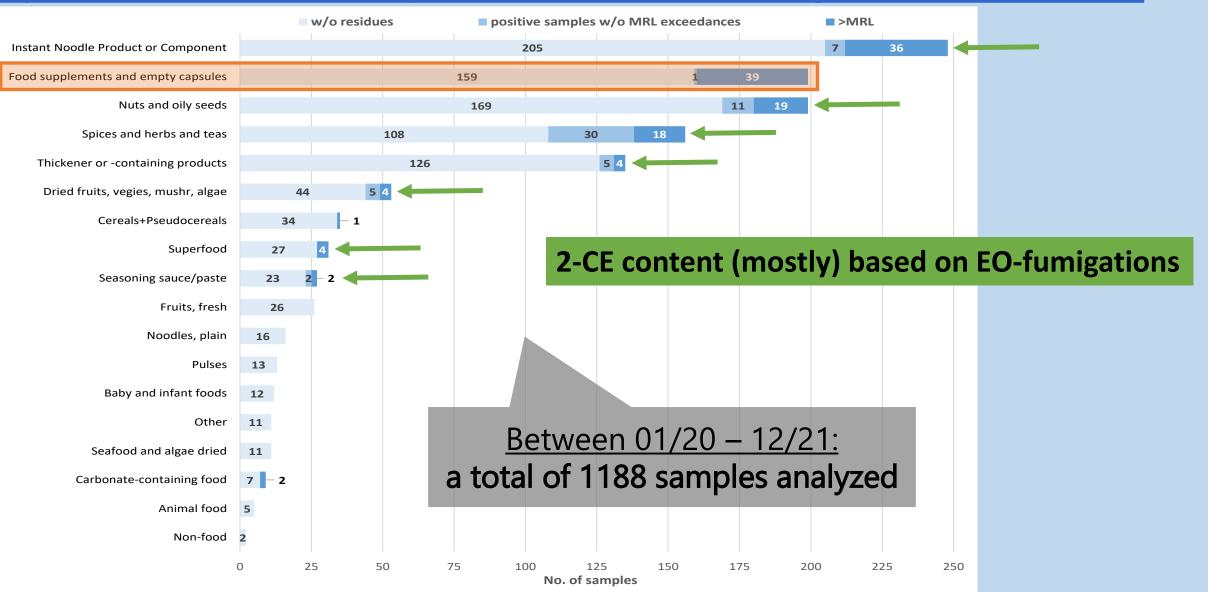



Ethylene Oxide Crisis – RASFF Notifications





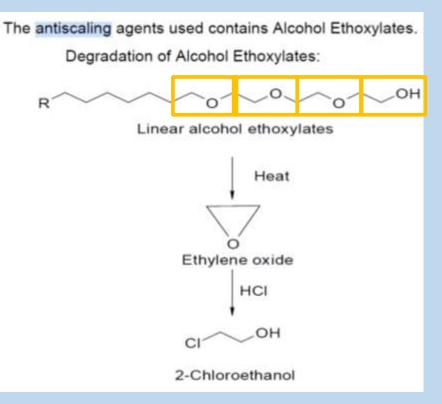

Ethylene Oxide Crisis – RASFF Notifications



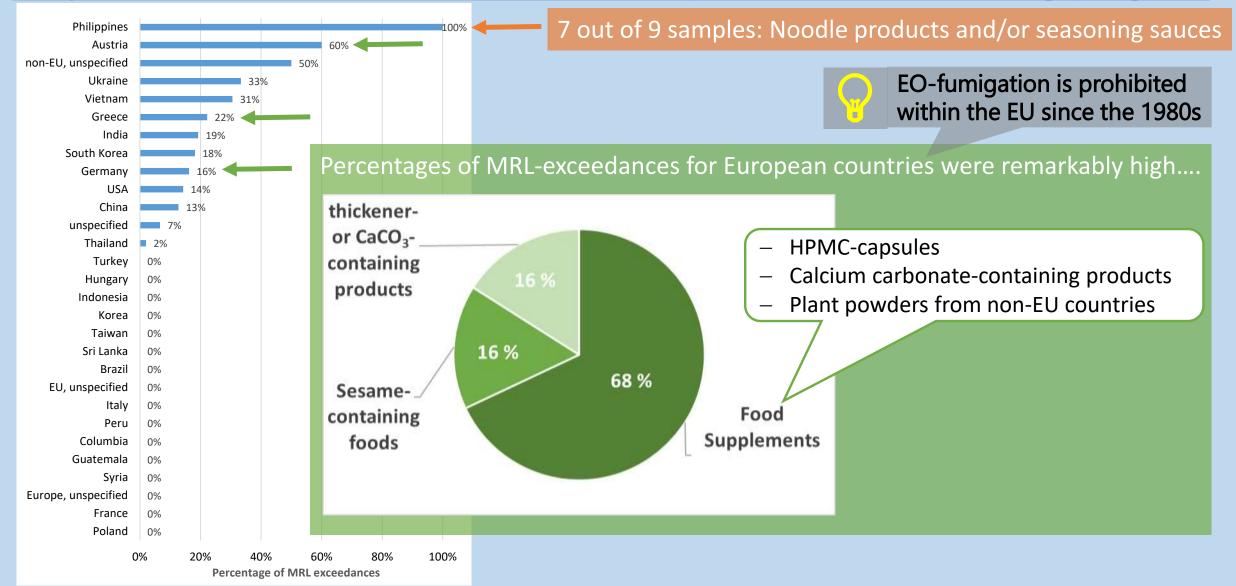
2023 (Q1-Q3): 52 Notifications

- Spices + Herbs: 30 (mainly IN)
- Food Supplements: 16
- Other: 6 (2x beans, 1x sesame, 1x guar gum, 2x salsa)

Ethylene Oxide Crisis – Comprehensive Pilot Monitoring EURL-SRM / CVUAS



Ethylene Oxide Crisis – Comprehensive Pilot Monitoring EURL-SRM / CVUAS


Example: 2-CE as a Processing Contaminant:

- Capsules: consisting of modified celluloses
 - → EO-fumigated cellulose raw material
- Carbonate-containing Products:
- Added as micro-nutrient (Ca, Mg salts) and for pH adjustment
 →Fumigation of carbonate salts unlikely (microbiological stable)!
 BUT.....
- Carbonate salts are industrially washed, dried and powdered
- Containers cleaned w. polyethoxylate-containing cleansing agents
 - → Degradation resulted in a 2-CE (processing contamination)

Ethylene Oxide Crisis – Results of a comprehensive monitoring program

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Analysis of Esters and Conjugates of acidic pesticides

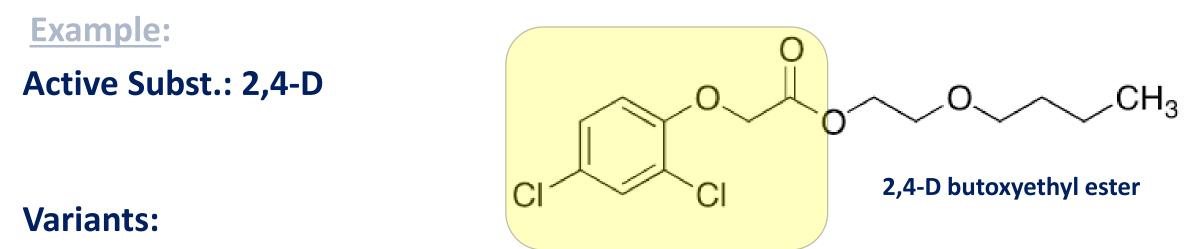
Intro

EURL-SRM

Many residue definitions (RDs) entail <u>Esters and/or Conjugates</u>. <u>Examples:</u>

- "Sum of 2,4-D, its salts, its <u>esters</u> and its <u>conjugates</u>, expr. as 2,4-D"
- *"Sum of thiabendazole, 5-hydroxythiabendazole and its sulfate conjugate, expressed as thiabendazole*

Some RDs entail conjugates w/o explicitly mentioning "conjugates":


Example:

"Sum of all compounds containing the N fluorophenyl-N-isopropyl moiety expressed as flufenacet equivalent"

What is understood under "Esters" within RDs?

Acidic herbicides are approved as active substances and may be used in different variants, within PPP-formulations.

- Free acids
- **Esters:** -ethylhexyl; -isopropyl; -octyl; butoxyethyl
- <u>Salts</u>: -dimethylamine ~; -diethanolamine ~; sodium ~

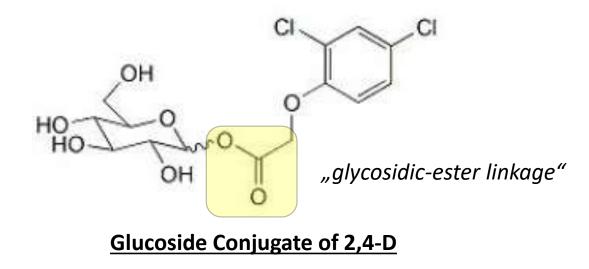
Important to know!

Acids or Salts → free acid/anion in equilibrium ► taken up via roots (high polarity)
Esters taken up via leafs (low to intermediate polarity)

Esters reported to be quickly enzymatically hydrolysed in plants

→ Residues in food are rare (e.g. fluazifop-butyl sometimes found)

Still esters need to be analytically targeted (formally)


- There can be late applications, where esters are not yet fully metabolized.
- They are explicitly mentioned in the residue definitions

What is understood under "Esters" within RDs?

Any esters of acids that are **secondarily** formed within the plant/animal through **reversible covalent bonding to matrix components** are considered **conjugates**. E.g. glucosides

→ Word "Esters" in RDs is not to be understood in the broad chemical sense!

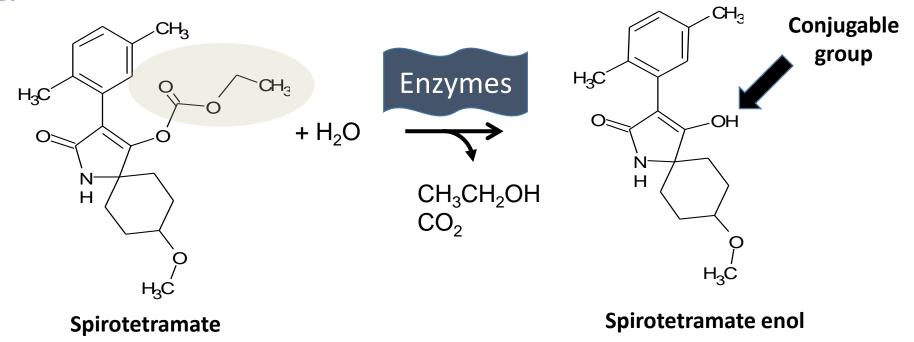
How/Why are conjugates formed – Conj. Phases

- Organisms have developed metabolic mechanisms to reduce harmfulness and/or facilitate elimination of xenobiotics*
- **Specialized enzymes** are often involved in these processes.

Xenobiotics-Detoxification often divided into **3 Phases**:

- Modification (bioactivation); e.g hydrolysis, introduction –OH group
- Conjugation
- Transport/Excretion (animals) or compartmentation/segragation (plants)

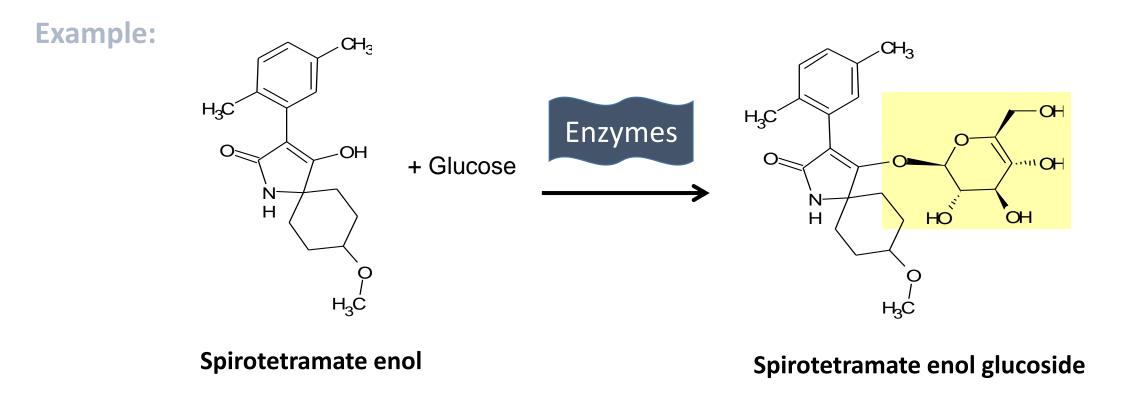
* Xenobiotics [Greek = foreign to living organism] = compounds foreign to living organisms (plants/animals)



Detoxification Phases

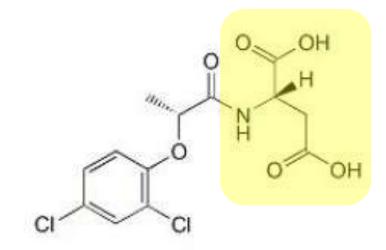
<u>Phase I</u>: Introduction of a reactive chemical group

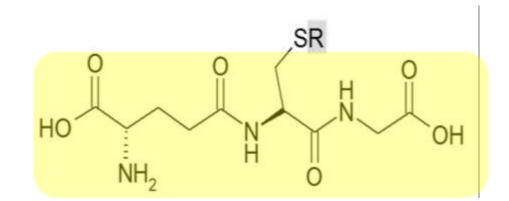
(e.g. via hydrolysis, oxidation (e.g. hydroxylation), reduction) (may be skipped if xenobiotic already entails a reactive group)


Example:

<u>Phase II</u>: Covalent bonding to natural compound

(e.g. sugar, amino acid) (→ <u>Conjugation</u>)



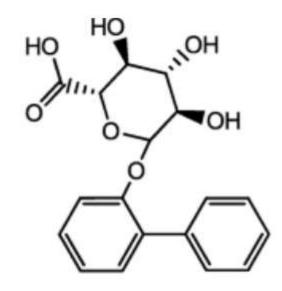


EU Reference Laboratories for Residues of Pesticides Single Residue Methods

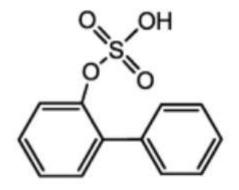
Examples of conjugates

Amino acid conjugates

Aspartate


Glutathion-Conjugate (R-SG)

Glutathion is a tripeptide composed of Glutamin (linked through γ-carboxy group), Cyctein, Glycin

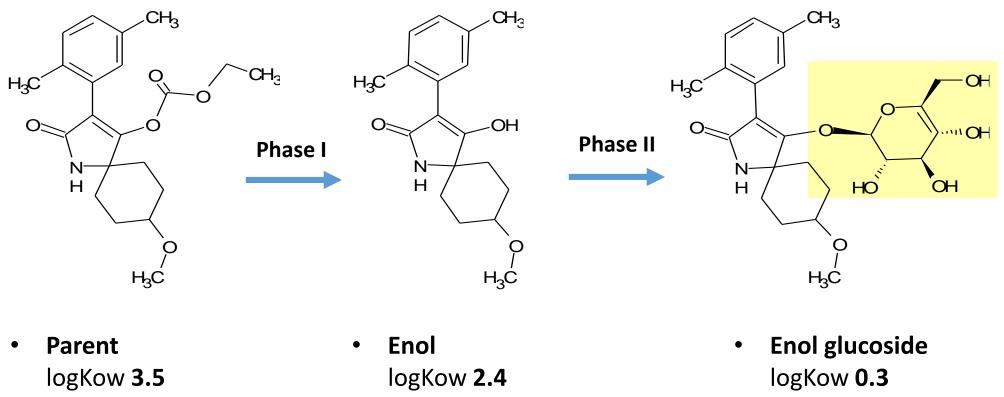

Examples of conjugates

Glucuronides and Sulfate conjugates (in animals)

Ortho-phenylphenol glucuronide (OPP-G)

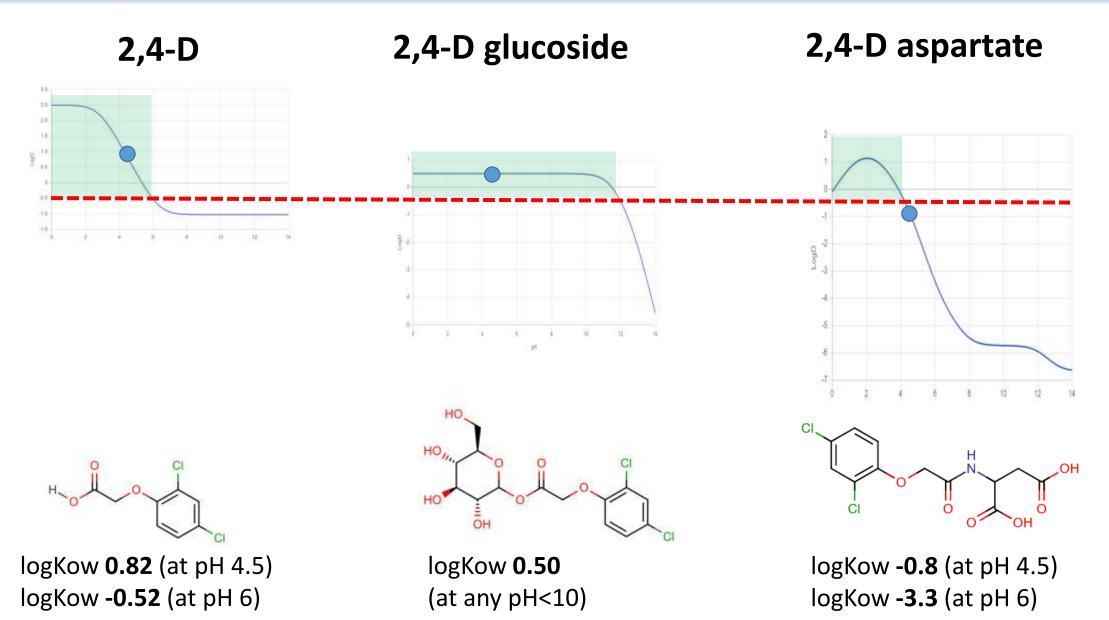
Glucuronide

Ortho-phenylphenol sulfate (OPP-S)


Sulfate

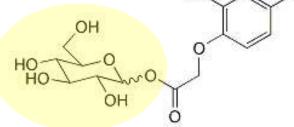
R. Bérubé et al.: Analytical and Bioanalytical Chemistry volume 410, pages 7275–7284 (2018)

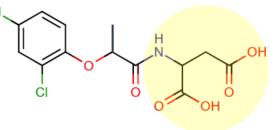
How does polarity shift through glucosylation?


Spirotetramat Enol glucoside

at any pH<10 (computed)

at pH 4.5 (computed) (at any pH<10) (computed)





Analysis of Phenoxy acid Conjugates as such (via QuEChERS)

	QuEChERS-Recoveries of glucoside-conjugates of phenoxy acids (extracted and measured as such)				
2,4-DP-Glucoside	102				
2,4-D-Glucoside	100				
Haloxyfop-Glucoside	95				
MCPA-Glucoside	87				
2,4-DP-Aspartate	95				
OH					

Problem: Too many possible esters for some acids

- 2,4-D, 2-butoxyisopropyl ester
- 2,4-D, 2-ethylhexyl ester
- 2,4-D, 2-octyl ester

EURL-SRM

- 2,4-D, butoxy ethoxy propanol ester
- 2,4-D, butoxypolyethoxypropyl ester
- 2,4-D, butoxypropyl ester
- 2,4-D, butyl ester
- 2,4-D, chlorocrotyl ester
- 2,4-D, ethoxyethoxyethyl ester
- 2,4-D, ethyl ester
- 2,4-D, isobutyl ester
- 2,4-D, isopropyl ester
- 2,4-D, methyl ester
- 2,4-D, nonyl ester
- 2,4-D, octyl ester
- 2,4-D, polypropoxybutyl ester
- 2,4-D, polypropylene glycol ester
- 2,4-D, propyl ester
- 2,4-D, propylene glycol butyl ether ester
- 2,4-D, propylene glycol isobutyl ether ester
- 2,4-D, tetrahydrofurfuryl ester
- 2,4-C, tripropylene glycol isobutyl ether ester

Example 2,4-D-Esters

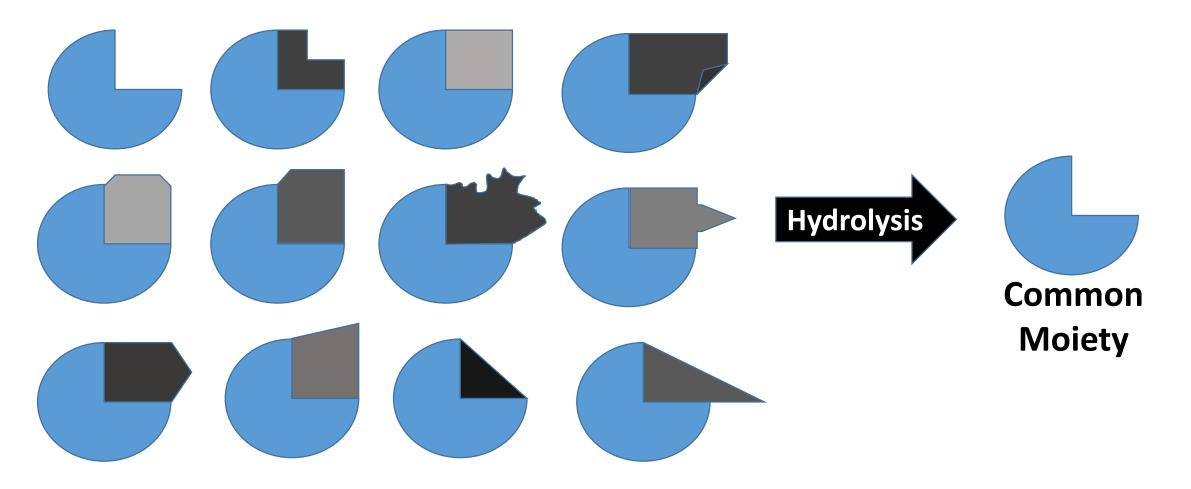
Problem: Too many possible esters for some acids

Analysis of all Esters individually

- Many analytes to validate / analyse (most unlikely to be found)
- Many LOQs
- Huge summed-LOQ

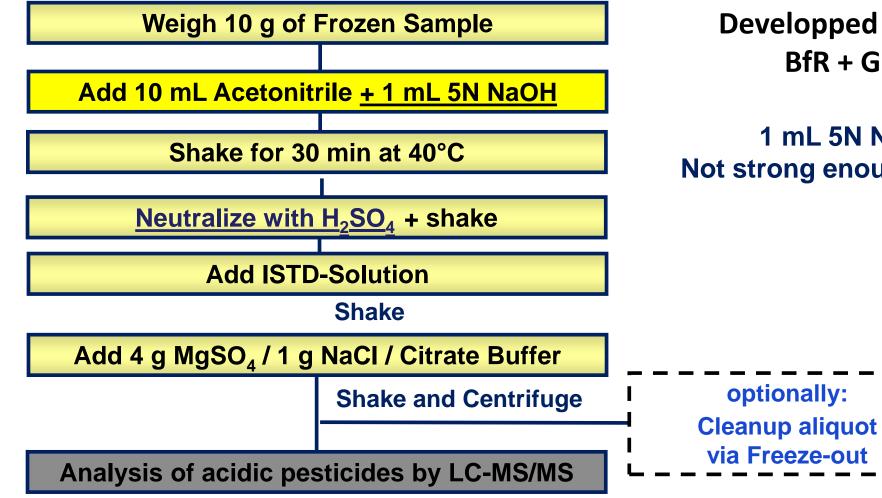
<u>Common moiety analysis (involving hydrolysis of Esters)</u>

- Single analyte to determine
- One LOQ
- Approach not MRM compatible
- More work-intensive than normal MRM (pre-screening for selective use)
- Screening LOQs/SDLs different than actual LOQs of hydrolysis approach.


NOTE: Non-selective HYDROLYSIS will typically cleave both esters and conjugates (at least partly)

→ Esters & Conjugates typically go as a package in RDs

EU Reference Laboratories for Residues of Pesticides Single Residue Methods


EURL-SRM

Common Moiety Approach

QuEChERS combined with Alkaline Hydrolysis

- > <u>Previous Method</u>: Base added directly to sample homogenate
- Current Method: Hydrolysis after ACN-addition (1st extraction step)
 - → Efficient Hydrolysis in Dry Matrices and of Resistant Esters

Developped in Collaboration with BfR + German NRL-SRM

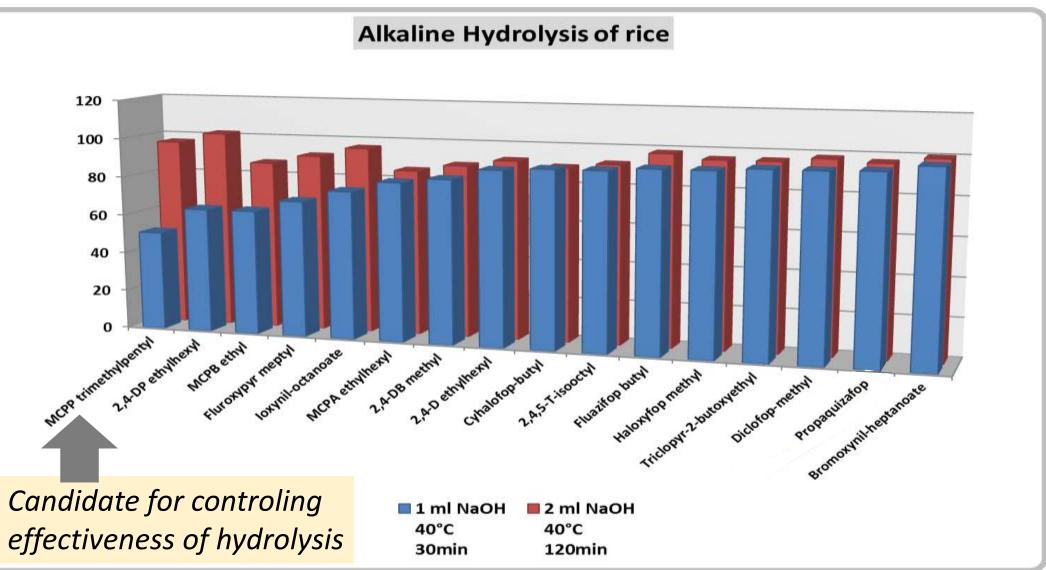
1 mL 5N NaOH / 30 min / 40°C Not strong enough for complex matrices !

Deconjugation Strategy

Current Approaches (CEN-QuEChERS-based):

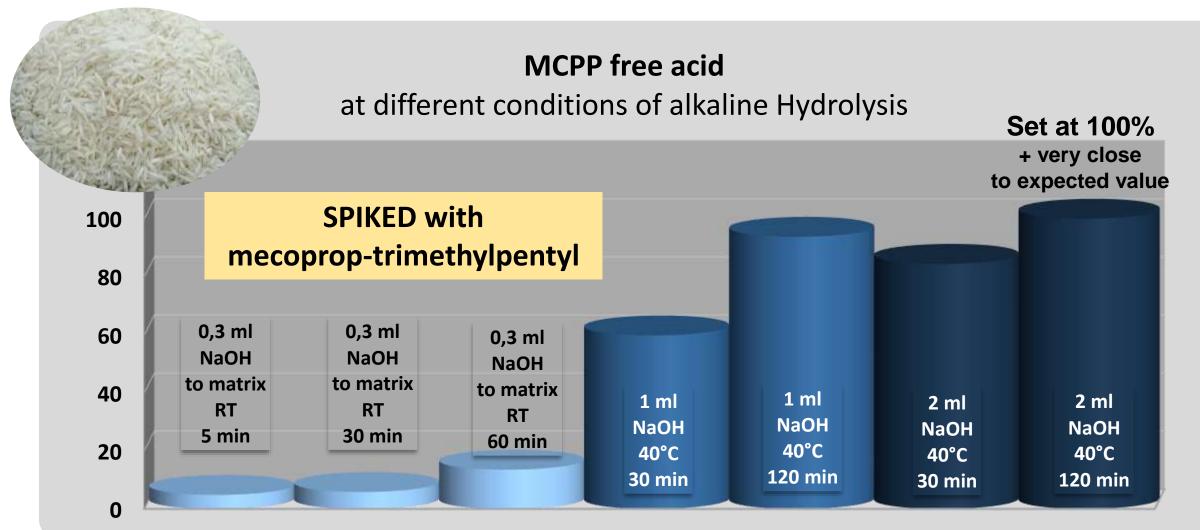
- EN 15662: Fixed hydrolysis conditions (1 mL NaOH/40°C/30 min), roughly representing those of applicants.
- <u>SRM-43</u>: with 2 additional hydrolysis conditions introduces to cover <u>resistant esters</u> in <u>difficult matrices</u> (= 3 conditions in total, depending on matrix)

Envisaged New Approach (Performance-based and method independent):

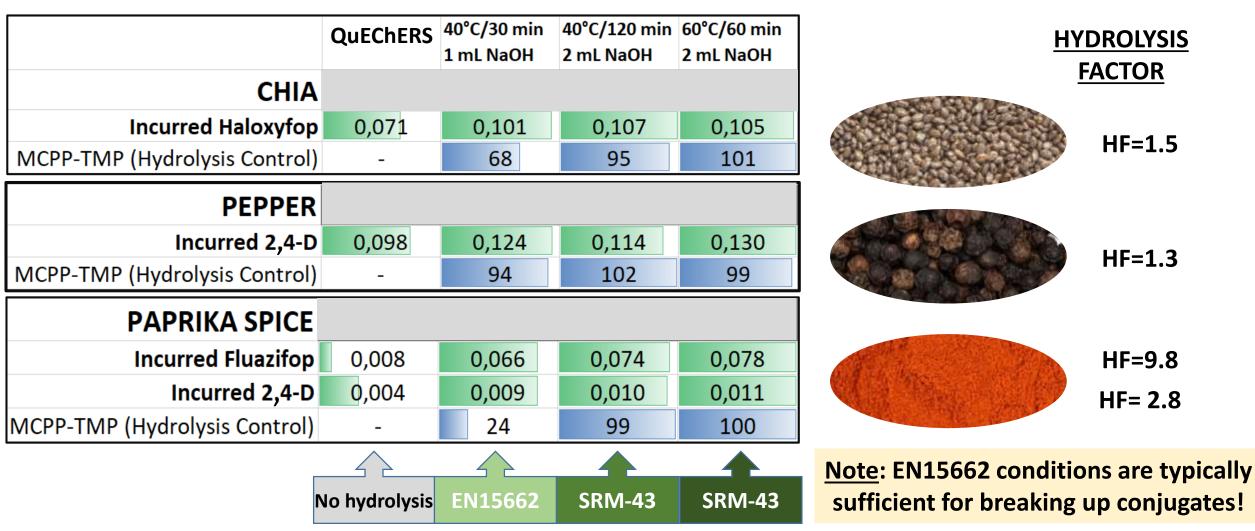

Successful hydrolysis judged by the hydrolysis yield of marker compounds (i.e. judiciously selected hydrolysis-resistant esters and conjugates)

What needs to be done?

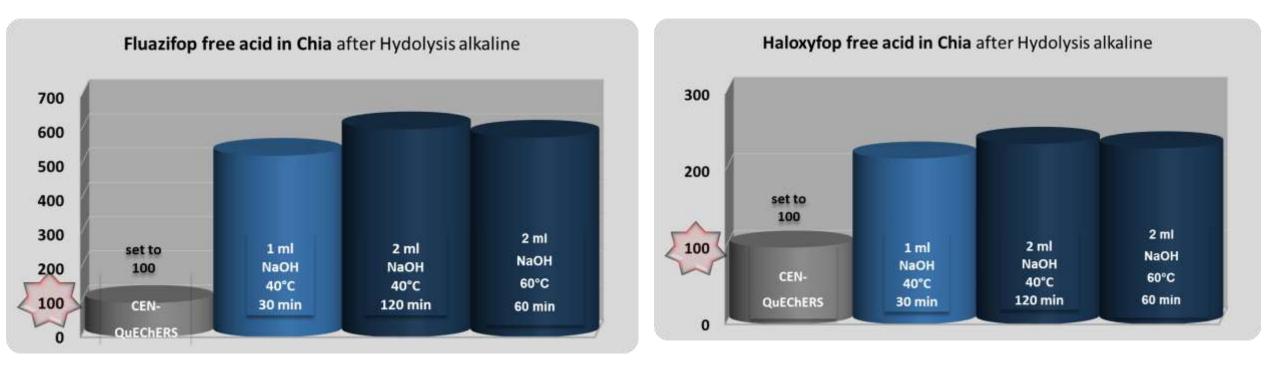
- Check hydrolysis conditions required for saponifying a selected range of esters in a variety of matrices
- Check impact of hydrolysis conditions on matrix effects
- Decide if procedure can be simplified to one single (strong) hydrolysis condition for all types of matrices
- Select suitable <u>marker compound(s) for checking hydrolysis success</u>



Various Esters show different resistance to hydrolysis

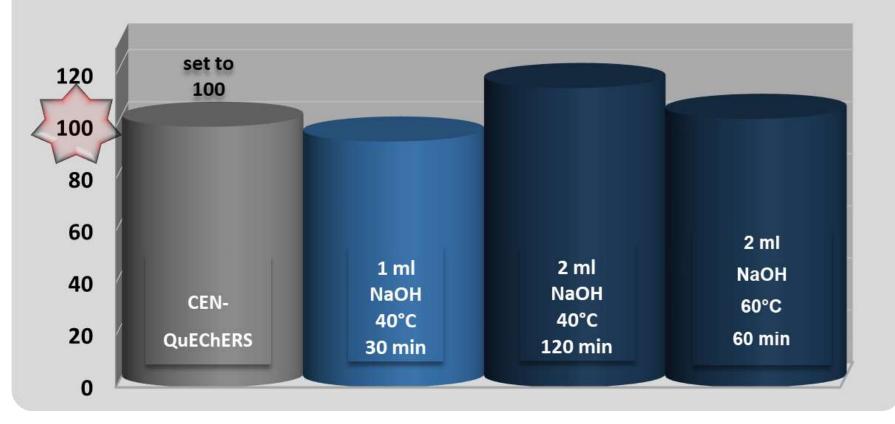


Mecoprop (sum) in EUPT-SRM15 material (Rice Flour)


Checking suitability of MCPP-TMP Ester for performance check Extraction of samples with INCURRED residues

Hydrolysis of Conjugates

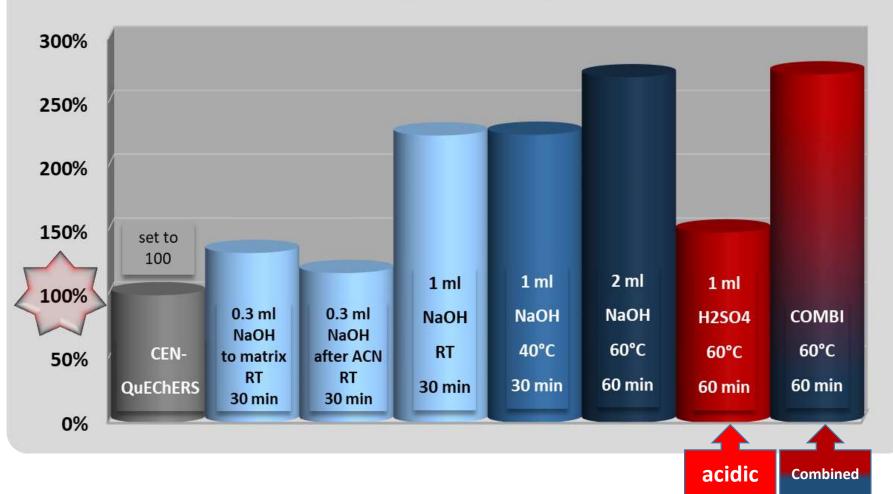
INCURRED residues of **Fluazifop** hydrolyzed at various conditions


HYDROLYSIS FACTORS

Hydrolysis of **Conjugates**

Incurred residues of 2,4-D in lentils

2,4-D free acid in Lentil after Hydolysis alkaline



HYDROLYSIS FACTOR VERY SMALL HF close to 1

Incurred residues of Fluazifop hydrolyzed at various conditions

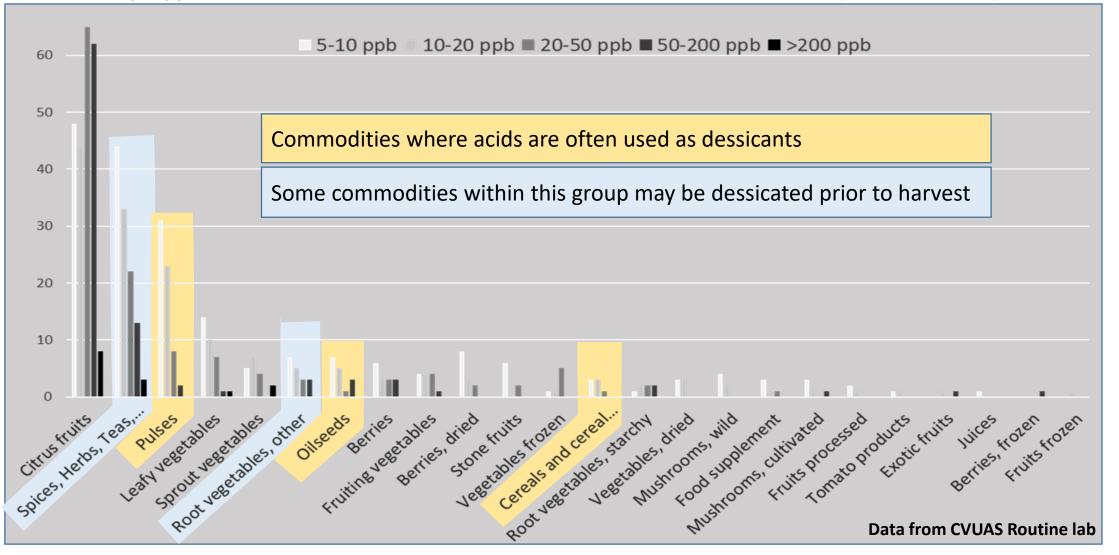
Fluazifop free acid in Oregano after Hydolysis alkaline/acidic

CEN-QuEChERS

mild alkaline hydrolysis conditions medium alkaline hydrolysis conditions strong alkaline hydrolysis conditions strong acidic hydrolysis conditions

HYDROLYSIS FACTOR (HF) = 2.7

How can a method(s) involving hydrolysis be used efficiently in routine ?


Several questions come up:

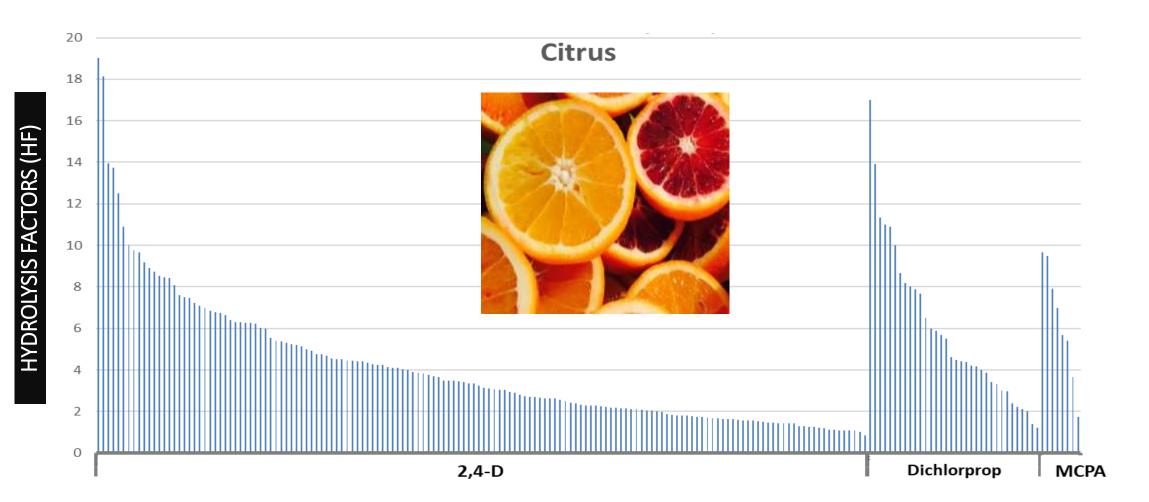
Q1: Which commodities are relevant in terms of residues of acidic herbicides?

- Q2: What is the share of conjugated acids in samples with incurred residues?
- Q3: Is it always worthwhile hydrolyzing samples w. residues of acidic pesticides ?
- Q4: Down to which level should free acids be analyzed in the pre-screening, to ensure that re-analysis involving hydrolysis is triggered (if levels for the sum exceed LOQ)?

Q1: Which commodities are relevant in terms of residues of acidic herbicides? Commodity Types in which acidic herbicides have been encountered (2010 – 2022)

How can the method(s) involving hydrolysis be used efficiently in routine ?

What needs to be done?


EURL-SRM

- 1. <u>Analyze samples by two approaches and collect the data</u>:
 - a. by a method **<u>NOT</u>** entailing de-conjugation/hydrolysis
 - b. by a method **entailing de-conjugation/hydrolysis**
- 2. Calculate Hydrolysis Factors

Hydrolysis Factor (HF) = Conc. of total acid determined after Hydrolysis Conc. of free acid determined w/o Hydrolysis

Q2: What is the share of conjugated acids in samples with incurred residues? Example: Citrus fruits

How can the method(s) involving hydrolysis be used efficiently in routine ?

What needs to be done?

- 3. Evaluate the HF-collection and set a reasonable/desired "quasi-worstcase" HF (QWC-HF)
- 4. Considering various factors (achievable LOQ/SDL of pre-analysis, achievable LOQ for the sum, lowest desired RL for the sum, MRLs ...) labs can set reasonable Trigger Levels (TrL) for the pre-analysis and if needed adjust RLs for the (sum)

Trigger Level (TrL) * QWC-HF should be ≤ RL (for sum)

Importance of Collecting Hydrolysis Factors (HFs)

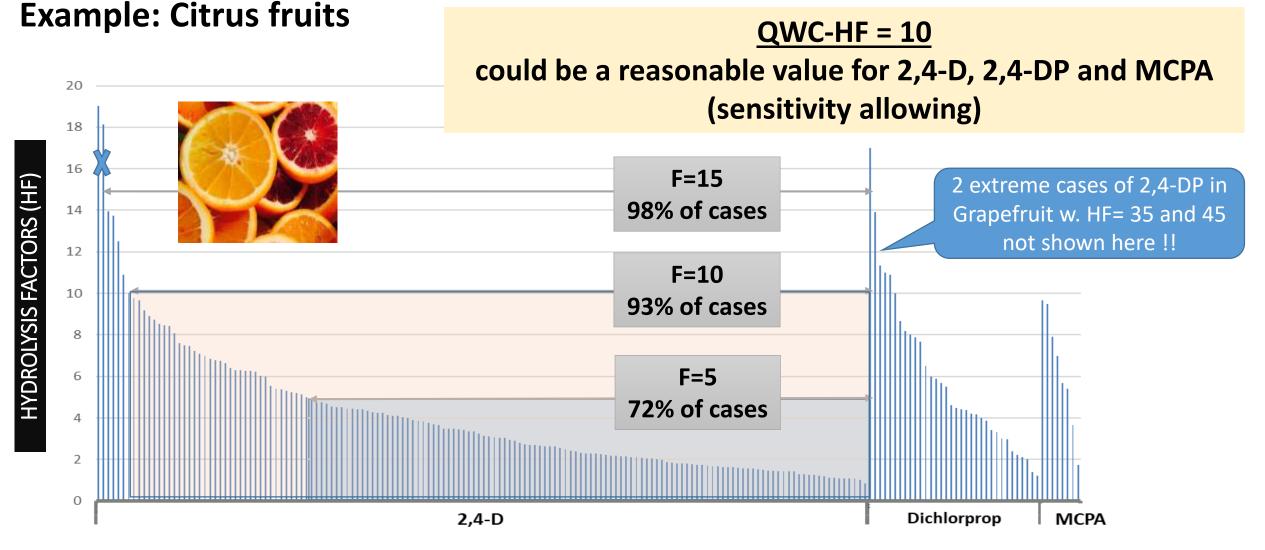
HFs facilitate establishment of reasonable trigger levels for <u>re-analysis</u> <u>entailing de-conjugation</u>.

If HF is high, the trigger level should be low, e.g. : MRL=0.02 mg/kg Quasi worst case HF = 5

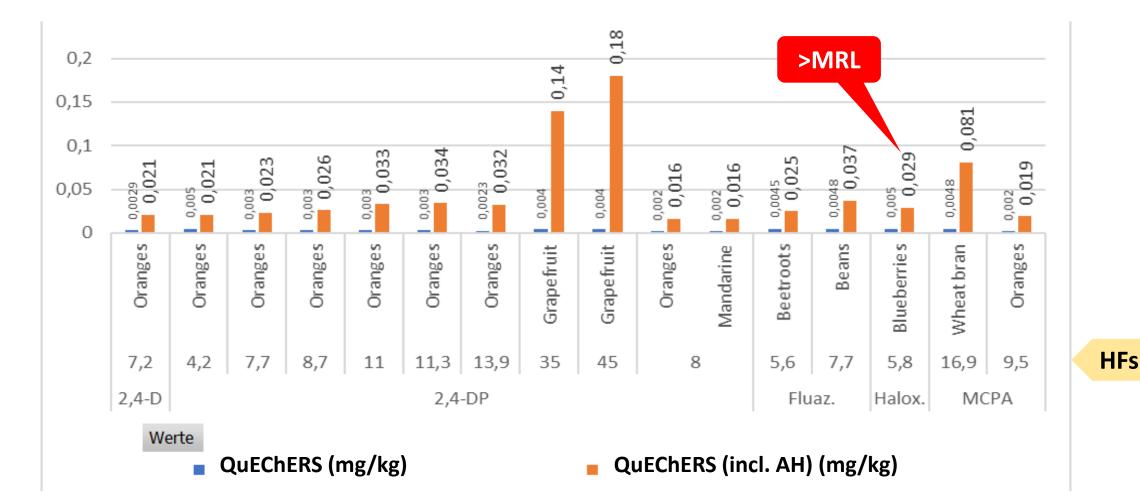
MRL=0.02 mg/kg Quasi worst case HF = 1.3

Trigger level = 0.01 mg/kg

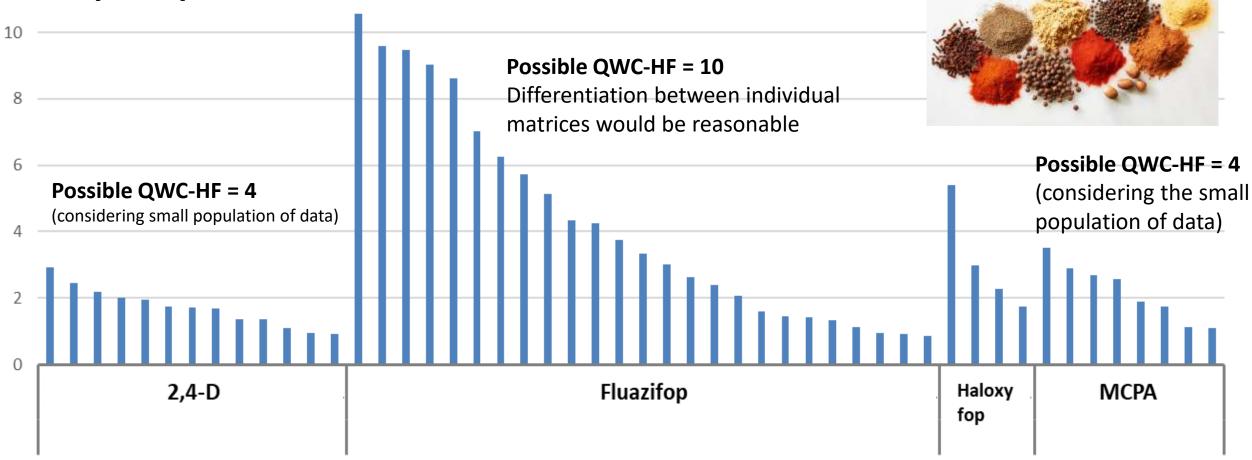
NOTE: There is some uncertainty in the collected data


- Hydrolysis conditions might have been to weak for the case
- Matrix-effects may have not been properly corrected for MEs

Q2: What is the share of conjugated acids in samples with incurred residues?

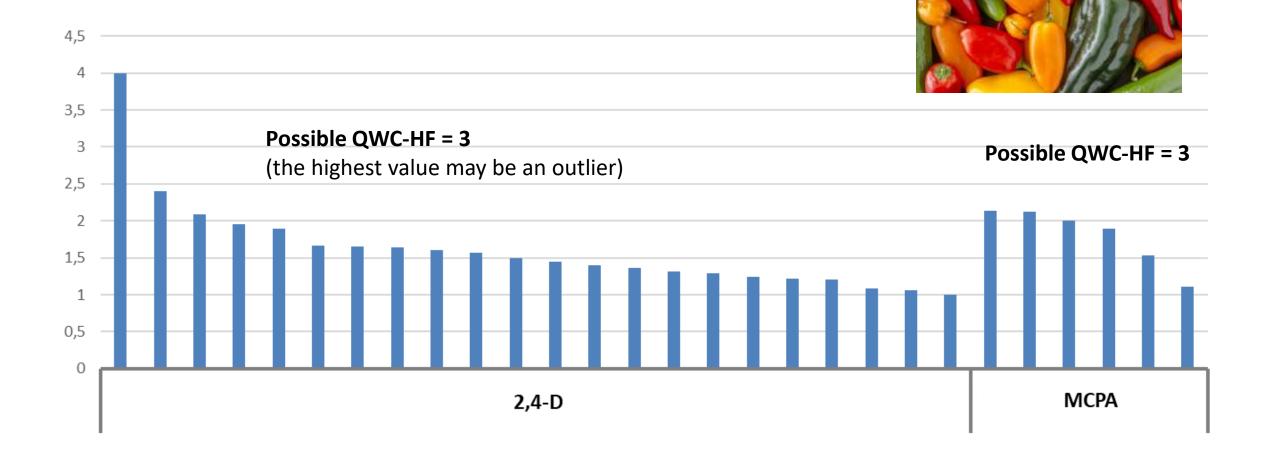

EU Reference Laboratories for Residues of Pesticide

Single Residue Method

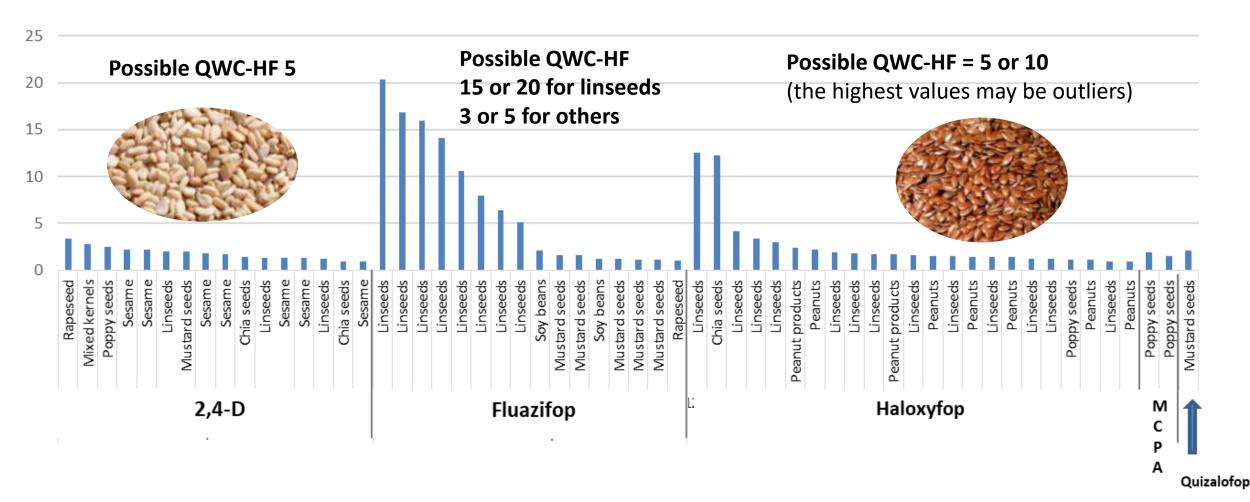

Examples of samples where pre-analysis values were ≤ 0.005 mg/kg and summed result was >0.01 mg/kg

Q2: What is the share of conjugated acids in samples with incurred residues?

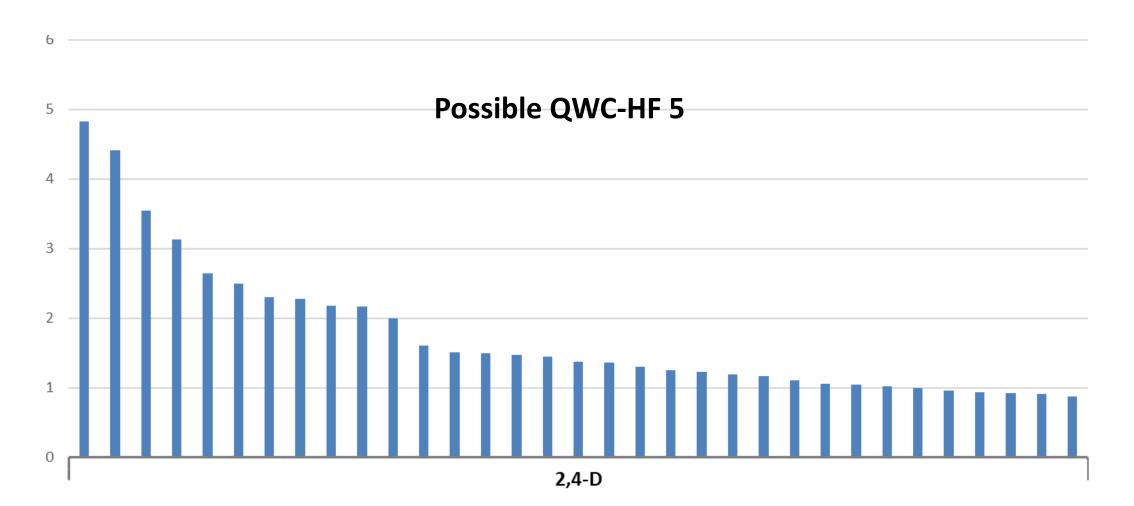
Example: Spices


Source: CVUA Stuttgart

Q2: What is the share of conjugated acids in samples with incurred residues? Example: Solanaceae


EU Reference Laboratories for Residues of Pesticides

Single Residue Methods



Q2: What is the share of conjugated acids in samples with incurred residues? Example: Oilseeds

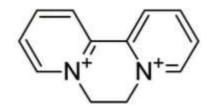
Q2: What is the share of conjugated acids in samples with incurred residues? Example: Cocoa

Hydrolysis of **Conjugates**

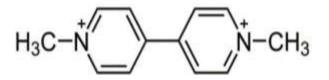
Enzyme Group	Enzyme	Note	working pH optimum
xxxNONExxx	Acid-H (60°C/60 min)	2 mL 5N H2SO4	~0
Amidase (protease)	Pepsin	Porcine Gastric Mucosa	~2
Protease + Lipase	Rabbit Gastric Extract	first optimum	~2
Glucosidase	alpha glucosidase	Rice	~4,5
Glucosidase	beta Glucosidase	almonds	~4,5
Glucuronidase	beta Glucuronidase	Patella Vulgata	~6
Amidase (protease)	Papain	Рарауа	~6
Amidase (protease)	Protease	B. licheniformis	~7,5
Esterase	Esterase	Porcine liver	~7,5
Protease + Lipase	Rabbit Gastric Extract	second optimum	~8
xxxNONExxx	Alk-H (60°C/60 min)	2 mL 5N NaOH	~14

EURL-SRM CONJUGATES

			Glycoside-Conjugates				Amino acid Conj.
		Ester	Glycosyl-Esters		Acetals		Amide
					Aliphatic	Phenolic	
Enzyme/Hydrolysis	рН	MCPP- TMP	MCPA- Glucoside	Haloxyfop- Glucoside	Pinoxaden Metabolit M5	2.4-D-O- Glucoside	Dichlorprop- Aspartat
Acid-H (60°C/60 min)	~0	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{2}}$	$\checkmark\checkmark$	\checkmark	\checkmark	\checkmark
Pepsin	~2	\checkmark	\checkmark	\checkmark	×	×	×
Rabbit Gastric Extract	~2	\checkmark	\checkmark	\checkmark	×	×	×
alpha glucosidase	~4,5	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	\checkmark	×	\checkmark	×
beta Glucosidase	~4,5	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark\checkmark\checkmark$	$\sqrt{\sqrt{\sqrt{1}}}$	×
beta Glucuronidase	~6	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark$	×	×	×
Papain	~6	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark$	×	×	×
Protease	~7,5	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$	×	×	×
Esterase	~7,5	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$	$\sqrt{\sqrt{2}}$	×	×	×
Rabbit Gastric Extract	~8	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	$\sqrt{}$	×	×	×
Alk-H (60°C/60 min)	~14	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{\sqrt{\sqrt{1}}}$	×	$\sqrt{}$	×


EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Analysis of Paraquat and Diquat


Analysis of Diquat (DQ) and Paraquat (PQ)

- Both are non-selektive herbicides
- Both are banned in the EU ... but are still widely used elswhere (e.g. as crop-desiccants (e.g. on potatoes, oilseeds, cereals)

Diquat (DQ)

Paraquat (PQ)

Analysis of Diquat (DQ) and Paraquat (PQ) – Critical Points

EU-MRLs mostly at LOQ with some exeptions

e.g.:

- PARAQUAT
 - **Rice**: 0.05 ppm
- DIQUAT
 - **Oats**: 2 ppm
 - Potatoes: 0.1 ppm
 - Oil seeds: Linseed 5 ppm, Rapeseed: 1.5 ppm, Sunflower seed 0.9 ppm, Soy 0.3 ppm, Oat 2 ppm
 - Pulses: 0.2 ppm (Peas 0.3 ppm),
 - Tree nuts: 0.2 ppm
 - **Tree fruits:** Citrus, Pome fruit, Stone fruit ...: 0.02 ppm
 - Other fruits: Strawberries: 0.05 ppm; Bananas 0.02 ppm

ceptions Septions

Vázquez C (2015)

Check ladungsbalance

Background of herbicidal and toxicological activity

- PQ / DQ get oxidized by O₂ forming PQ / DQ radicals and Oxigen Radicals
- PQ/DQ radicals react w. NADPH and PQ/DQ are re-generated
- Organism looses all ist reduction power and dies

NAD(P)⁺
NAD(P)⁺
NAD(P)H+H⁺

$$\dot{PQ^+}$$

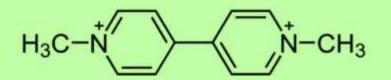
 $\dot{O_2}$
 $\dot{O_2}$

.

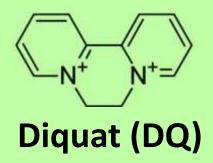
EURL-SRM

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

CHALLENGES IN THE ANALYSIS OF PQ and DQ:


MRM-Ion-Ratios Variable Depending on Matrix

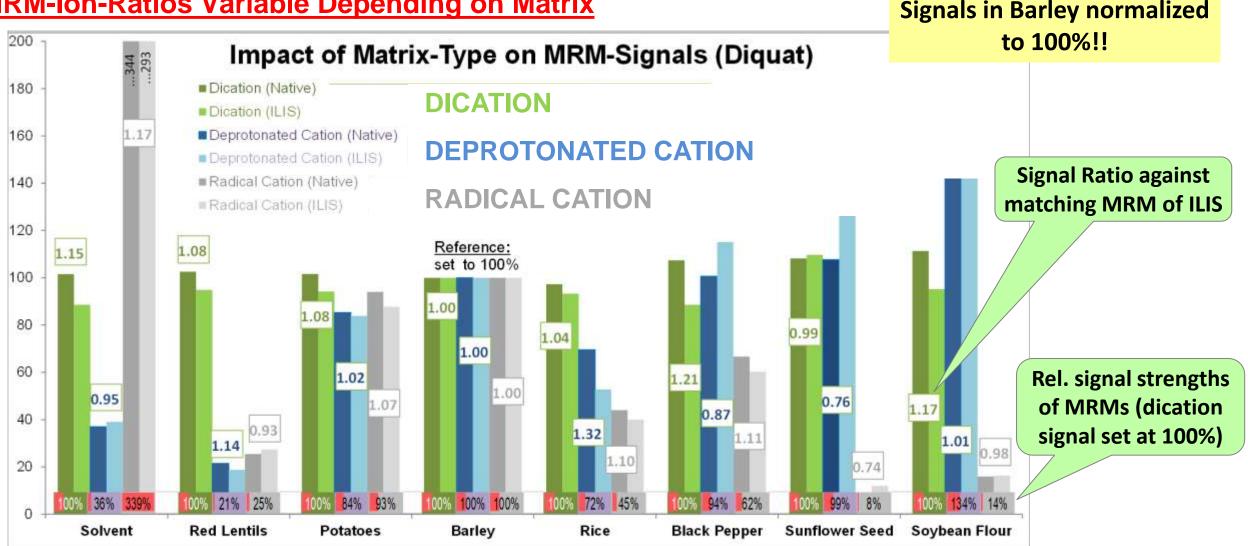
DQ and PQ form various precursor ions:


- Dications [M]²⁺
- Radical cations [M]^{+*}
- Deprotonated cations [M-H⁺]⁺

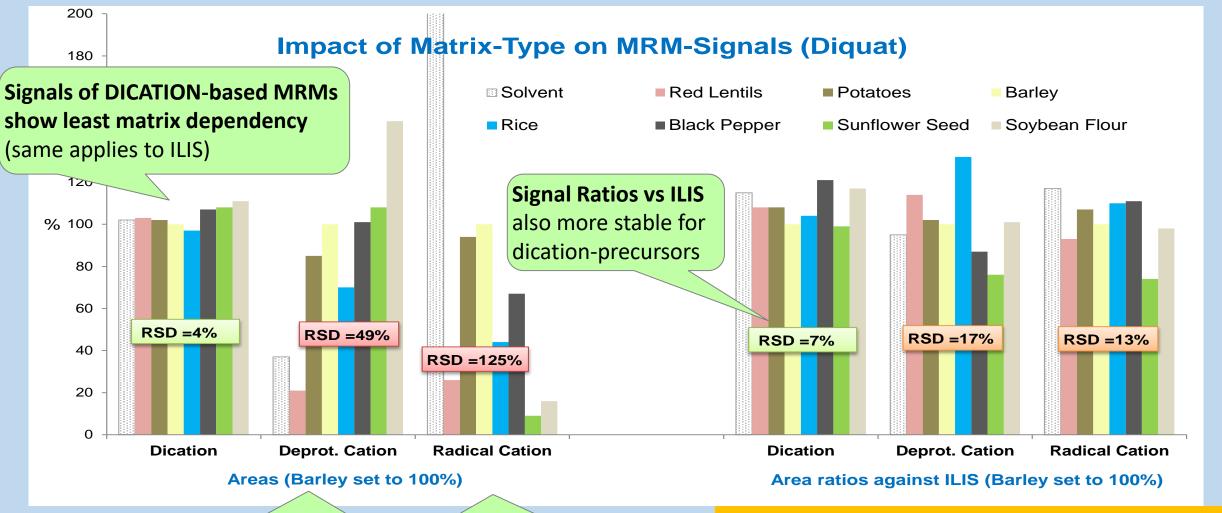
Relative generation rate of precursor ions depends on:

- Composition of mobile phase during elution (incl. co-eluting matrix)
- Design and condition of the LC-MS/MS interface

Paraquat (PQ)



TAKE HOME MESSAGE:


For AQC-based identifications use MRMs of same precursor! If from diff. precursors, use signal-ratios against ILIS for calc. ... but use matching MRMs of native compound and ILIS !!

MRM-Ion-Ratios Variable Depending on Matrix

CHALLENGES IN THE ANALYSIS OF PQ and DQ:

Deprotonated Cation & Radical Cation seem to be "competing"

Dication precursor preferable !!! (limited rel. matrix effects)

CHALLENGES IN THE ANALYSIS OF PQ and DQ:

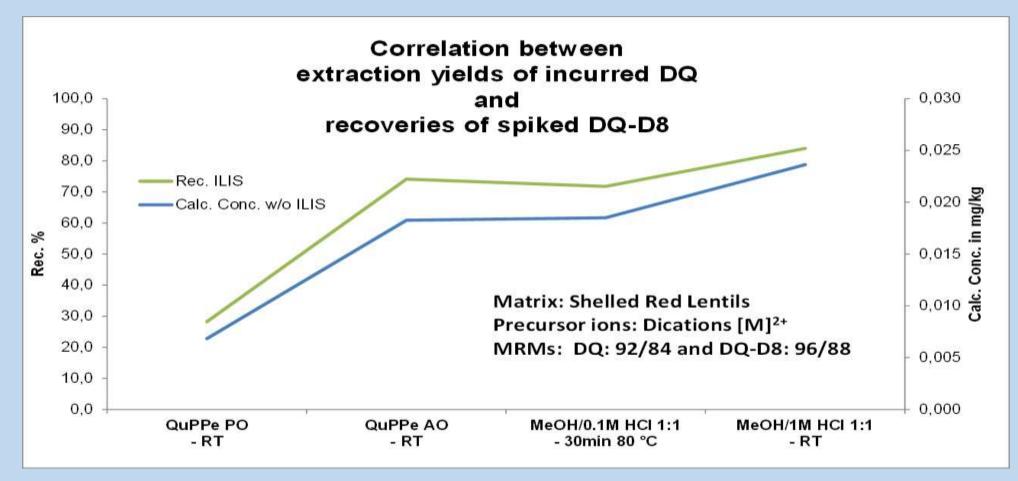
Extractability Issues

EURL-SRM

- DQ / PQ tend to interact with matrix during extraction
- Poor recoveries especially for oily seeds (e.g. flax, chia) and pulses

ILIS-based correction works well, even at poor abs. recoveries

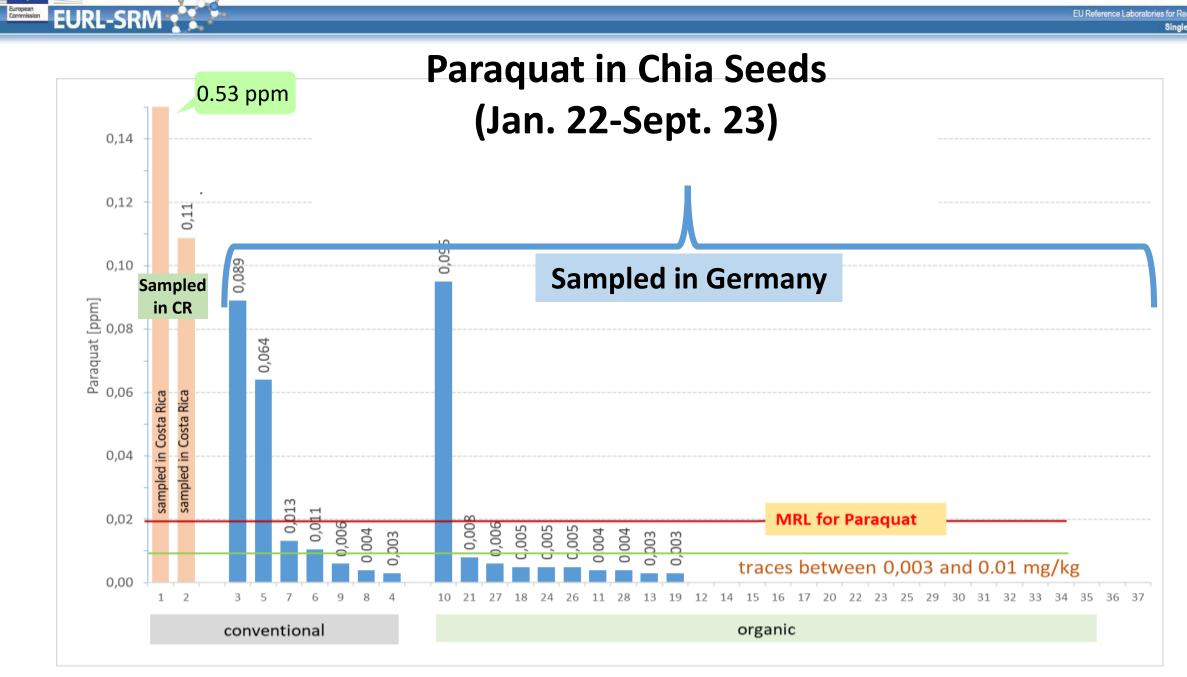
Absolute and ILIS-corrected recovery rates of spiked DQ and PQ (level 0.2 mg/kg)		QuPPe AO (EDTA/1% FA/ RT)	QuPPE PQ/DQ 1M HCI / RT	QuPPE PQ/DQ 0,1M HCI / 80 °C	QuPPE PQ/DQ 1M HCI / 80 °C	QuPPe AO (EDTA/1% FA/RT)	QuPPE PQ/DQ 1M HCI / RT	QuPPE PQ/DQ 0,1M HCI / 80 °C	QuPPE PQ/DQ 1M HCI / 80 °C
			no ll	LIS			with	ILIS	
Rice	DQ	95	87	81	95	109	105	108	99
	PQ	89	88	85	91	105	97	109	102
Chia	DQ	15	74	3	99	108	102	81	99
Cilla	PQ	12	60	9	88	107	102	102	96
Lentils	DQ	12	50	28	74	110	104	113	100
(brown, unshelled)	PQ	10	15	15	41	114	99	109	97

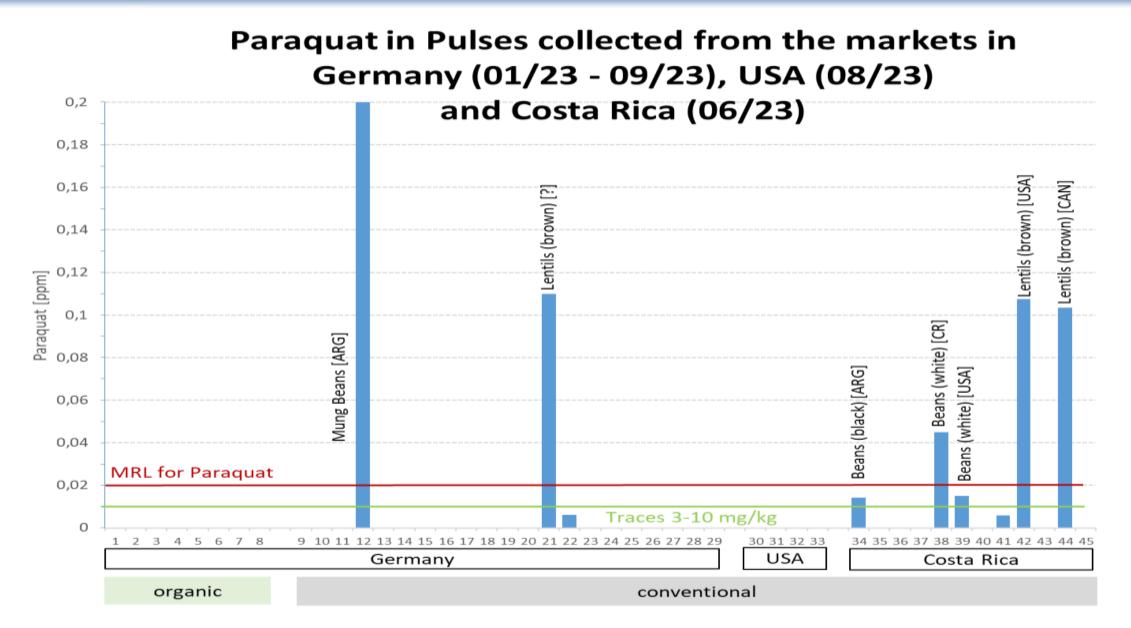

Stronger acidification (0.1N HCl \rightarrow 1 N HCl)

improves extraction yields for difficult matrices (also helps to avoid FNs)

QuPPe: Diquat and Paraquat – Extractability

- Yields of incurred residues correlate well with the recoveries of spiked DQ/PQ
 - \rightarrow incurred residues and spiked residues are subject to the same equilibria


Analysis of Diquat and Paraquat in Market Samples


- Various market samples analyzed for DQ and PQ

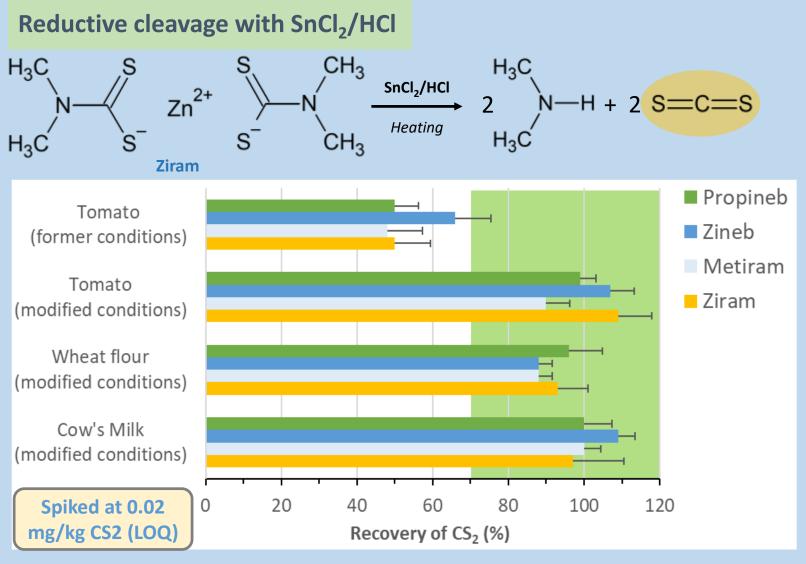
Results of analyzed		D	Q	PQ		
market samples 04/2022 - 04/2023	Analyzed	> LOQ - < MRL	> MRL	> LOQ - < MRL	> MRL	
(QuPPe 1M HCI)	Number of Samples CONVENTIONAL / ORGANIC					
Linseeds (flax)	2/9	1/1	-	-	-	
Chia seeds	5 / 18	-	-	2/0	3 / 1	
Lentils	9 / 6	-	-	-	1 / 0	
Beans (dried)	4 / 0	-	-	-	1 / 0	
Pepper (black)	4 / 0	-	-	1 / 0	1 / 0	

Residues also found in **ORGANIC** Chia (1x >MRL) and Linseed (1x <MRL)

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

EURL-SRM

Analysis of Dithiocarbamates as CS₂


Dithiocarbamates – Status within the EU

Article 12-review initiated for....

Activo cubstanco		Requested by EFSA		Requested by COM	
Active substance	Aproval	Evaluation Report	Draft Reasoned Opinion	LOQs	
Propineb	Expired 03/18	-	20 Apr 2020	10 Nov 2020 & 06 Nov 2023	
Thiram	Expired 10/18	20 Feb 2020	27 Nov 2020	17 May 2021 <mark>& 06 Nov 2023</mark>	
Ziram	till 03/25	16 Mar 2021	09 Nov 2022	06 Nov 2023	
Maneb	Expired 01/17	06 Apr 2021	09 Nov 2022	Pending	
Metiram	till 01/24	06 Apr 2021	09 Nov 2022	06 Nov 2023	
Mancozeb	Expired 04/21	06 Apr 2021	09 Nov 2022	06 Nov 2023	

Dithiocarbamates – Modification of the traditional reductive cleavage method

Former conditions:

50 g of sample homogenate
+150 mL hydrolysis agent
(Agent:Sample-Ratio: 3:1)
+ 25 mL isooctane (2g sample/mL)
→2 h @ 80 °C in a water bath

New conditions:

10 g of sample homogenate
+75 mL hydrolysis agent
(Agent:Sample-Ratio: 7.5:1)
+ 10 mL isooctane (1g sample/mL)
→3 h @ 85 °C in a water bath

Hydrolysis agent (0.1 M SnCl₂+4 M HCl)

QuPPe-Compounds Residue Situation

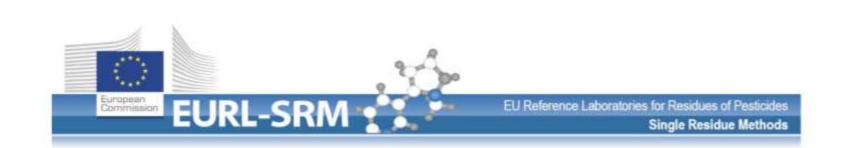
EU Reference Laboratories for Residues of Pesticides

You are here: Home : Single Residue Methods

Topics	Latest News	Quicklinks	
EURL-SRM Network	19-04-2023 EURL-SRM Risk of False Positives of Chloridazon-Desphenyl in Honey by LC-MS/MS	EURL-DataPool EURL Method-Finder List	
EUPT-SRM Overview EUPT-SRM18 (Honey)	A new EURL-SRM Analytical Observations Report concerning the risk of false positive findings of chloridazon-desphenyl in honey by LC-MS/MS is available. Various chromatographic separation methods for chloridazon-desphenyl were tested to clarify the situation.	EU MRLs-Database (COM) EU Pesticides-DB - Main (COM)	
EUPT-SRM18 (Honey) EUPT-SRM17 (Tomatoes) EUPT-SRM16 (Sesame) EUPT-SRM15 (Rice)	17-03-2023 EURL-SRM QuPPe-PO-Method Version 12.1 The QuPPe-PO-Method has been updated (now includes more detailed information on Honey analysis).	EU-Legisl. on PPPs (COM) CIRCA BC Login RASFF Portal DB (COM) How to Use CIRCA BC	
Workshops Workshop Overview Joint Workshop 2023 Joint EURL/NRLs (SRM-	InfoNote: Processed Food/Feed (COM) EUPT Registration Websit		
FV) 2022	by introducing additional validation data. This update also includes results of experiments concerning the transformation of Captan and Captafol to Tetrahydrophthalimide (THPI) and of Folpet to Phthalimide (PI),		
Services ILISs Distribution	during various steps of the QuEChERS procedure and especially in thawed sample homogenates prior to extraction.	Show more Pinboard Messages	
CheckYourScope SRM-PinBoard EURL-SRM Methods Analytical Observations	03-03-2023 EURL-SRM Determination of fluoride ion in food Two approaches for the determination of Fluoride Ion via selective electrodes (ISE) are described: a) direct measurement in QuPPe extracts and b) measurement in diffusates derived by microdiffusion.		
Residue Observations Downloads Sources of Standards	27-02-2023 EURL-SRM Compilation of Residue Observations Reports of QuPPe Compounds A new compilation of residue findings of QuPPe compounds in food products, analysed in 2022, was uploaded. The report additionally encompasses findings of ethylene oxide / 2-chloroethanol. Aim of these	Passed 20-Oct-2023	

Go!

You are here: Home : Single Residue Methods


	URL	EURL for	EURL for	EURL for	EURL for
P	ortal	Fruits and Vegetables	Cereals and Feeding Stuff	Food of Animal Origin	Single Residue Methods

Topics	Compilation of Residue	Observations Re	eports	Quicklinks
EURL-SRM Network NRL-SRM Network	The table below compiles various observation notes pesticides in food. Laboratories within the NRL/OL-N			EURL-DataPool EURL Method-Finder
Proficiency Tests EUPT-SRM Overview EUPT-SRM18 (Honey)	reports on residue findings. The idea is to gradually knowledge and to offer laboratories a useful and pro DataPool is planned.	EU MRLs-Database (EU Pesticides-DB - M (COM) EU-Legisl. on PPPs (
EUPT-SRM17 (Tomatoes) EUPT-SRM16 (Sesame)	Compounds covered / Title of Study	Date of reports / version	Link	CIRCA BC Login RASFF Portal DB (CO
EUPT-SRM15 (Rice)	QuPPe-Compounds as well as Ethylene oxide / 2-Chloroethanol (2022 data)	01.03.2023 / V1	View Document	How to Use CIRCA B InfoNote: Processed
Workshop Overview Joint Workshop 2023 Joint EURL/NRLs (SRM-	QuPPe-Compounds (2021 data)	01.04.2022 / V1	Siew Document	Food/Feed (COM) EUPT Registration V
	QuPPe-Compounds (2020 data)	30.03.2021 / V1	Niew Document	
FV) 2022	QuPPe-Compounds (2019 data)	30.01.2020 / V1	View Document	Pinboard
I Services	QuPPe-Compounds (2018 data)	30.04.2019 / V1	View Document	Show more Pinboard
ILISs Distribution CheckYourScope	TFA (Trifluoroacetic acid) and DFA (Difluoroacetic acid)	19.06.2017 / V1	View Document	Messages
SRM-PinBoard EURL-SRM Methods Analytical Observations Residue Observations Downloads	Determination of Triazole Derivative Metabolites (TDMs) in Fruit and Vegetables using the QuPPe Method and Differential Mobility Spectrometry (DMS) and Survey of the Residue Situation in Organic and Conventional Produce	CVUA Stuttgart eJournal, May 2016	View Document	SiteLock SECURE
Sources of Standards	Triazole derivative metabolites (TDMs) - Poster	EPRW 2014 (Dublin)	Niew Document	

lool d-Finder List tabase (COM) s-DB - Main n PPPs (COM) ogin al DB (COM) CIRCA BC rocessed (COM) tration Website

~

Gol

Residue Findings of QuPPe-Compounds in Samples of Plant Origin from the German Market in 2022

Reported by: EURL-SRM Version 1 (last update: 01.03.2023)

The aim of this compilation is to give an overview as to which highly polar (QuPPe-) compounds are currently encountered in food products of plant origin. This should help other institutions when it comes to taking decisions on how to expand the scope of analytes, on how to plan sampling, on which QuPPe compounds are worth-while checking in the various samples. Ultimately, this contributes to a more targeted and efficient use of lab resources.

At CVUA Stuttgart, 44 QuPPe-compounds were routinely monitored in 2022 (see Table 1). Some of these compounds are not legally relevant, as they are not part of the legal residue definition.

Despite not being a QuPPe compound, a brief overview of the residue findings of 2-chloroethanol (formed from the reaction of the fumigant ethylene oxide with chloride) in 2022 is given at the end of this document. 2-CE findings in various products have been causing severe turbulences in the EU-food market since autumn 2020.

Compound	Notes on legal limits	General notes
Ammelide		Ammelide can originate from various sources, similar to ammeline. Ammelide (and am- meline) are formed as intermediates during the gradual transformation of melamine (a compound with multiple sources, see below) to cyanuric acid. Ammelide is reported as a metabolite of various triazine pesticides incl.: cyromazine (insecticide), anilazine (fungi- cide) and the herbicides terbuthylazine, prometryn, simazine, atrazine, ametrin, cy-

Table 1: Scope of QuPPe-compounds that were routinely monitored by the CVUA Stuttgart in 2022

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Quick Polar Pesticides Method

QuPPe [kjup] stands for

Quick Polar Pesticides

and is the acronym for a simple analytical approach, that covers multiple residues of highly polar pesticides and metabolites in fruits, vegetables, cereals and commodities of animal origin.

The QuPPe method is in the process of becoming an EN standard.

Supplementary information regarding the standard will be accessible on this website as an on-line supplement.

Home of the QuPPe Method

EURLSRM

Download

Method	Matrix Scope	Latest Version
QuPPe-PO	Products of Plant Origin and Honey	V12.1 Download Full Paper Last update of method: 17.03.2023
QuPPe-AO	Products of Animal Origin excluding Honey	V3.2 Download Full Paper Last update of method: 14.05.2019

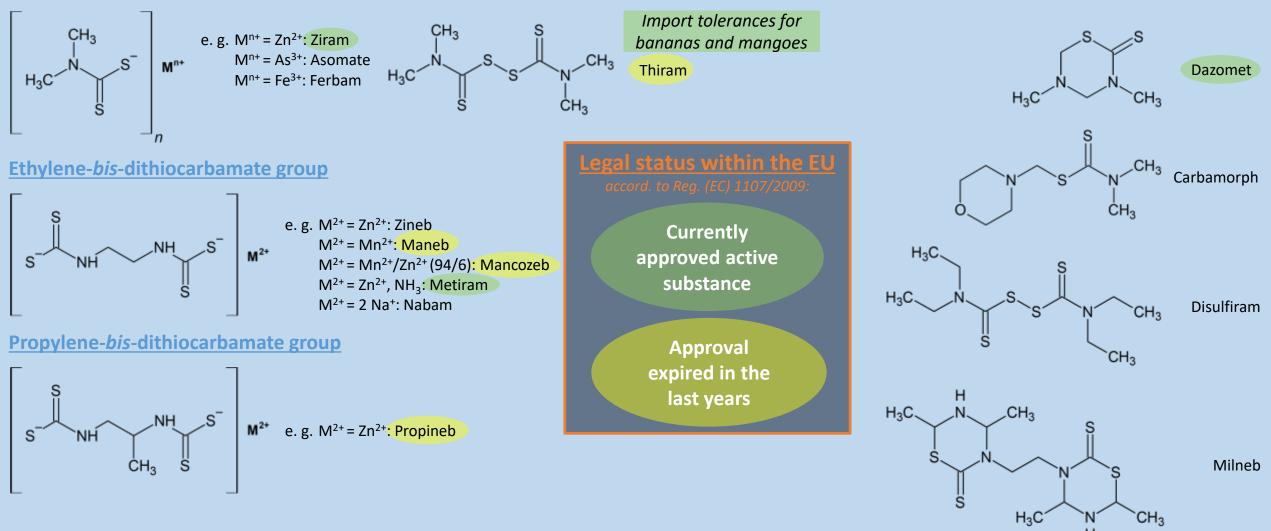
×

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Using routine methods to screen for marker substances of alkylene-*bis*-dithiocarbamate fungicides to enable a more judicious and efficient further analysis of this pesticide group

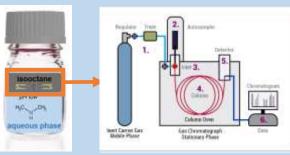
> <u>E. Eichhorn</u>, H. Zipper, D. Mack, G. Cerchia, A. Karst, K. Rothenbächer, S. Goerlich, C. Ullrich, I. Sigalov, E. Scherbaum, M. Anastassiades

> **European Union Reference Laboratory for Pesticides requiring Single Residue Methods**, located at the Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, Fellbach, Germany

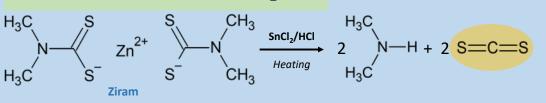

> > EURL Joint Workshop 18th-20th September 2023, Fellbach, Germany

Dithiocarbamates (DTC) | Introduction

N,N-Dimethyldithiocarbamate group



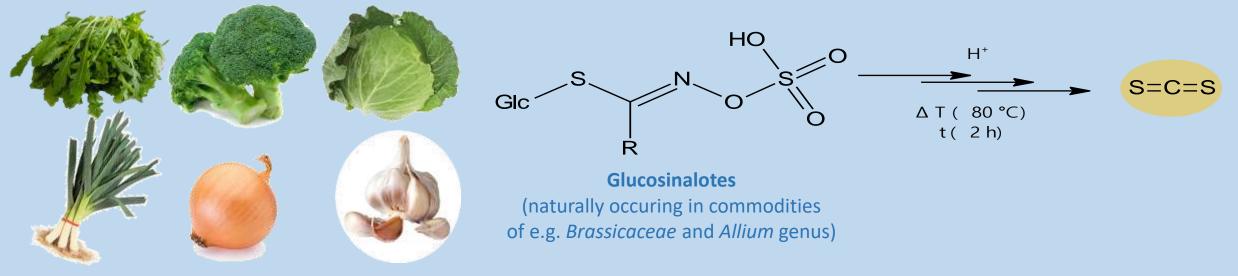
Reductive cleavage with SnCl₂/HCl



Drawbacks:

ueous pha

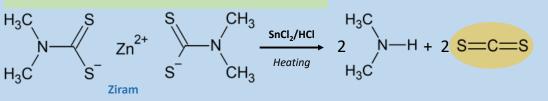
Reductive cleavage with SnCl₂/HCl



Drawbacks:

• No distinction of CS₂ origin

(i.e. CS₂ from DTC-fungicides versus CS₂ from natural components in matrix, e.g. *Brassicaceae* and *Allium* genus)


Just Carriet Can Multile Phase Gas Chromotograph Stationary Phone

ueous pha

Drawbacks:

• No distinction of CS₂ origin

(i.e. CS₂ from DTC-fungicides versus CS₂ from natural components in matrix, e.g. *Brassicaceae* and *Allium* genus)

Just Carriet Can Multile Phase Gas Chromotograph Stationary Phone

• No distinction between individual DTC-groups

(not to mention distinction between individual active substances)

Reductive cleavage with SnCl₂/HCl

Drawbacks:

• No distinction of CS₂ origin

(i.e. CS₂ from DTC-fungicides versus CS₂ from natural components in matrix, e.g. *Brassicaceae* and *Allium* genus)

Inert Carriet Can Mobile Phase

• No distinction between individual DTC-groups

(not to mention distinction between individual active substances)

• Wasteful method

(high consumption of HCl and SnCl₂)

Troublesome method

(as the cleavage of the DTCs is usually conducted at elevated temperatures for several hours)

http://die-mikrowelle.de/anwendungenproblemloesungen/page/2/; 28.09.2022 16:08

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Aim of our study

EURL-SRM

- Identify possible DTC metabolites and/or reaction products ("marker substances")
- Marker substances should be ideally:
 - a. suitable as a trigger for any subsequent DTC-analyses (e.g. CS₂-analysis)
 - b. specific for a DTC-treatment
 - c. amenable to established multi-residue methods such as QuEChERS and QuPPe
 - d. analyzable by standard LC/MS and GC/MS equipment
 - e. commercially available
- Improve the cost/benefit ratio by preventing the unnecessary use of the common moiety method

http://die-mikrowelle.de/anwendungenproblemloesungen/page/2/; 28.09.2022 16:08

Aim of our study

EURL-SRM

- Identify possible DTC metabolites and/or reaction products ("marker substances")
- Marker substances should be ideally:
 - a. suitable as a trigger for any subsequent DTC-analyses (e.g. CS₂-analysis)
 - b. specific for a DTC-treatment
 - c. amenable to established multi-residue methods such as QuEChERS and QuPPe
 - d. analyzable by standard LC/MS and GC/MS equipment
 - e. commercially available

http://die-mikrowelle.de/anwendungenproblemloesungen/page/2/; 28.09.2022 16:08

• Improve the cost/benefit ratio by preventing the unnecessary use of the common moiety method

21 markers in total initially considered, MONITORING in routine samples startet with

- 5 Ethylene-bis-DTC markers
- 4 Propylene-bis-DTC markers
- 4 N,N-Dimethyl-DTC markers

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

DTC-Markers | Results

[1] https://www.eurl-pesticides.eu/library/docs/srm/meth_DithiocarbamatesCS2_EurlSrm.PDF
 [2] https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EurlSrm_meth_QuPPe_PO_V12_1.pdf; last update: 17.03.2023

EURL-SRM

- A total of **<u>528 samples</u>** were analyzed
 - for CS₂ using the traditional method involving reductive cleavage with HCl/SnCl₂[1]
 - for DTC-markers by using
 - CEN-QuEChERS, followed by GC-MS/MS and GC-Orbitrap
 - QuPPe [2], followed by LC-MS/MS

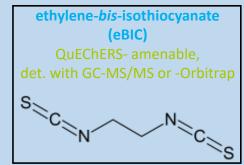
EURL-SRM

- A total of **<u>528 samples</u>** were analyzed
 - for CS₂ using the traditional method involving reductive cleavage with HCl/SnCl₂[1]
 - for DTC-markers by using
 - CEN-QuEChERS, followed by GC-MS/MS and GC-Orbitrap
 - QuPPe [2], followed by LC-MS/MS
- Each determined marker was evaluated individually regarding its correlation with CS₂ findings

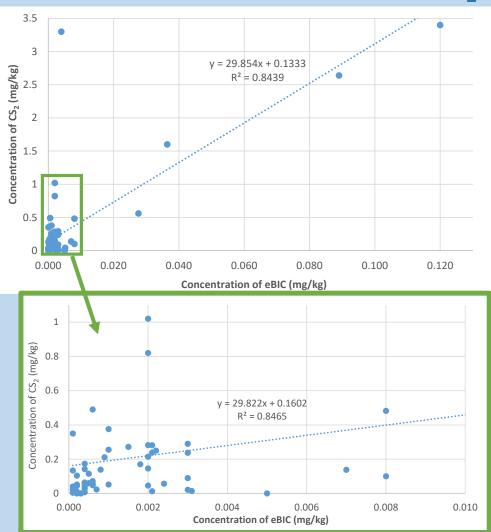
EURL-SRM

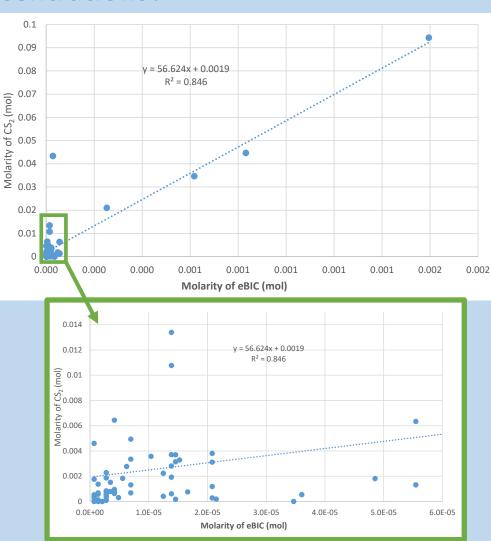
- A total of **<u>528 samples</u>** were analyzed
 - for CS₂ using the traditional method involving reductive cleavage with HCl/SnCl₂[1]
 - for DTC-markers by using
 - CEN-QuEChERS, followed by GC-MS/MS and GC-Orbitrap
 - QuPPe [2], followed by LC-MS/MS
- Each determined marker was evaluated individually regarding its correlation with CS₂ findings
- If an appropriate correlation for a marker was found,
 - an individual threshold level was set (if possible)
 - the marker was considered for a DTC group-specific evaluation

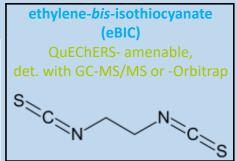
[1] https://www.eurl-pesticides.eu/library/docs/srm/meth_DithiocarbamatesCS2_EurlSrm.PDF
 [2] https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EurlSrm_meth_QuPPe_PO_V12_1.pdf; last update: 17.03.2023


EURL-SRM

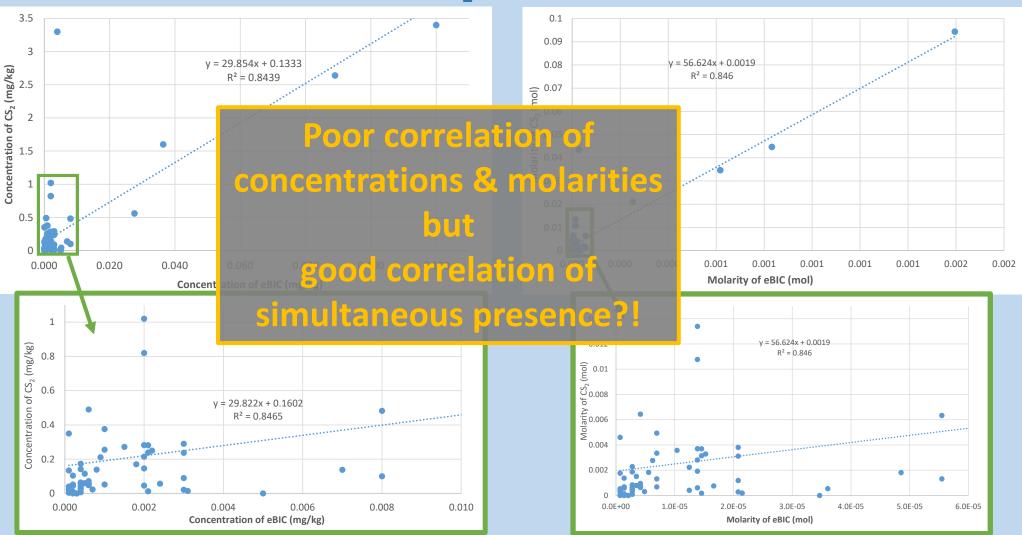
- A total of **<u>528 samples</u>** were analyzed
 - for CS₂ using the traditional method involving reductive cleavage with HCl/SnCl₂[1]
 - for DTC-markers by using
 - CEN-QuEChERS, followed by GC-MS/MS and GC-Orbitrap
 - QuPPe [2], followed by LC-MS/MS
- Each determined marker was evaluated individually regarding its correlation with CS₂ findings
- If an appropriate correlation for a marker was found,
 - an individual threshold level was set (if possible)
 - the marker was considered for a DTC group-specific evaluation
- Commodities naturally generating CS₂ were <u>not</u> considered for the evaluation (n = 37; evaluated individually)


DTC-Markers | Exemplary results for ethylene-bis-isothiocyanate (eBIC)

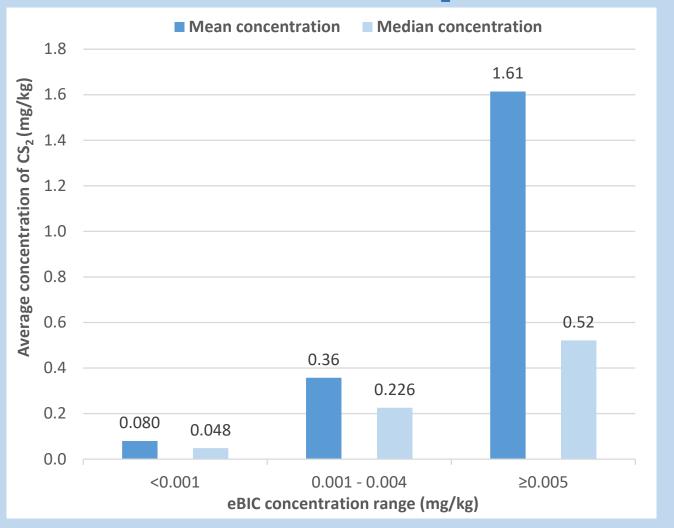

Correlation between eBIC and CS₂ concentrations?

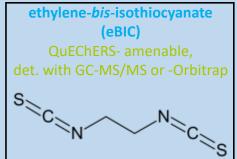


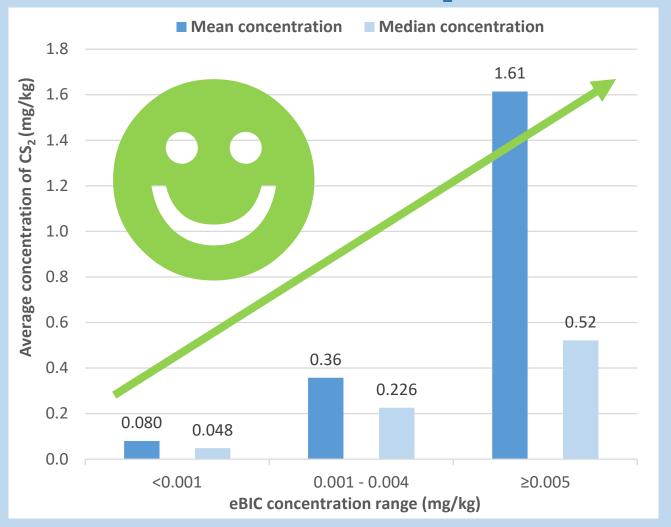
DTC-Markers | Exemplary results for Ethylene-bis-isothiocyanate (eBIC)

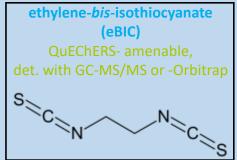


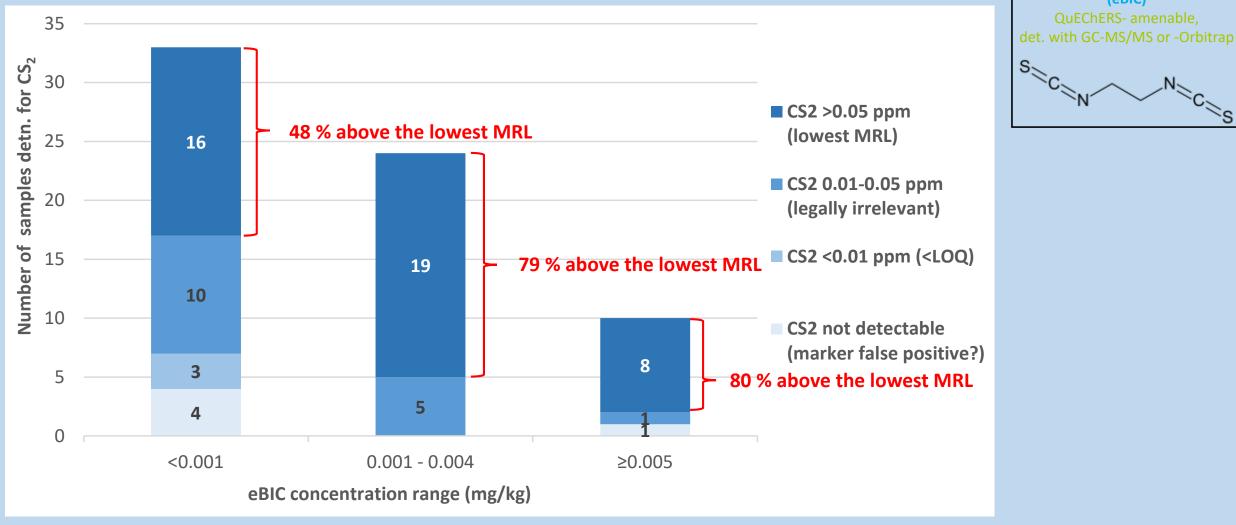
det. with GC-MS/MS or -Orbitrap


S>

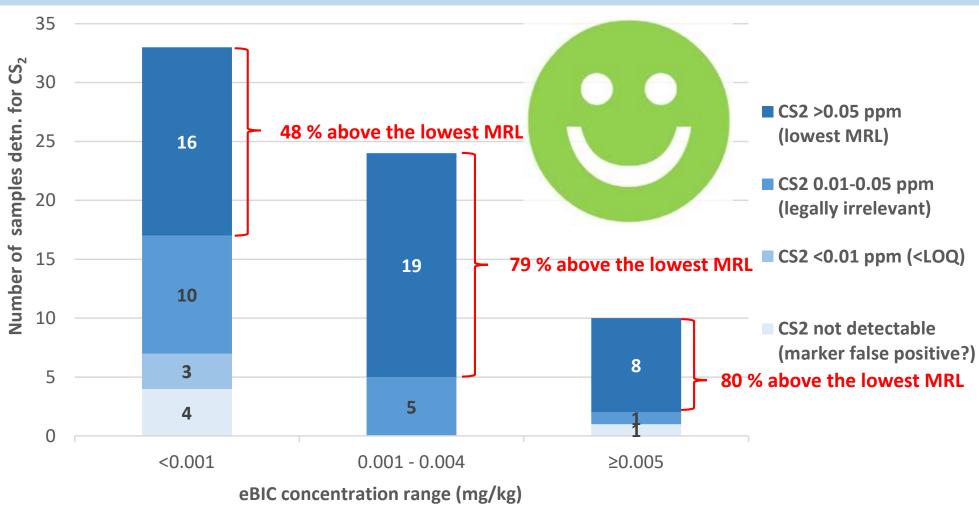

DTC-Markers | Exemplary results for Ethylene-bis-isothiocyanate (eBIC)


DTC-Markers | Exemplary results for Ethylene-bis-isothiocyanate (eBIC)




DTC-Markers | Exemplary results for Ethylene-bis-isothiocyanate (eBIC)

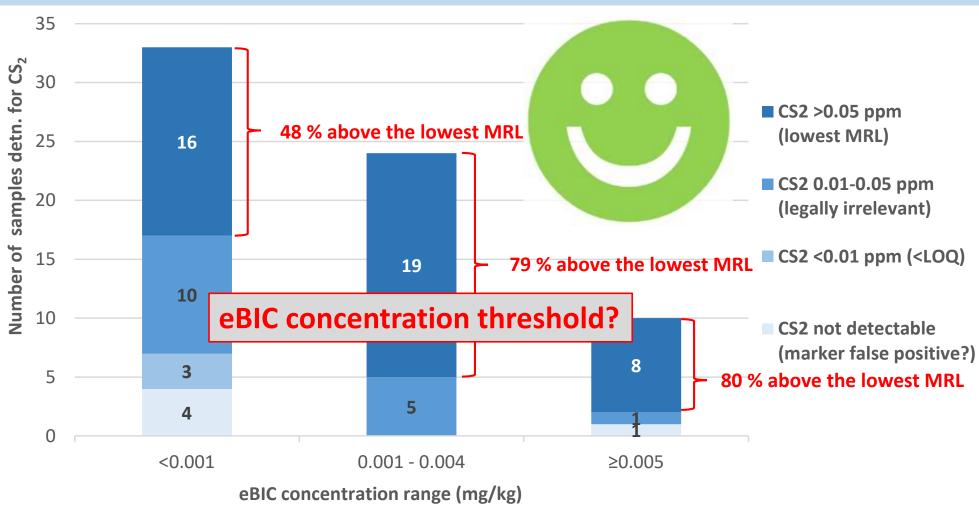
DTC-Markers | Exemplary results for Ethylene-bis-isothiocyanate (eBIC)



det. with GC-MS/MS or -Orbitrap

S>

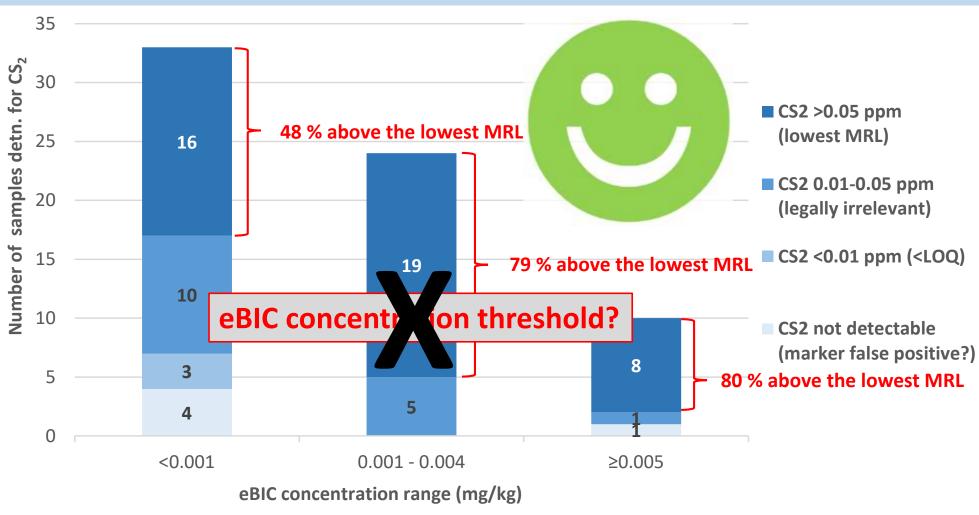
DTC-Markers | Exemplary results for Ethylene-*bis*-isothiocyanate (eBIC)



det. with GC-MS/MS or -Orbitrap

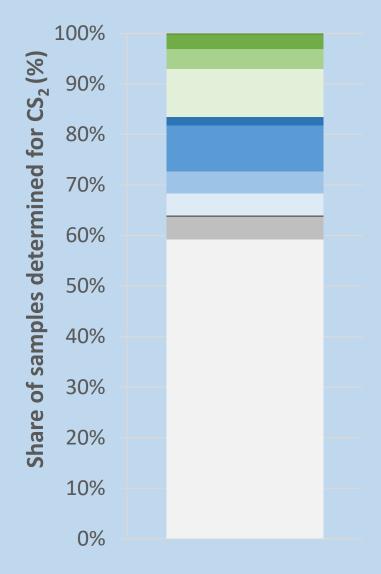
S>

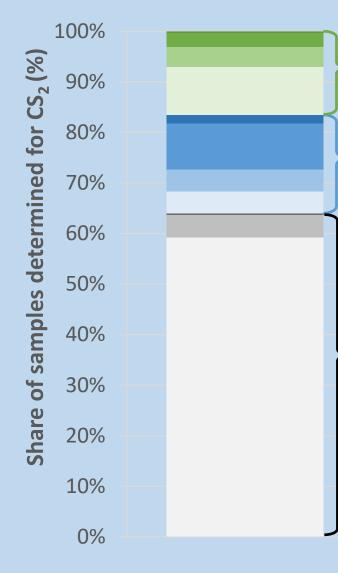
DTC-Markers | Exemplary results for Ethylene-*bis*-isothiocyanate (eBIC)



det. with GC-MS/MS or -Orbitrap

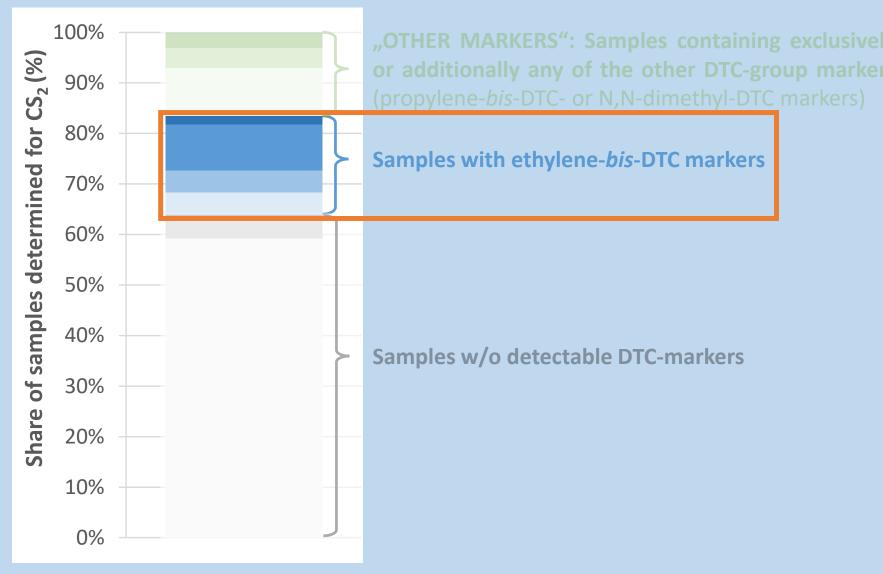
S>


DTC-Markers | Exemplary results for Ethylene-*bis*-isothiocyanate (eBIC)

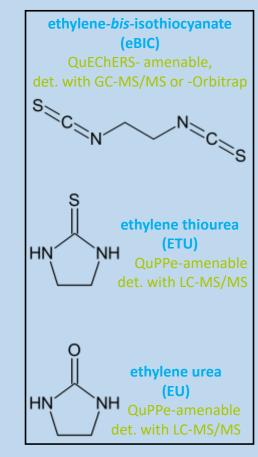

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

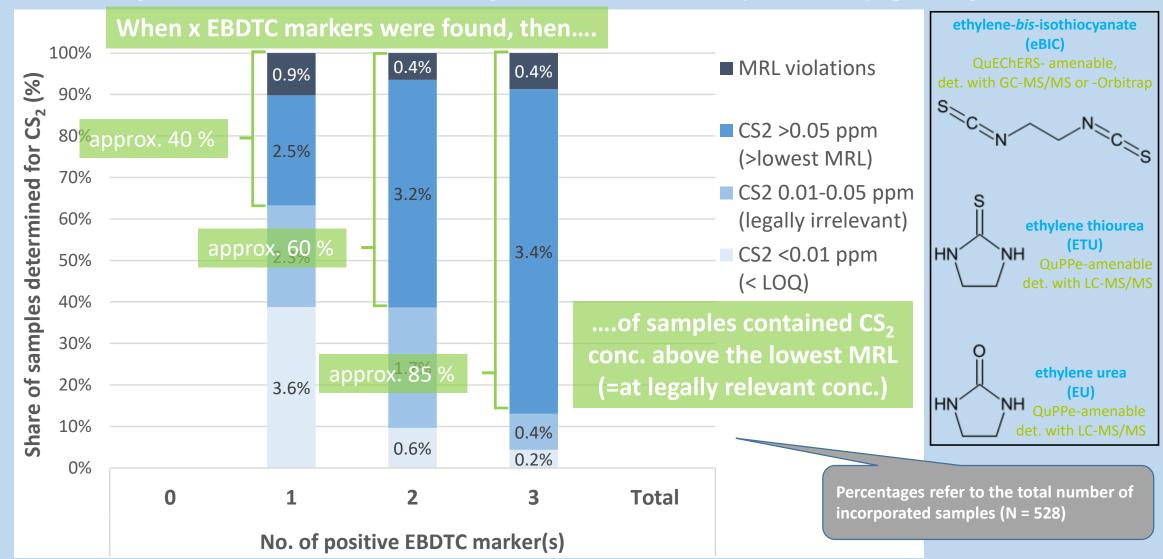
DTC-Markers | **Overview of results**

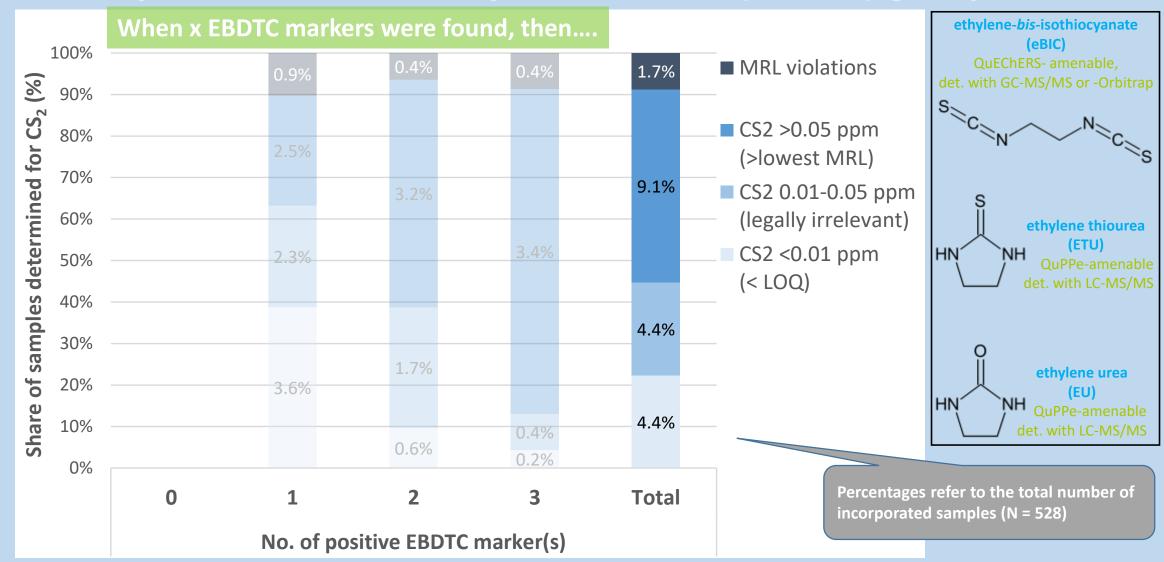
DTC-Markers | **Overview of results**

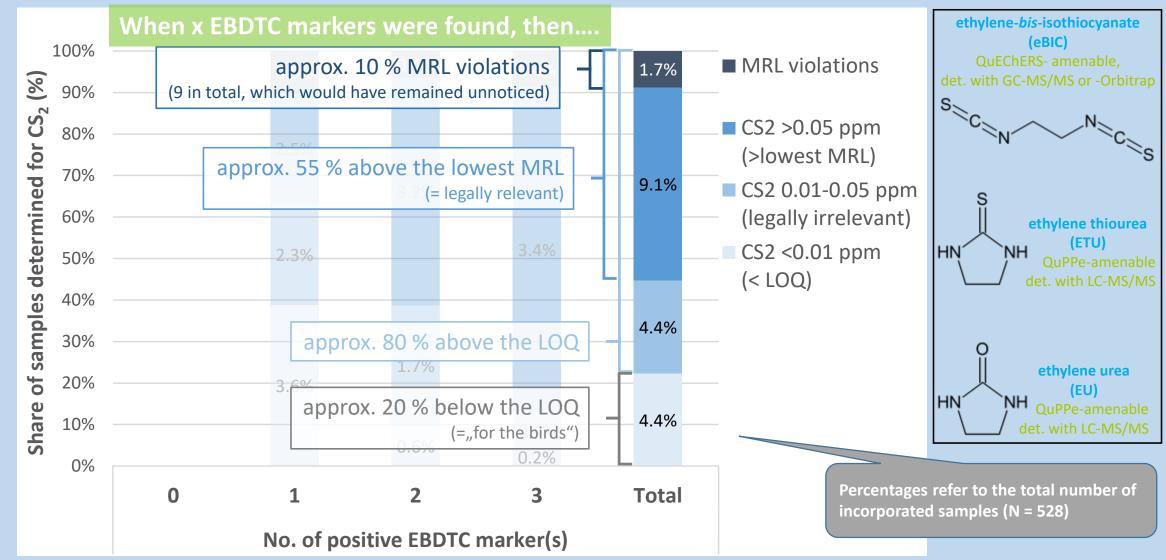

"OTHER MARKERS": Samples containing exclusively or additionally any of the other DTC-group markers (propylene-*bis*-DTC- or N,N-dimethyl-DTC markers)

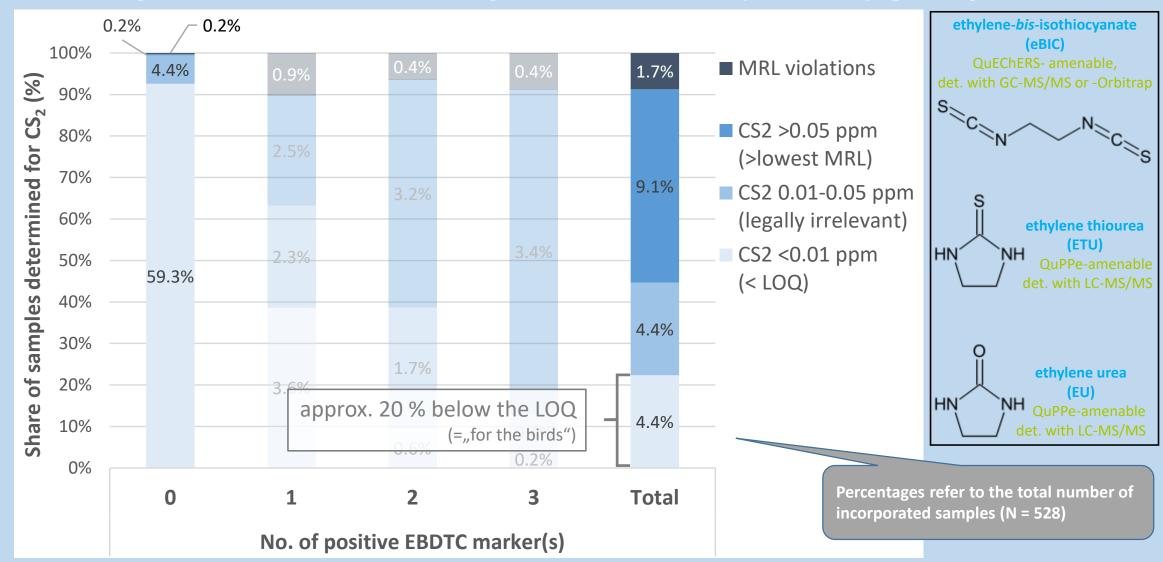
Samples with ethylene-bis-DTC markers


Samples w/o detectable DTC-markers


DTC-Markers | **Overview of results**

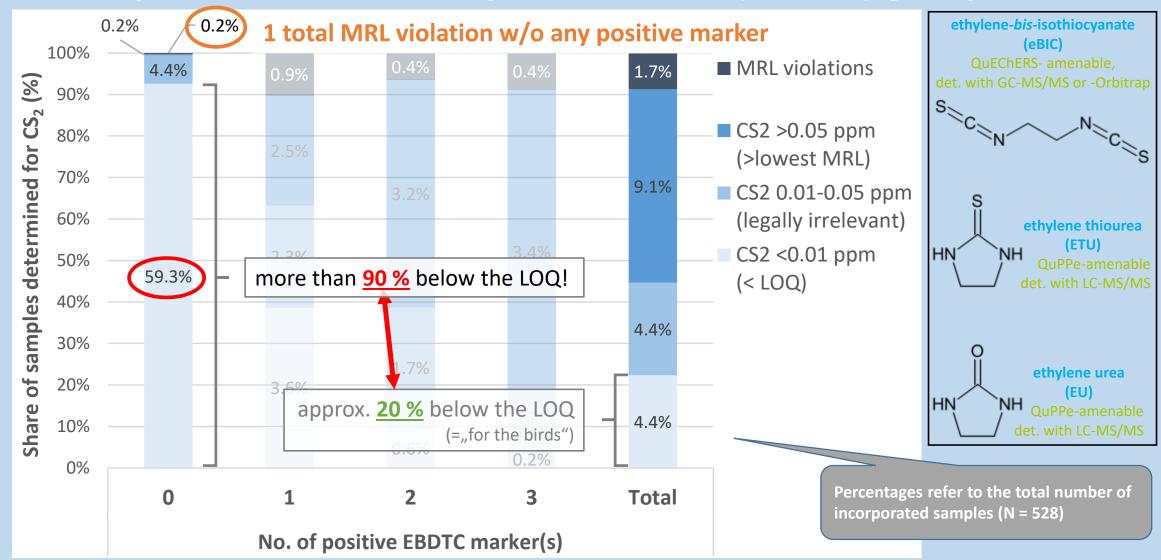


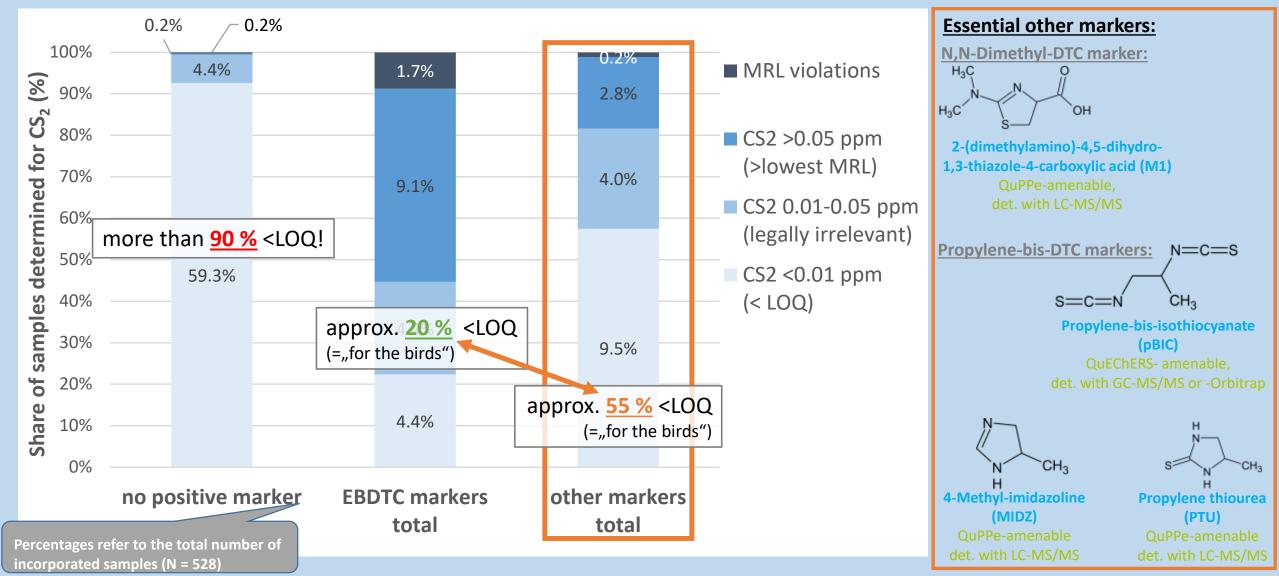


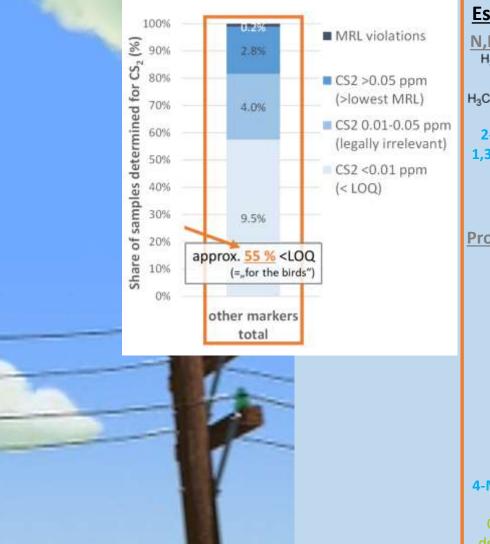


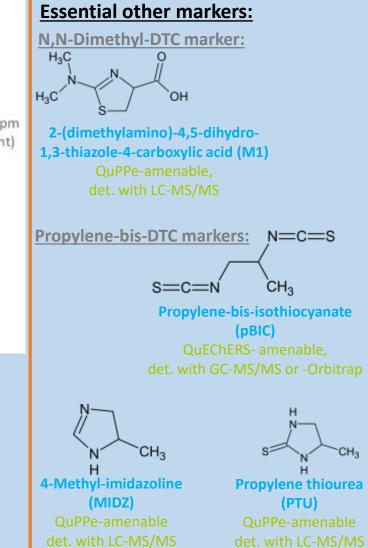
EU Reference Laboratories for Residues of Pesticides Single Residue Methods

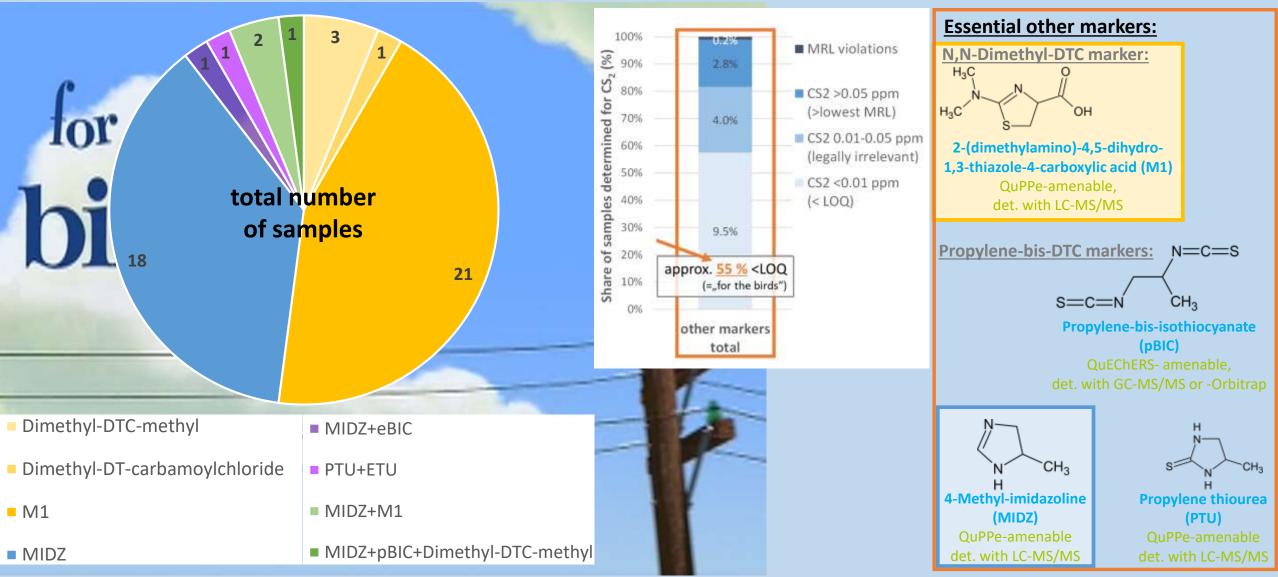
DTC-Markers | Results for the ethylene-*bis*-DTC (EBDTC) group


EURL-SRM

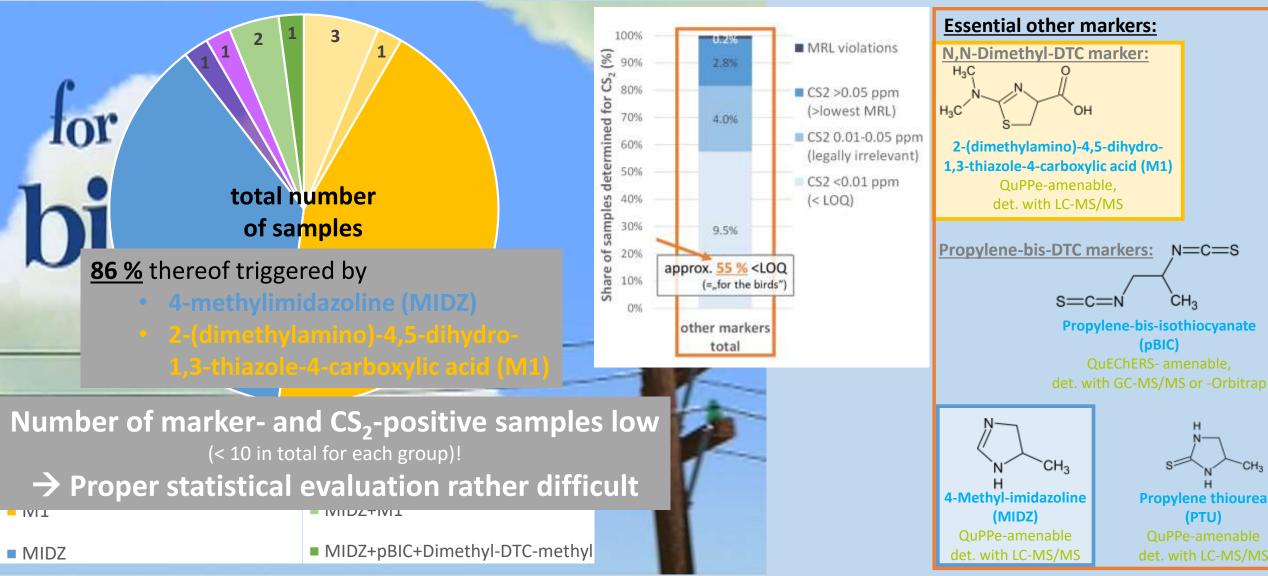








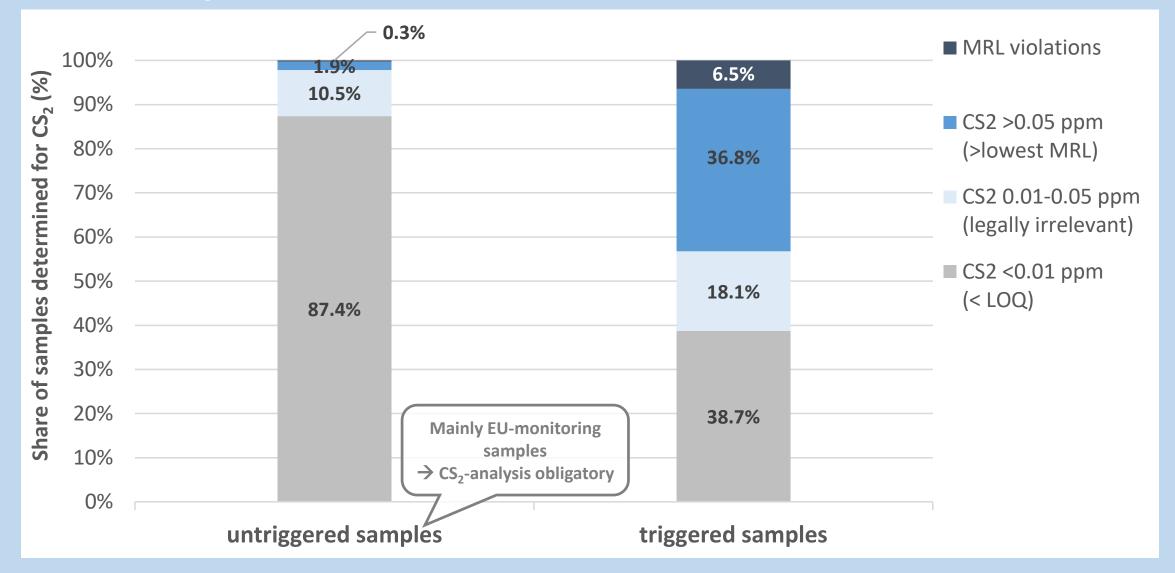
birds


N=C=S

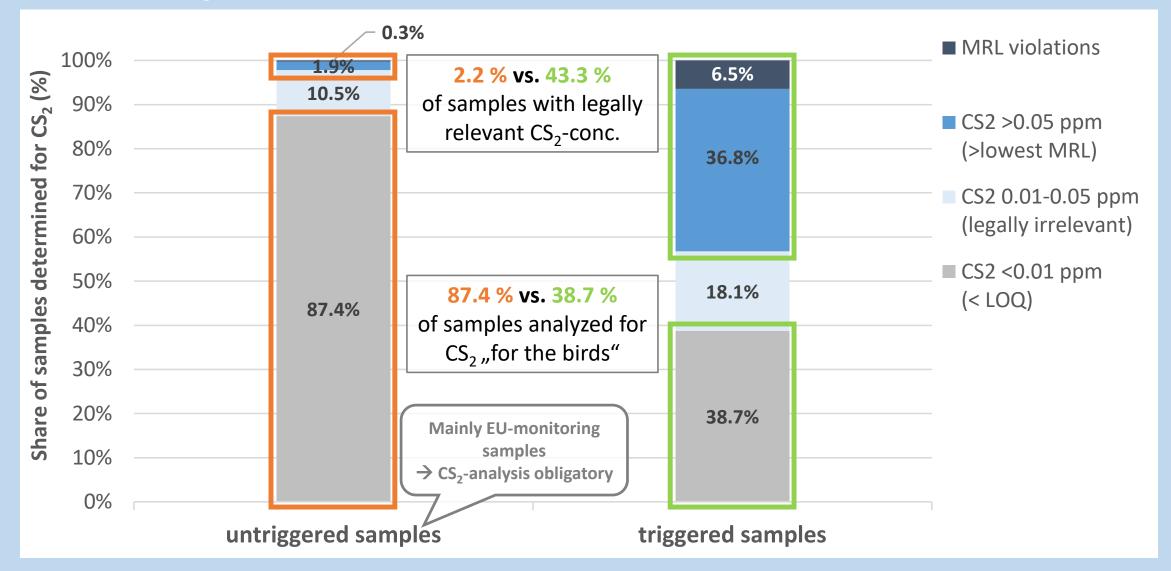
Propylene thiourea

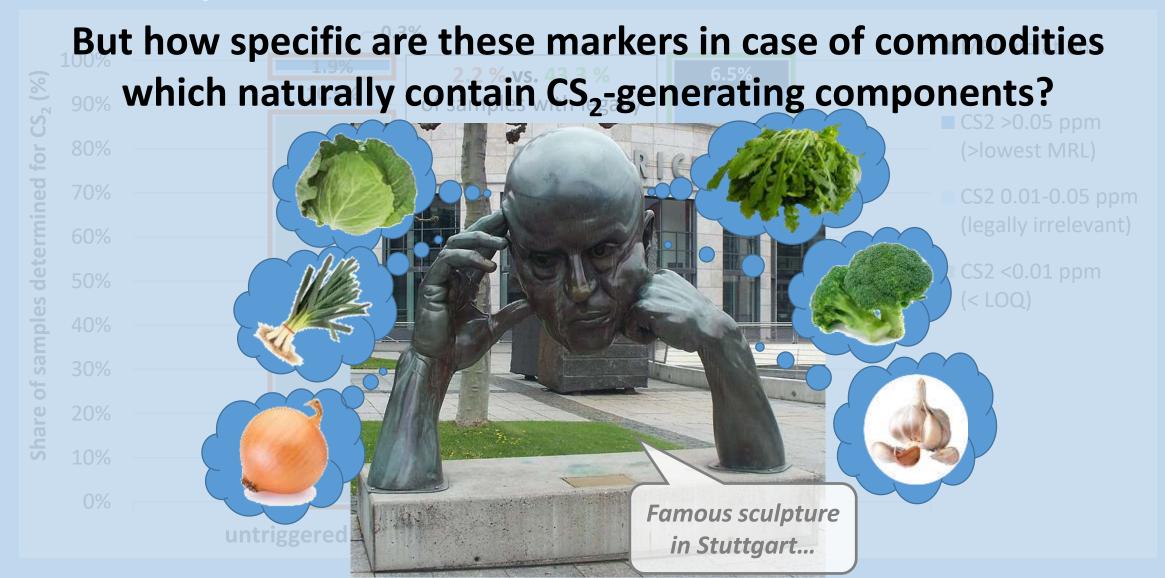
(PTU)

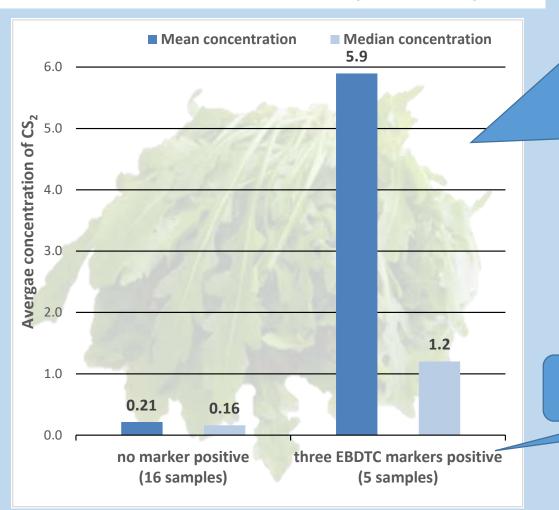
CH₃


(pBIC)

EU Reference Laboratories for Residues of Pesticides Single Residue Methods






EU Reference Laboratories for Residues of Pesticides Single Residue Methods

DTC-Markers | Samples with background levels

EXAMPLE: Rucola – 21 samples analyzed

	CS ₂ (mg/kg)	ETU (mg/kg)	EU (mg/kg)	eBIC (mg/kg)
Sample 1	0.39	0.004	0.021	0.003
Sample 2	0.73	0.006	0.020	0.003
Sample 3	1.5	0.21	0.11	0.013
Sample 4	1.2	0.16	0.039	0.012
Sample 5	25.7	0.99	0.38	0.84

MRL violation! (MRL 5 mg/kg)

No cases for rucola, where just one or two EBDTC marker(s) were positive

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

DTC-Markers | Summary

✓ A monitoring program was conducted (in total 528 samples determined)

- 13 DTC markers analyzed by routine methods (QuEChERS and QuPPe)
- CS₂ analyzed by traditional common moiety method

- ✓ A monitoring program was conducted (in total 528 samples determined)
 - 13 DTC markers analyzed by routine methods (QuEChERS and QuPPe)
 - CS₂ analyzed by traditional common moiety method
- \checkmark Three EBDTC markers (ETU, EU and eBIC) with a correlation to relevant CS₂-findings were identified
 - propability of relevant CS₂-findings increases with increasing number of encountered markers

- ✓ A monitoring program was conducted (in total 528 samples determined)
 - 13 DTC markers analyzed by routine methods (QuEChERS and QuPPe)
 - CS₂ analyzed by traditional common moiety method
- \checkmark Three EBDTC markers (ETU, EU and eBIC) with a correlation to relevant CS₂-findings were identified
 - propability of relevant CS₂-findings increases with increasing number of encountered markers
- ✓ These three EBDTC markers seem to be suitable for indicating if a sample had a DTC-treatment history
 - 10 MRL-violations would have remained unnoticed otherwise!
 - (Indications of) high specificity in commodities with natural components generating CS₂

- ✓ A monitoring program was conducted (in total 528 samples determined)
 - 13 DTC markers analyzed by routine methods (QuEChERS and QuPPe)
 - CS₂ analyzed by traditional common moiety method
- ✓ Three EBDTC markers (ETU, EU and eBIC) with a correlation to relevant CS₂-findings were identified
 - propability of relevant CS₂-findings increases with increasing number of encountered markers
- ✓ These three EBDTC markers seem to be suitable for indicating if a sample had a DTC-treatment history
 - 10 MRL-violations would have remained unnoticed otherwise!
 - (Indications of) high specificity in commodities with natural components generating CS₂
- \checkmark Enhancement of the lab's effectivity by using these EBDTC markers as a trigger for a subsequent CS₂- analysis

- ✓ A monitoring program was conducted (in total 528 samples determined)
 - 13 DTC markers analyzed by routine methods (QuEChERS and QuPPe)
 - CS₂ analyzed by traditional common moiety method
- ✓ Three EBDTC markers (ETU, EU and eBIC) with a correlation to relevant CS₂-findings were identified
 - > propability of relevant CS₂-findings increases with increasing number of encountered markers
- ✓ These three EBDTC markers seem to be suitable for indicating if a sample had a DTC-treatment history
 - 10 MRL-violations would have remained unnoticed otherwise!
 - (Indications of) high specificity in commodities with natural components generating CS₂
- \checkmark Enhancement of the lab's effectivity by using these EBDTC markers as a trigger for a subsequent CS₂- analysis
- ✓ Improvement of the cost/benefit ratio by preventing the unnecessary use of the common moiety method

- ✓ A monitoring program was conducted (in total 528 samples determined)
 - 13 DTC markers analyzed by routine methods (QuEChERS and QuPPe)
 - CS₂ analyzed by traditional common moiety method

- \checkmark Three EBDTC markers (ETU, EU and eBIC) with a correlation to relevant CS₂-findings were identified
 - propability of relevant CS₂-findings increases with increasing number of encountered markers
- ✓ These three EBDTC markers seem to be suitable for indicating if a sample had a DTC-treatment history
 - 10 MRL-violations would have remained unnoticed otherwise!
 - (Indications of) high specificity in commodities with natural components generating CS₂
- \checkmark Enhancement of the lab's effectivity by using these EBDTC markers as a trigger for a subsequent CS₂- analysis
- ✓ Improvement of the cost/benefit ratio by preventing the unnecessary use of the common moiety method

- ✓ A monitoring program was conducted (in total 528 samples determined)
 - 13 DTC markers analyzed by routine methods (QuEChERS and QuPPe)
 - CS₂ analyzed by traditional common moiety method

- \checkmark Three EBDTC markers (ETU, EU and eBIC) with a correlation to relevant CS₂-findings were identified
 - propability of relevant CS₂-findings increases with increasing number of encountered markers
- ✓ These three EBDTC markers seem to be suitable for indicating if a sample had a DTC-treatment history
 - 10 MRL-violations would have remained unnoticed otherwise!
 - (Indications of) high specificity in commodities with natural components generating CS₂
- \checkmark Enhancement of the lab's effectivity by using these EBDTC markers as a trigger for a subsequent CS₂- analysis
- ✓ Improvement of the cost/benefit ratio by preventing the unnecessary use of the common moiety method
- ✓ Proper statistical evaluation for the markers of other DTC groups rather difficult at this stage

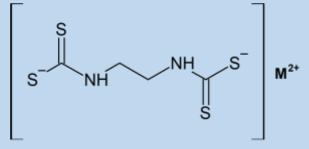
Thank you for your attention!

Questions to:

eric.eichhorn@cvuas.bwl.de or eurl-srm@cvuas.bwl.de

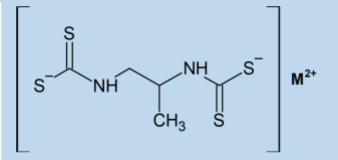
by Magnus Jezussek

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

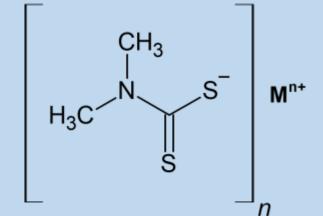


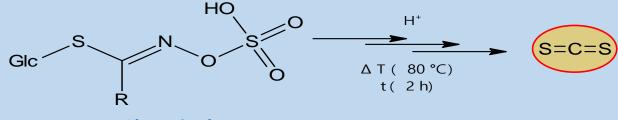
EURL-SRM

DTC-Markers | Overview of the considered ethylene-*bis*-DTC markers

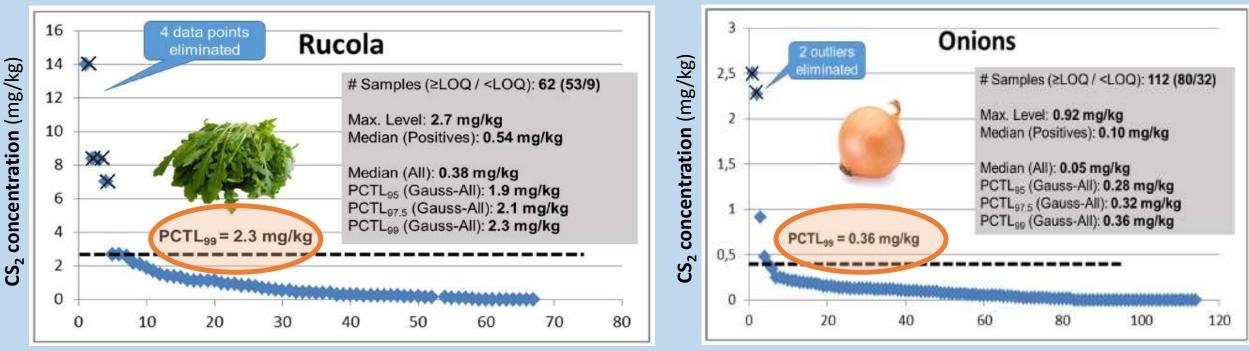

Marker substance	Chemical structure	Chroma- tography	MS- ionization	Remarks	Incorporated in study?	Usefulness as a trigger			
Ethylene-bis-dithiocarbamate markers									
Ethylene- <i>bis</i> -isothiocyanate ("eBIC") CAS 3688-08-2	s===M k c s	GC	El neg.		yes	High			
Ethylene thiourea ("ETU") CAS 96-45-7		LC (HILIC) ¹⁾	ESI pos.		yes	High			
Ethylene urea ("EU") CAS 120-93-4		LC (HILIC) ¹⁾	ESI pos.		yes	High			
S-methyl-ethylene thiourea ("S-Me-ETU") CAS 20112-79-2		LC (HILIC) ¹⁾	ESI pos.	 Often found at very low levels (<1 ppb); of low specificty as there was no significant difference regarding its findings (and levels) in the group of CS₂-containing and the group of non-CS₂-containing samples In relevant samples: always accompanied by eBIC and/or ETU, EU 	yes	Low			
Hydantoin CAS 461-72-3	HN NH	LC (HILIC) ¹⁾	ESI pos. & ESI neg.	 ESI pos.: poor sensitivity ESI neg.: just one useful MRM available	-	-			
Ethylene diamine ("EDA") CAS 107-15-3	H ₂ N — NH ₂	LC (HILIC) ¹⁾	ESI pos.	Just one useful MRM availablePoor sensitivity	-	-			
3H,5H,6H-imidazo[2,1-c]- [1,2,4]dithiazole-3-thione ("Etem") CAS 33813-20-6	s=s s	LC (HILIC ¹⁾ / RP)	ESI pos.	 Just two findings out of 540 total samples, together with at least 2 other EBDTC markers Limited standard stability Stability issues in matrix extracts 	yes	Low			

DTC-Markers | Overview of the considered propylene-bis-DTC markers


Marker substance	Chemical structure	Chroma- tography	MS- ionization	Remarks	Incorporated in study?	Usefulness as a trigger			
Propylene-bis-dithiocarbamate markers									
Propylene- <i>bis</i> -isothiocyanate ("pBIC") CAS 109704-32-7	*****	GC	El neg.		yes	Tentatively high			
Propylene thiourea ("PTU") CAS 2122-19-2	STATE CH:	LC (HILIC) ¹⁾	ESI pos.		yes	Tentatively high			
Propylene urea CAS 6531-31-3	N N N N N N N N N N N N N N N N N N N	LC (HILIC) ¹⁾	ESI pos.	 Poor sensitivity High matrix suppression	-	-			
4-Methyl-imidazoline CAS 1615-03-8	N-CH3	LC (HILIC) ¹⁾	ESI pos.	 Often found at low levels Relevance enhanced at a threshold of 5 μg/kg 	yes	Tentatively high			
5-methyl-hydantoin CAS 616-03-5	or the character	LC (HILIC) ¹⁾	ESI pos.	ESI pos.: poor sensitivityESI neg.: just one useful MRM available	-	-			
S-methyl-propylene thiourea ("S-Me-PTU") CAS 55536-61-3	us ↓ }~~	-	-	Analytical standard not available	-	-			
Propylene diamine ("PDA") CAS 78-90-0		LC (HILIC) ¹⁾	ESI pos.	 Poor sensitivity Determination via ion-pair LC after traditional acidic hydrolysis for CS₂ as it is legally regulated according to Reg. (EC) No. 396/2005²⁾ 	-	-			
6-Methyl-5,6-dihydroimidazo- [2,1-C][1,2,4]dithiazole-3- thione ("Propineb-DIDT") CAS N/A	s ²⁸ ,N N,N S	LC (HILIC ¹⁾ / RP)	ESI pos.	Limited standard stabilityStability issues in matrix extracts	-	-			


DTC-Markers | Overview of the considered N,N-dimethyl-DTC markers

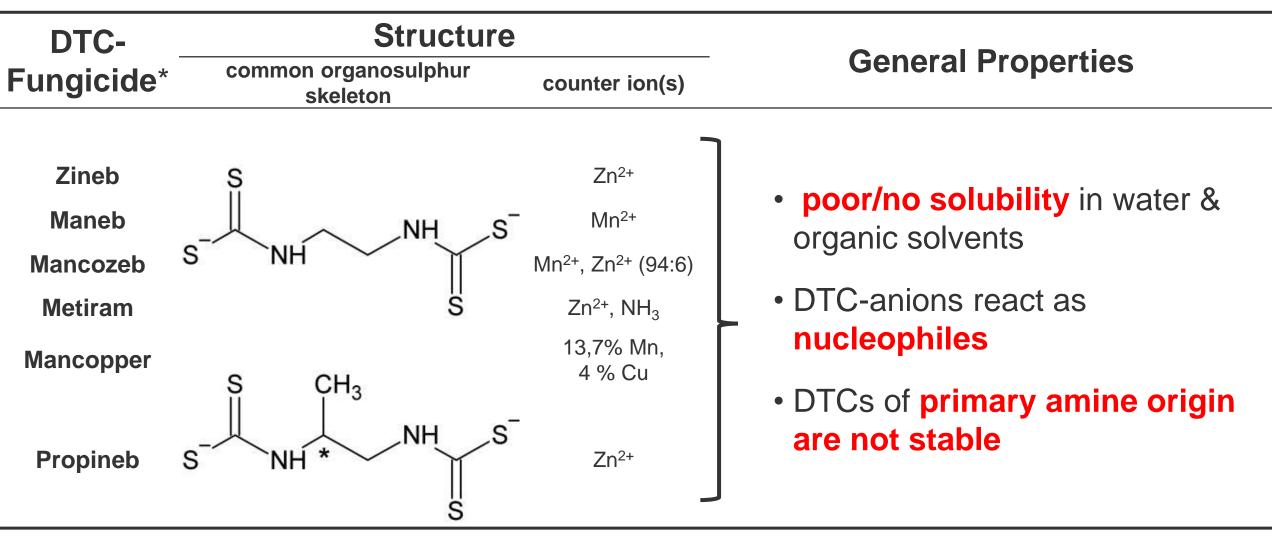
Marker substance	Chemical structure	Chroma- tography	MS- ionization	Remarks	Incorporated in study?	Usefulness as a trigger			
Dimethyl-dithiocarbamate markers									
N,N-dimethyldithiocarbamate ("Dibam") CAS 128-04-1	s N CH ₃	LC (?)	ESI neg.	Limited standard stability (highly reactive)Chromatography difficult	-	-			
2-(dimethylamino)-4,5-dihydro- 1,3-thiazole-4-carboxylic acid ("M1") CAS 1417542-99-4	он сн, сн, сн,	LC (HILIC) ¹⁾	ESI pos. / (ESI neg.?)	Standard not commercially available yet	yes	TBD			
Dimethylthioformamide (DMTF) CAS 758-16-7	S CH ₃ CH ₃	GC / LC (HILIC) ¹⁾	El neg. / ESI pos.		yes	TBD			
Dimethylamine ("DMA") CAS 124-40-3	HN CH3 CH3 CH3	LC (HILIC) ¹⁾	ESI pos.	 Ubiquitous up to amounts of approx. 1 mg/kg 	yes	Very low			
N-Nitrosodimethylamine CAS 62-75-9	0 CH3 N-N CH3	LC (HILIC) ¹⁾	ESI pos.	 Reported formation during water treatment Poor sensitivity	-	-			
N,N-dimethyldithiocarbamate- methyl CAS 3735-92-0	S CH ₃ CH ₃	GC	El neg.		yes	TBD			



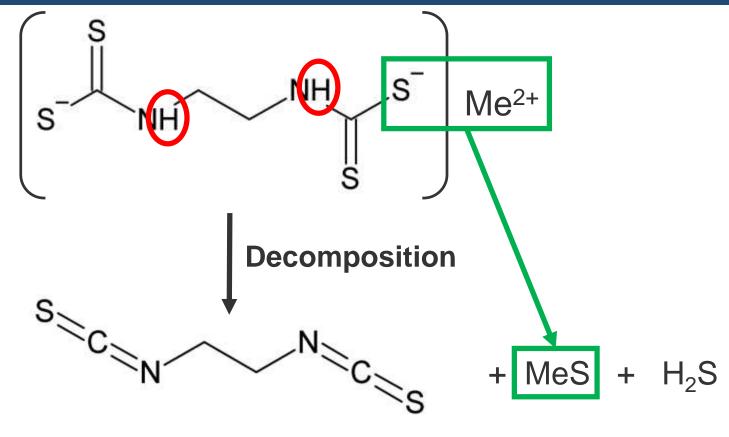
Dithiocarbamates (DTC) | **Excursus: CS**₂ background levels

Glucosinalotes (naturally occuring in commodities

of e.g. Brassicaceae and Allium genus)



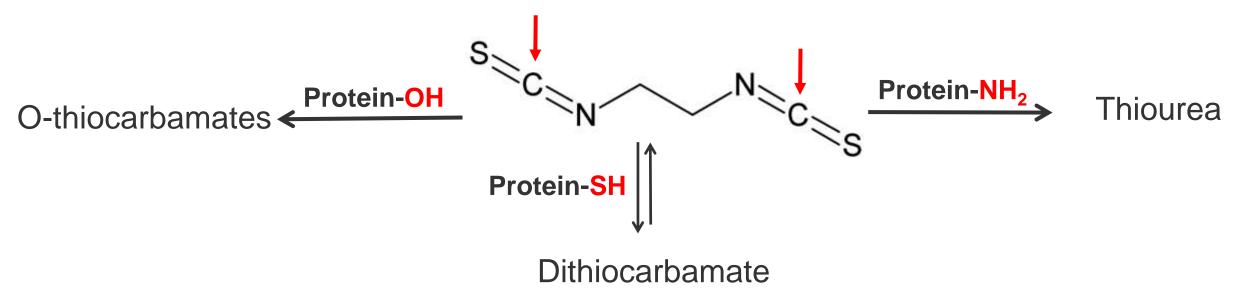
EURLs for Residues of Pesticides Single Residue Methods


Derivatization of Fungicide Dithiocarbamates - Current Status -

Dr. Hubert Zipper, EURL-SRM

* Other fungicide DTCs not shown

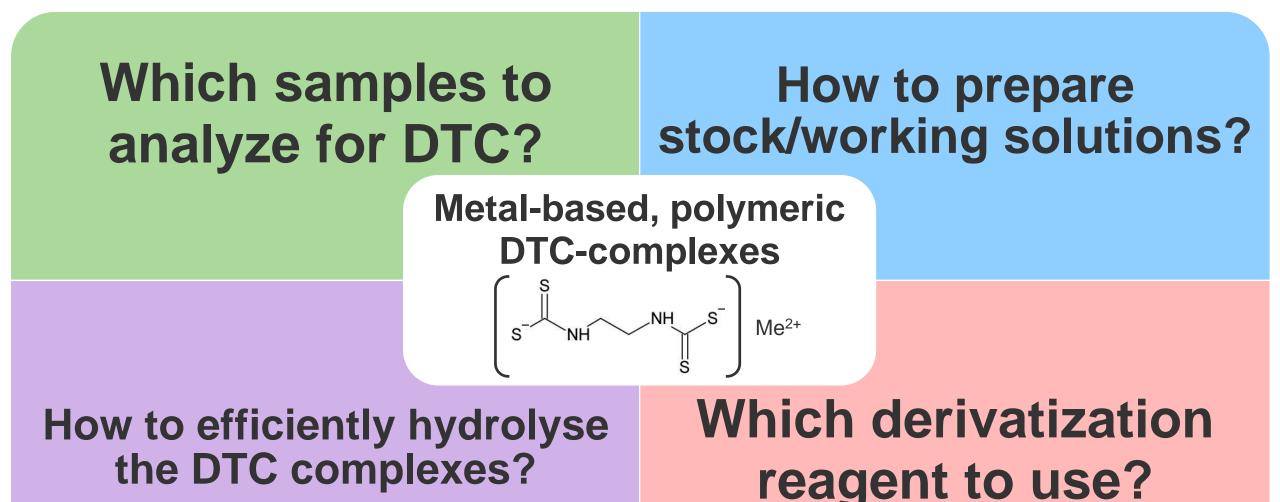
Decomposition of Mono Ethylene-bis-Dithiocarbamates to Ethylene-bis-Isothiocyanate

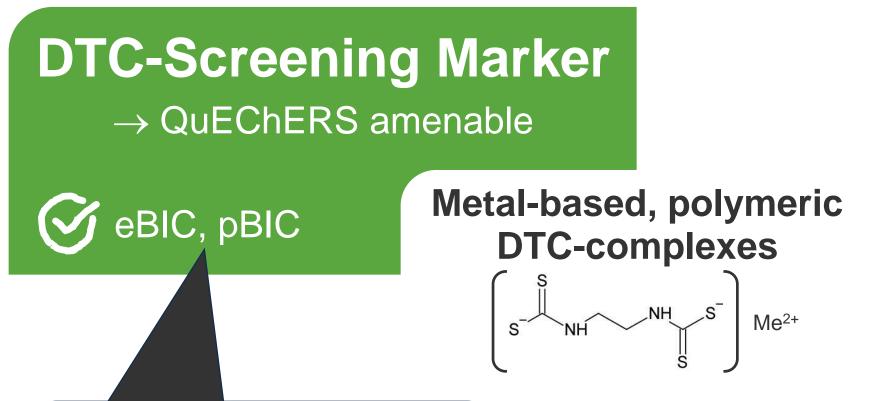


Ethylene-bis-isothiocyanate (eBIC)

• for other degradation products see literature (e.g. EFSA-reports)

Ethylene-bis-Isothiocyanate (eBIC) | Some Properties


- only few studies on toxicology of eBIC in literature (*)
- Potential modifications of a protein target:



- Ethyl Isothiocyanat (degradation prod. (among others) of chloroprene rubber) (**):
 - suspected to be culprit of allergic contact dermatitis caused by chloroprene rubber

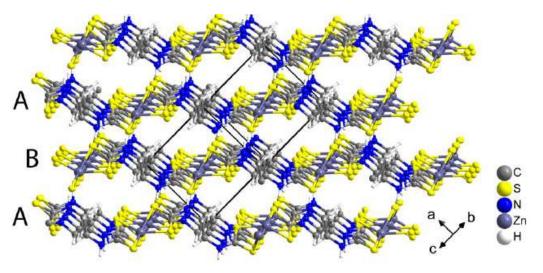
^(*) Chernoff et al., Effects of chemically induced maternal toxicity on prenatal development in the rat, 1990, Teratology, vol. 42 (**) Ramzy et al., Investigation of diethylthiourea and ethyl isothiocyanate as potent skin allergens in chloroprene rubber, 2014, contact permanance, r

Metal-based, polymeric DTC-complexes $\left[\overbrace{s^{-} \lor NH}^{S^{-}} \bigvee_{s} \lor_{s} \lor$

Implemented in our routine lab for two years! (see Eric's presentation for results.)

DTC-Screening Marker→ QuEChERS amenable

DTC-Suspension


→ polymeric DTC-structure intact

eBIC, pBIC

Metal-based, polymeric DTC-complexes

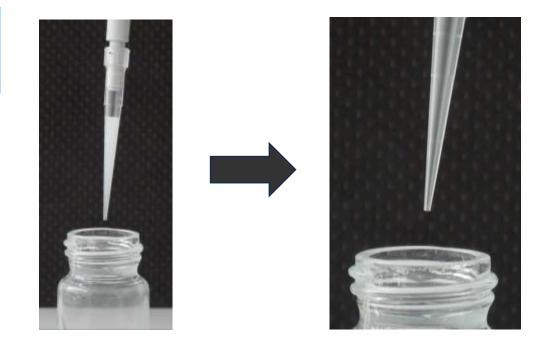
Solvent: 0.2 % xanthan gum in H₂O/acetonitrile-solution 95/5 (V/V)

• polymeric DTC structure remains intact

Lefton *et al.*, The Crystal Structure of Zineb, 75 years later. ChemRxiv. Cambridge Open Engage; 2019

Solvent: 0.2 % xanthan gum in H₂O/acetonitrile-solution 95/5 (V/V)

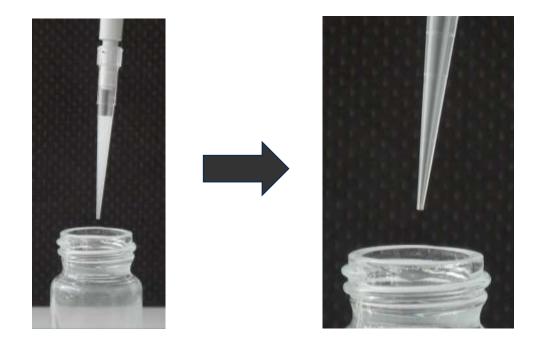
- polymeric DTC structure remains intact
- low rate of sedimentation



Zineb-stock-suspension (1 mg/ml)

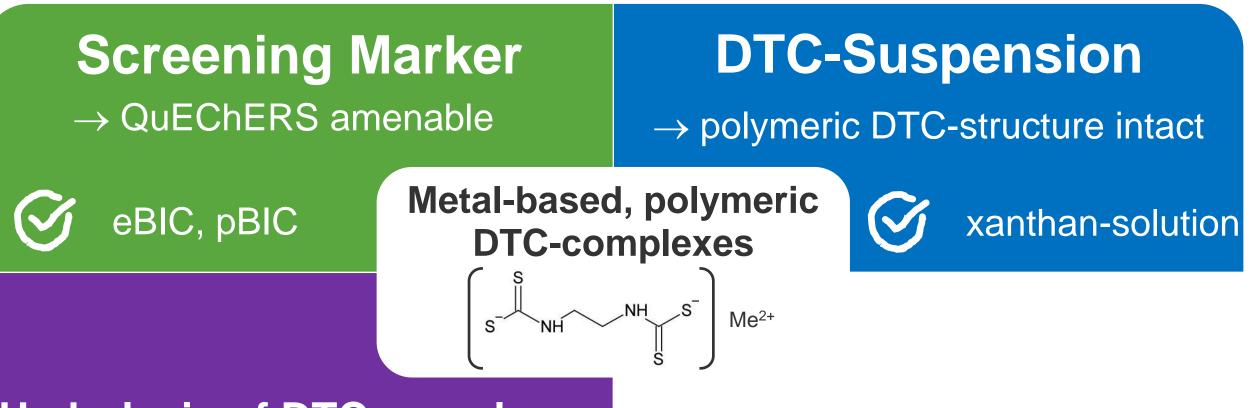
Solvent: 0.2 % xanthan gum in H₂O/acetonitrile-solution 95/5 (V/V)

- polymeric DTC structure remains intact
- low rate of sedimentation
- good flow properties

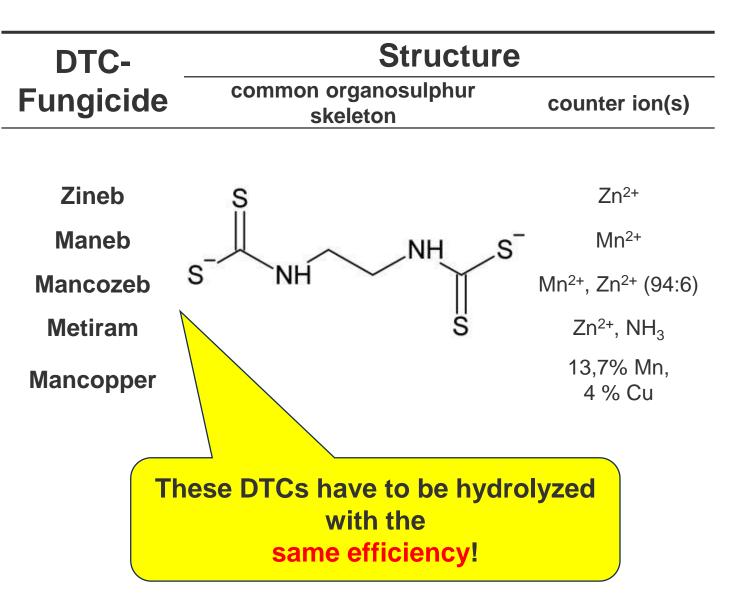

 ⇒ "classic" pipett tips can be used
 ⇒ correct amount of pesticide-standard (e.g. in spiking experiments)

Solvent: 0.2 % xanthan gum in H₂O/acetonitrile-solution 95/5 (V/V)

- polymeric DTC structure remains intact
- low rate of sedimentation
- good flow properties


 ⇒ "classic" pipett tips can be used
 ⇒ correct amount of pesticide-standard (e.g. in spiking experiments)

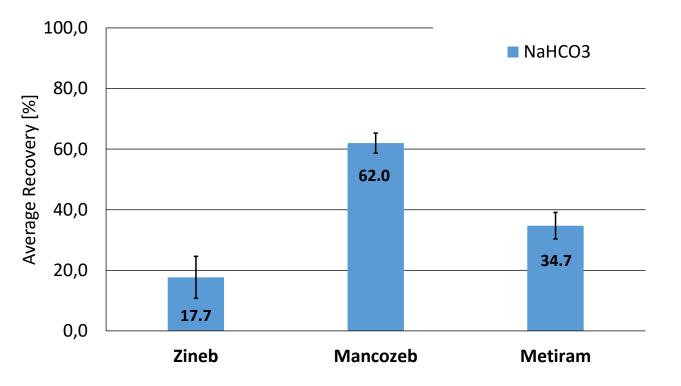
Applications


- Method optimization
- Validation of CS₂-Method (SnCl₂/HCI-cleavage) with metiram, zineb, propineb, ...
- Method development

DTC Survey 2022 (106 participating EU-labs): only few labs have validation-data for metiram, propineb, ...

Hydrolysis of DTC complexes \rightarrow same efficiency for EBDC

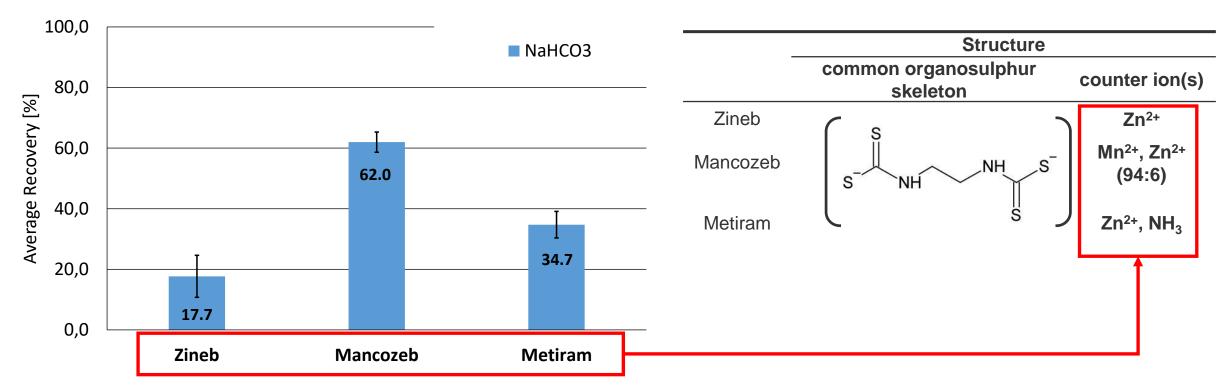
Hydrolysis of EDBC complexes



Hydrolysis of DTC complexes | NaHCO₃-Solution (*)

Tomato-homogenate (pH 4.4) as matrix:

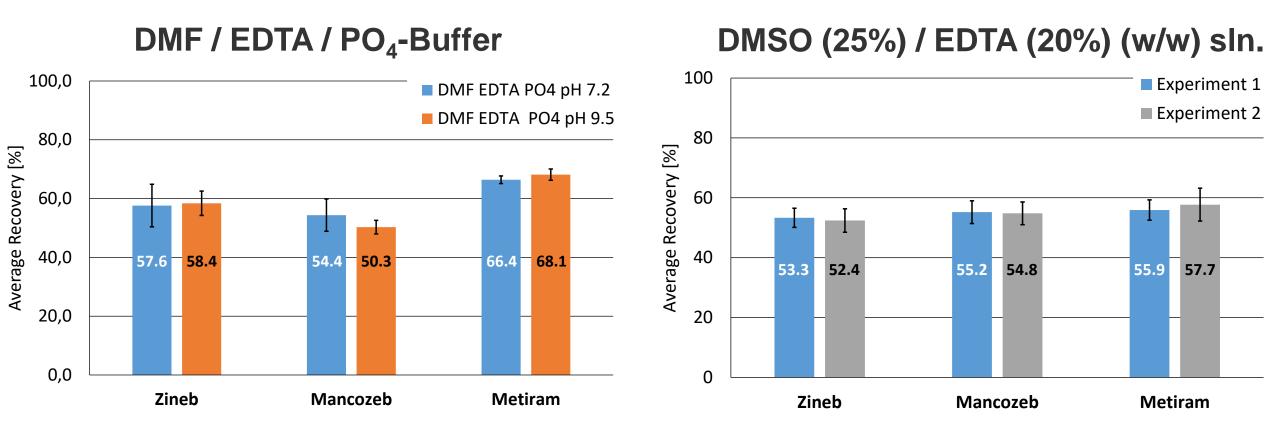
- spiking level: 0.1 mg/kg zineb/mancozeb/metiram (n = 3)
- + chloroaceton, + acetonitrile, + 1 ml NaHCO₃ (1 M)
- incubation time: 30 min
- solvent calibration

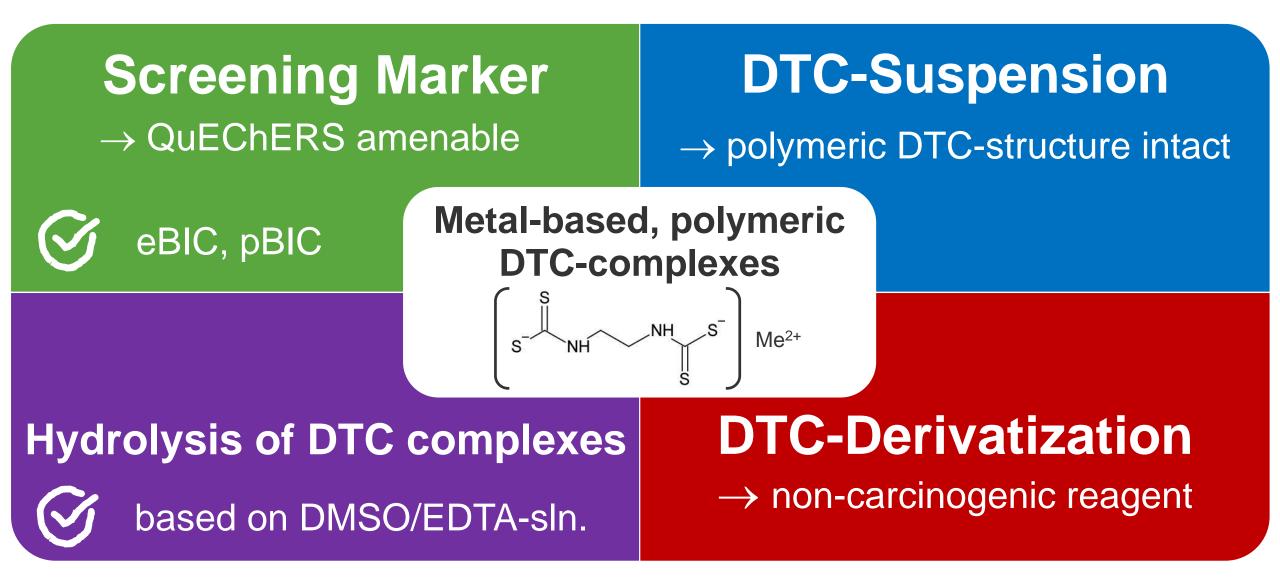


Hydrolysis of DTC complexes | NaHCO₃-Solution

Tomato-homogenate (pH 4.4) as matrix:

- spiking level: 0.1 mg/kg zineb/mancozeb/metiram (n = 3)
- + chloroaceton, + acetonitrile, + 1 ml NaHCO₃ (1 M)
- incubation time: 30 min
- solvent calibration

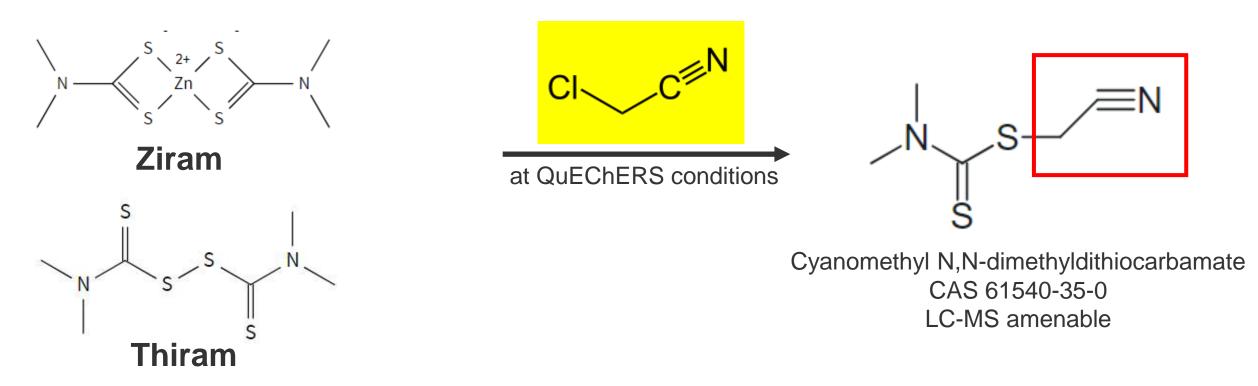

similar results obtained with phosphate-buffer (pH 9.5, 3 M)/EDTA



Hydrolysis of DTC complexes

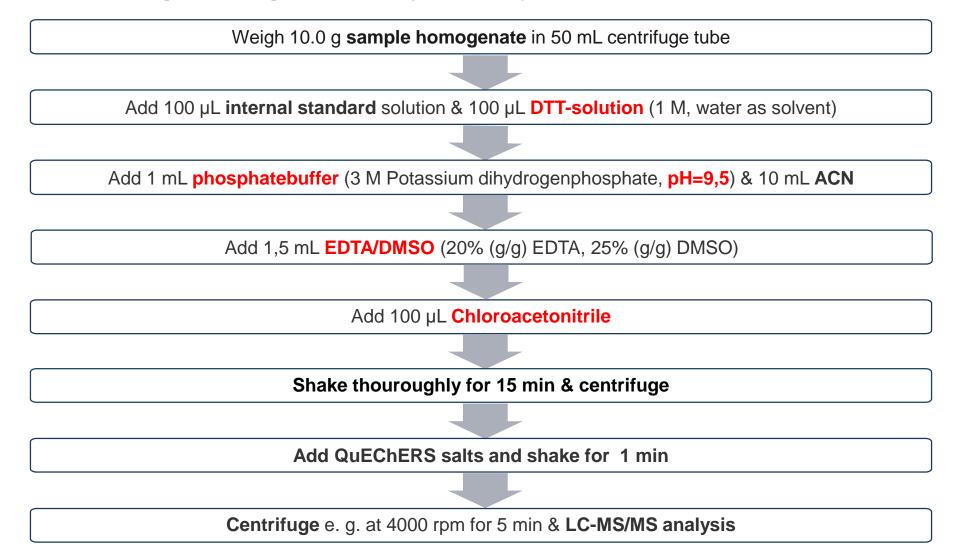
Tomato-homogenate (pH 4.4) as matrix:

- 0.1 mg/kg zineb/mancozeb/metiram (n = 3); derivatization reagent: chloroaceton
- solvent calibration

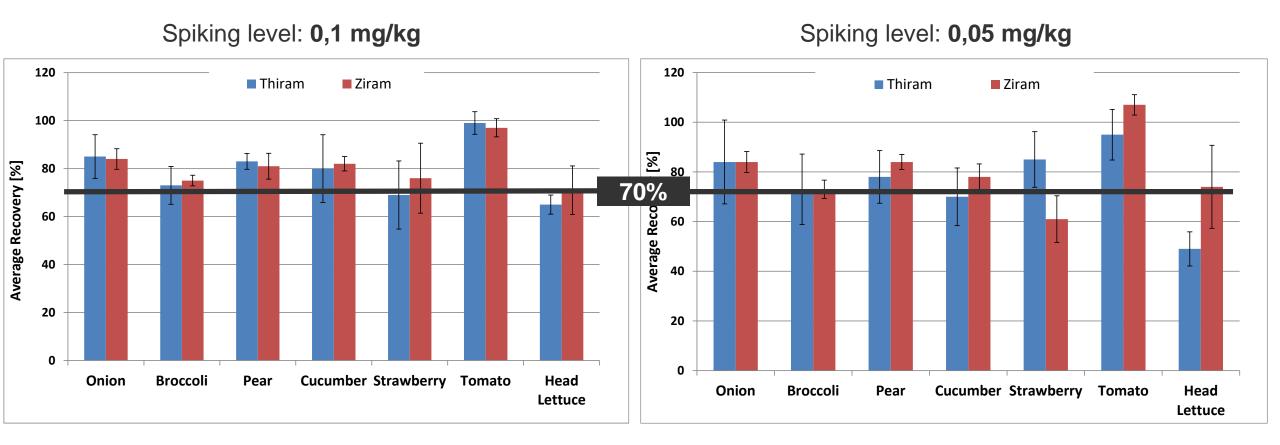

DTC-Derivatization – by Methylation

Electrophilic methylation at QuEChERS conditions:

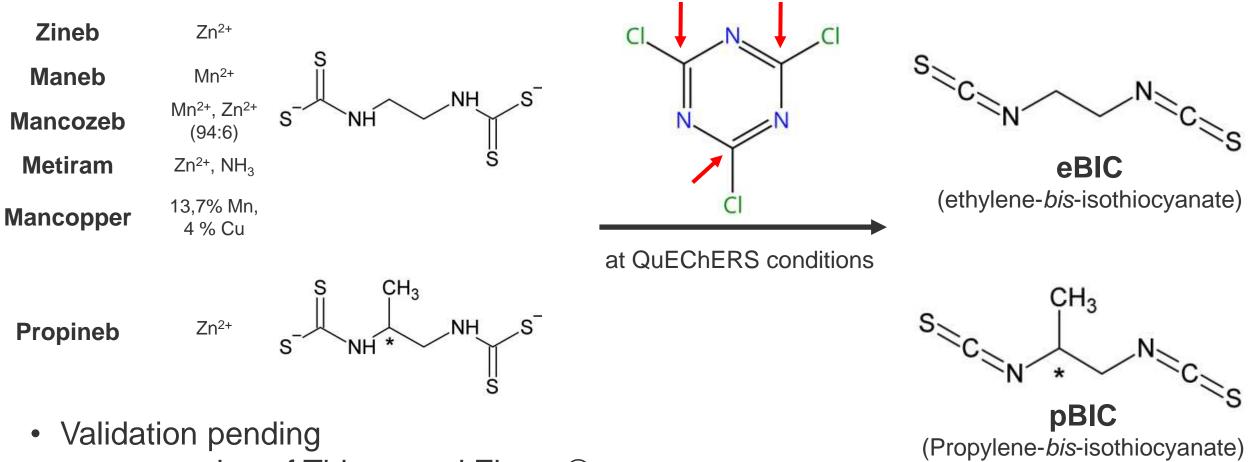
- ✓ **dimethyl sulfate, methyl iodid** (see literature) (carcinogenic)
- alternative, less toxic (!) methylating agents tested:
 dimethyl dicarbonate(*), dimethyl carbonate, trimesium, trimethylphosphate
 no methylation products detected


DTC-Derivatization – by Chloroacetonitrile

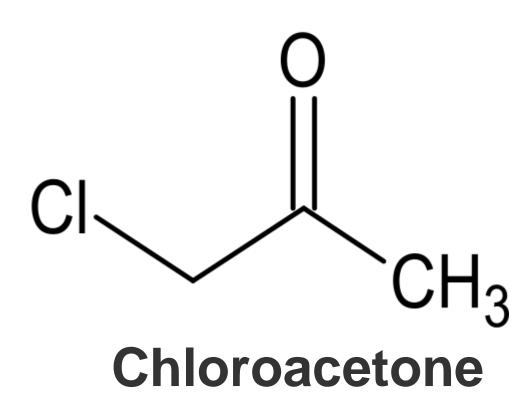
• no conversion of propineb and EBDC-group (zineb, metiram, mancozeb, ...) 🙁


Thiram/Ziram-Derivatization – by Chloroacetonitrile

Workflow - Sample Preparation (in short):


Thiram/Ziram-Derivatization – by Chloroacetonitrile

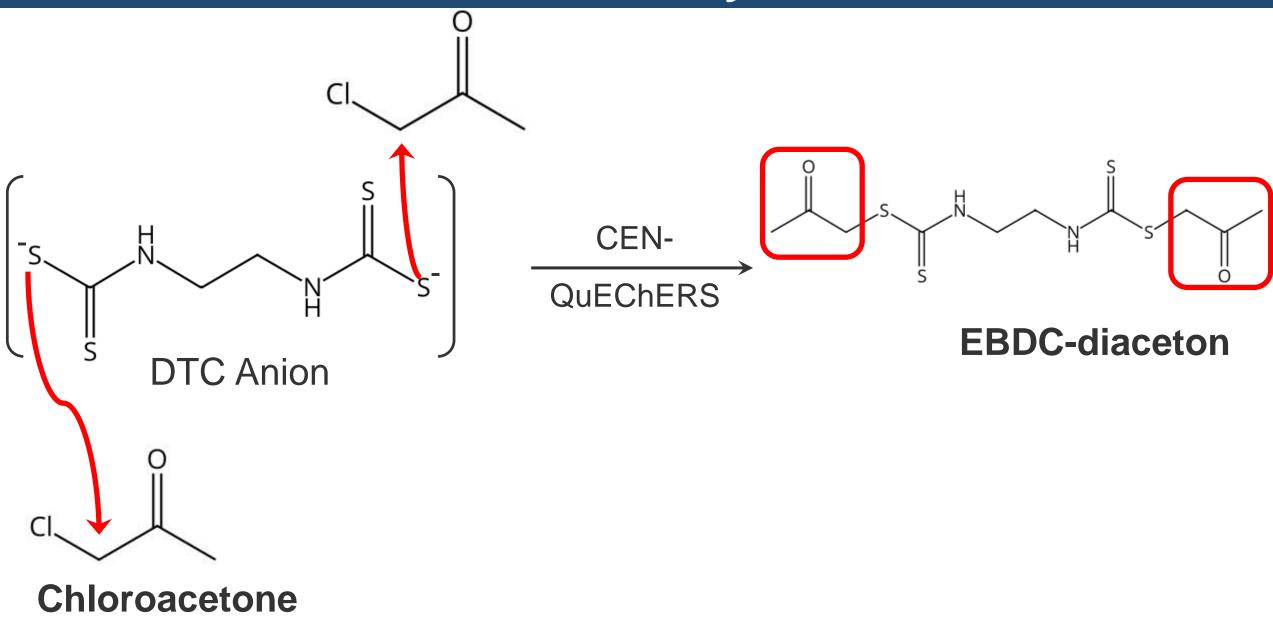
• Validation data for Thiram and Ziram (n=5):


DTC-Derivatization – by Cyanuric chloride (*)

Reaction Scheme (in short):

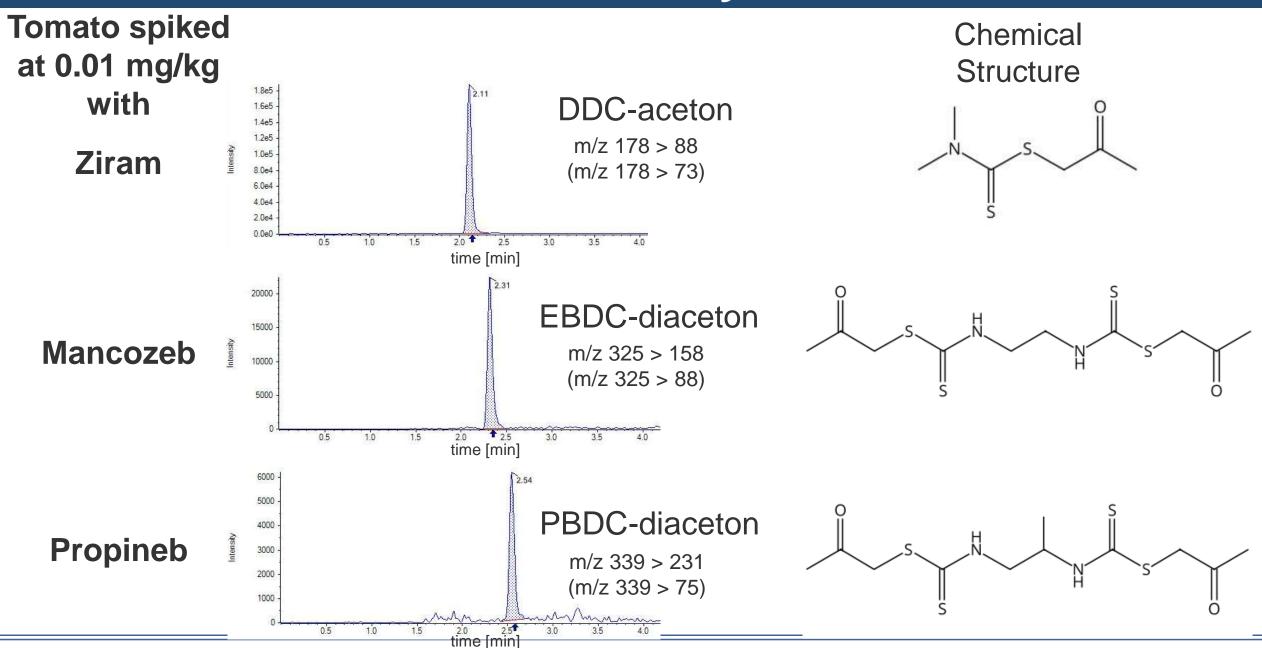
no conversion of Thiram and Ziram ⊗

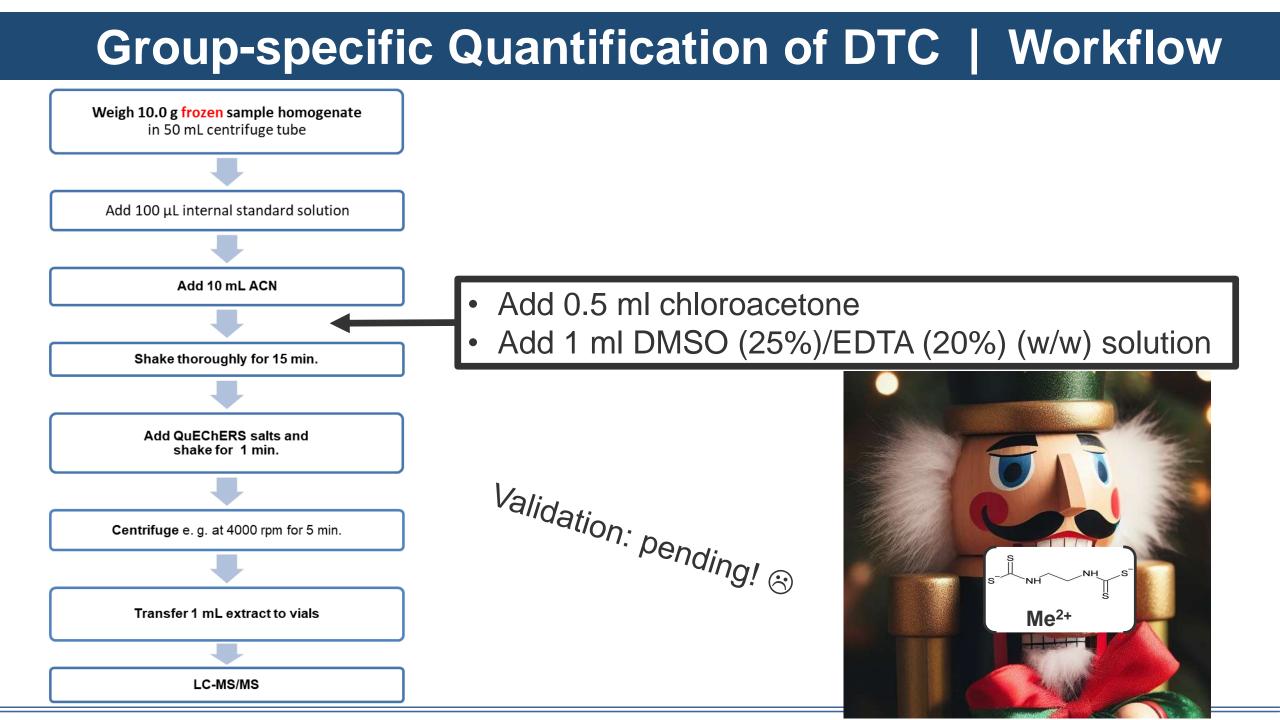
DTC-Derivatization – by Chloroacetone

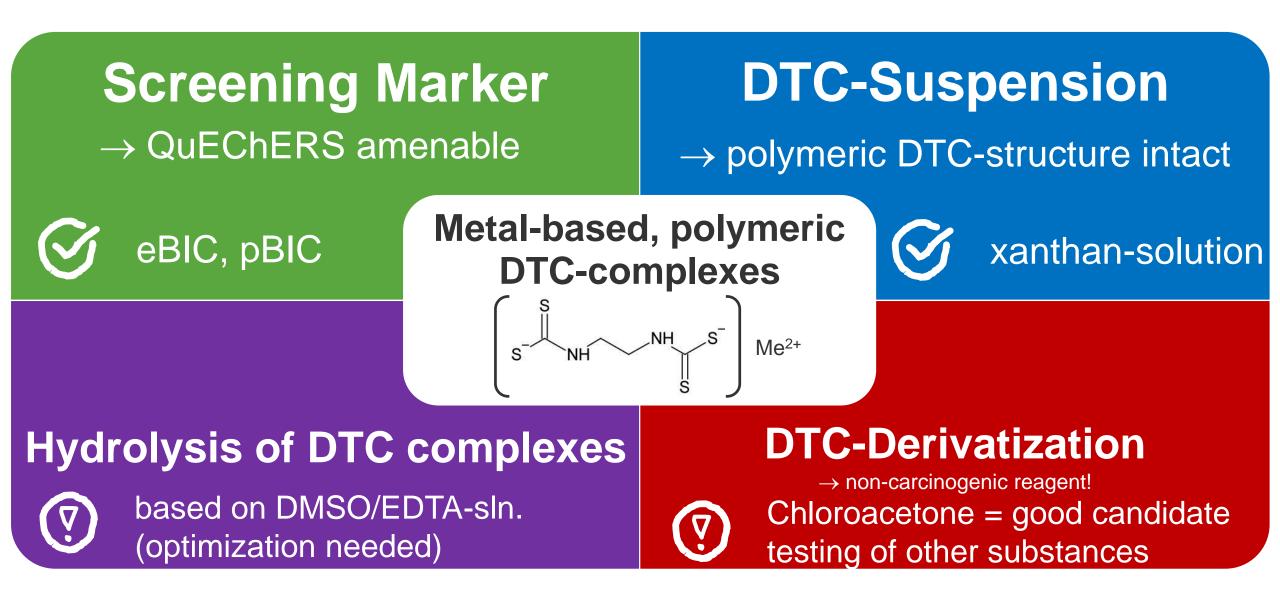


Chloroaceton - Hazards

flammable liquid and vapour;


causes skin burns, eye damage and respiratory irritation
=> working in fume hood is strongly recommended!


DTC-Derivatization – by Chloroacetone


* Tsuboi et al., Bulletin of the Chemical Society of Japan, 61(9), 3205-9; 1988

DTC-Derivatization – by Chloroacetone

Summary

Thank you for your attention!

Questions to:

eurl-srm@cvuas.bwl.de