

Quick Method for the Analysis of Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC- or IC-MS/MS Measurement *I. Food of Plant Origin (QuPPe-PO-Method)*

Version 12.1 (17.03.2023, Document History, see page 99)

Check for latest version of this Method under www.quppe.eu ; older versions: obsolete versions

Authors: M. Anastassiades; A.-K. Wachtler; D. I. Kolberg; E. Eichhorn; H. Marks; A. Benkenstein; S. Zechmann; D. Mack; C. Wildgrube; A. Barth; I. Sigalov; S. Görlich; D. Dörk; G. Cerchia

EU Reference Laboratory for pesticides requiring Single Residue Methods (EURL-SRM)

Contact: CVUA Stuttgart, Schaflandstr. 3/2, DE-70736 Fellbach, Germany, www.eurl-pesticides.eu; EURL@cvuas.bwl.de

Note: Changes from V12 to V12.1 are highlighted in yellow

1.	Scope and Short Description	2
2.	Apparatus and Consumables	
3.	Chemicals	4
4.	Disclaimer	7
5.	Procedure	7
	5.1. Sample preparation	7
	5.2. Extraction / Freeze-Out / Centrifugation / Cleanup / Filtration	8
	5.3. Preparation of blank extracts	13
	5.4. Recovery experiments	13
	5.5. Preparation of calibration standards	14
	5.5.1. Solvent-based calibration standards	
	5.5.2. Matrix-based and matrix-matched calibration standards	14
	5.5.3. Standard-Additions approach	15
	5.5.4. Procedural calibration standards	16
	5.6. LC-and IC-MS/MS analysis	16
	5.6.1. General hints on analytes to avoid pitfalls	22
	5.6.2. Method 1.1 (M1.1): "Gly&Co. AS 11"	33
	5.6.3. Method 1.2 (M1.2): "Gly&Co. AS 11-HC"	35
	5.6.4. Method 1.3 (M1.3): "Gly&Co. Hypercarb"	37
	5.6.5. Method 1.4 (M1.4): "PerChloPhos"	39
	5.6.6. Method 1.5 (M1.5): "Gly&Co. on Trinity Q1"	41
	5.6.7. Method 1.6 "Gly&Co. on Torus DEA; (M1.6a)" or "Gly&Co. on Anionic Polar Pesticide Column (APPC); (M1.6b)"	43
	5.6.8. Method 1.7 "PerChloPhos on Torus DEA; (M1.7a)" or "PerChloPhos on Anionic Polar Pesticide Column (APPC); (M1.7b)"	47
	5.6.9. Method 1.8 (M1.8): "PerChloCyanMalein on Anionic Polar Pesticide Column (APPC)"	49
	5.6.10. Method 1.9 (M1.9): "Gly&Co. on Raptor Polar X"	50
	5.6.11. Method 1.10 (M1.10): "Gly&Co. on Obelisc N"	52
	5.6.12. Method 2 (M2): "Fosetyl and Maleic Hydrazide"	53
	5.6.13. Method 3 (M3): "Amitrole&Co."	55
	5.6.14. Method 4.1 (M4.1): "Quats&Co. Obelisc R"	57
	5.6.15. Method 4.2 (M4.2): "Quats&Co. BEH Amide"	59
	5.6.16. Method 5 (M5): "Quats&Co. MonoChrom MS"	63
	5.6.17. Method 6 (M6): "Streptomycin and Kasugamycin"	
	5.6.18. Method 7 (M7): "Morpholine. Diethanolamine and Triethanolamine"	
	5.6.19. Method 8 (M8): "Triazole derivative metabolites (TDMs)"	66
	5.6.20. Method 9 (M9): "Difluoroacetic acid and Trifluoroacetic acid"	
	5 6 21 Method 10 (M10): "Triazole derivative metabolites (TDMs) on Torus DEA"	68
	5 6 22 Method 11 (M11): "Glv&Co, by IC on AS19"	69
	5.7. Calibration and Calculations	
6	Stability and purity of standards	74
7.	Performance Data	
8.	References	
9	ANNEX	88

1. Scope and Short Description

European

Commission

A method is described for the residue analysis of very polar, non-QuEChERS-amenable, pesticides in foods of plant origin such as fruits, vegetables, cereals, dry pulses, oily seeds and nuts as well as in honey.

Residues are extracted from the test portion following water adjustment and addition of acidified methanol. In the case of cereals, pulses, nuts and oily seeds, EDTA is added for the complexation of metal ions, such as calcium and magnesium, which can affect the analysis of certain compounds (e.g. glyphosate and AMPA). The mixture is centrifuged, filtered and directly analyzed by LC-MS/MS. Various LC- or IC-MS/MS methods allowing simultaneous analysis of different combinations of pesticides are provided. Quantification is in most cases performed employing isotope labeled analogues of the target analytes as internal standards (IL-ISs). So far available, these IL-ISs are added directly to the test portion at the beginning of the procedure to compensate for any factors having an influence on the recovery-rates such as volume-deviations, analyte losses during sample preparation as well as matrix-effects during measurement. Due to the simplicity of the procedure strong matrix-effects are frequently observed.

Shortcut-Links to useful information

- Flow Chart QuPPe-PO-Method at a glance (procedure for most commodities)
- Flow Chart QuPPe-PO-Method at a glance (procedure for cereals, pulses, nuts and oily seeds)
- Pipetting Scheme (exemplary) Preparation of Calibration Standards

EURL-SRM

- <u>Pipetting Scheme (exemplary) Standard-Additions-Approach</u>
- <u>Scope Overview- LC-Methods covering ESI-pos. Analytes</u>
- <u>Scope Overview LC-Methods covering ESI-neg Analytes</u>
- <u>General hints on analytes to avoid pitfalls</u>
- <u>Calibration and Calculations</u>
- Analyte Stability
- Performance Data
- <u>Conversion Factors (between purchased standards and target analytes)</u>
- <u>Analyte Stock and Working Solutions (exemplary)</u>
- Exemplary Providers of IL-ISs (Isotopically Labelled Internal Standards)
- <u>IL-IS-Working Solutions (exemplary)</u>
- Water Addition Overview

How to Cite (proposal):

Quick Method for the Analysis of Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC- or IC-MS/MS Measurement - I. Food of Plant Origin (QuPPe-PO-Method) – Version 12 (published on EURL-SRM website on July 23, 2021); M. Anastassiades; A.-K. Wachtler; D. I. Kolberg; E. Eichhorn; H. Marks; A. Benkenstein; S. Zechmann; D. Mack; C. Wildgrube; A. Barth; I. Sigalov; S. Görlich; D. Dörk and G. Cerchia.

URL: https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=887&LabID=200&Lang=EN

2. Apparatus and Consumables

2.1. Powerful sample processing equipment,

EURL-SRM

for milling samples. For fruits and vegetables, e.g. Stephan UM 5 or Retsch200 by Retsch Grindomix GM 300 or Vorwerk-Thermomix TM31-1. For dry commodities such as cereals, e.g. ZM 200 by Retsch equipped with a 0.5 mm sieve.

2.2. Plastic tub,

European

Commission

for filling-in liquid nitrogen to immerse the samples prior to milling. e.g. 20 to 40 L polypropylene or polyethylene tub with handles. Styrofoam boxes are also suitable. Take precautions when working with liquid nitrogen.

2.3. 50 mL centrifuge tubes with screw caps,

e.g.: a) reusable 50 mL Teflon[®] centrifuge tubes with screw caps (e.g. Nalgene/Rochester, USA; Oak-ridge, article-no. 3114-0050) or b) disposable 50 mL centrifuge tubes (e.g. Sarstedt / Germany, 114x28 mm, PP, article-no. 62.548.004).

2.4. 10 mL centrifuge tubes with screw caps,

for the d-SPE step (5.2.5), e.g.: disposable 10 mL PP-tubes by Simport/Beloeil (Canada), article-no. T550-10AT.

2.5. Automatic pipettes,

suitable for handling volumes of 10 to 100 μL , 200 to 1000 μL and 1 to 10 mL.

2.6. 10 mL solvent-dispenser,

for the acidified methanol (**3.6**).

2.7. Mechanical shaker,

suitable for 50 mL-centrifuge tubes, e.g. Geno/Grinder[®] 2010; SPEX[®] SamplePrep.

2.8. Water Bath,

adjustable to at least 80°C and automatically shaking.

2.9. Centrifuge,

suitable for the centrifuge tubes employed in the procedure (**2.3**) and capable of achieving > 3,000 g. E.g. Rotanta 460 by Hettich, Tuttlingen/Germany. Centrifuges capable of achieving higher centrifugal forces and of refrigerating the sample during centrifugation (e.g. Avanti JXN-26 by Beckman Coulter, Brea/USA) are to be preferred. **Notes:** Higher relative centrifugal forces (e.g. RCFs > 10,000 g) and cooling during centrifugation (e.g. to -10°C) are beneficial by causing increased precipitation of matrix components. Check centrifuge tubes for suitability for higher velocities.

2.10. Disposable syringes,

suitable to the filters used; e.g. 2 or 5 mL disposable polypropylene syringes with luer tip by Macherey-Nagel, Düren / Germany (Ref. 729100 and 729101 respectively). These are suitable for the syringe filters listed below (**2.11**).

2.11. Disposable syringe filters,

e.g. . Ø 25 mm CHROMAFIL[®] filters and 0.2 μ m pore size filters of the following materials: Hydrophilized polytetrafluoroethylene (H-PTFE) or Cellulose Mixed Ester or Polyester (Ref. No. 729245, 729006 and 729021 respectively) all by Macherey-Nagel, Düren / Germany. 0.45 μ m pore size filters of the above types (Ref. No. 729246 H-PTFE) may be attached in front of the 0.2 μ m filters if the latter get clogged when used directly. In case of filter-clogging during honey extracts filtration, filters with 5.0 μ m pore sizes (e.g. Rotilab[®] PTFE filters by ROTH Ref. No. SE4M075I99) may be used for pre-filtration (or even instead of the filters with smaller pore-sizes), as pollen grains are typically > 10 μ m in diameter. **Note:** Check filters for any contamination with analytes of interest. Significant levels of Perchlorate and Chlorate were detected in the above mentioned polyester filters. For testing suitability consider the worst-case scenario, where filters are clogged quickly (e.g. elute only 200 µL through each filter). Such severe clogging was for example observed with industrially milled cereals, pears and pineapples.

2.12. Ultrafiltration filters,

JRL-SRM*

European

Commission

5 or 10 kDa molecular weight cutoff filters suitable for centrifuges, e.g. Vivaspin[®] 6 mL 5 kDa entailing Polyethersulfone membranes OR Amicon[®] Ultra-15 10K entailing Ultracel[®] low binding regenerated cellulose.

2.13. Autosampler vials,

suitable for LC auto-samplers, e.g. Vials Screw top 2 mL Cat No. 9502S-PP-CLEAR, 12x32 mm MicroSolv Technology Corporation (MTC), USA; Lids for plastic vials: Lid G9-L/Sil-CS Art.-No. 2.301398-Blau WE13989, Ziemer GmbH, Langerwehe / Germany

Notes: The use of plastic vials is highly recommended as several of the compounds covered by this method (e.g. Phosphonate, Nicotine, Paraquat, Diquat, Streptomycin and Glyphosate)¹ tend to interact with glass-surfaces. Such interactions with glass surfaces are typically more pronounced in solutions consisting of aprotic solvents (e.g. acetonitrile). Increasing water content and/or acidity typically reduces such interactions. Percent losses due to such interactions are typically higher at low concentrations.

2.14. Volumetric flask with stoppers,

for the preparation of stock and working solutions, e.g. 20 mL; 25 mL; 50 mL, 100 mL glass flasks.

Notes: The use of plastic flasks and stoppers is highly recommended as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under **2.13**).

2.15. Screw-cap storage vessels,

for storage of sample extracts or storage of stock and working solutions, e.g. 20 mL.

Notes: The use of plastic flasks and stoppers is highly recommended as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under 2.13).

2.16. LC-MS/MS instrumentation,

equipped with ESI source and appropriate columns, see details in chapters 5.6.2 to 5.6.225.6.21.

2.17. IC-MS/MS instrumentation,

equipped with ESI source and appropriate columns, see details in chapters 5.6.22.

3. Chemicals

Unless otherwise specified, use reagents of recognized analytical grade. Take every precaution to avoid possible contamination of water, solvents, sorbents, inorganic salts, etc.

3.1. Water (deionized),

for water additions to the samples

3.1. Water, ultrapure

e.g. prepared by a laboratory water purification system. Commercially available MS-quality water can be used for LC-MS/MS mobile phases and IC-quality water for IC-MS/MS mobile phases.

EU Reference Laboratory for pesticides requiring Single Residue Methods (EURL-SRM)

¹ The list of compounds requiring plastic vessels is not comprehensive (this remark applies to the entire document).

3.2. Methanol at least HPLC quality,

European

Commission

for the preparation of mobile phases preferably use MS-quality methanol.

EURL-SRM

3.3. Acetonitrile at least HPLC quality,

for the preparation of mobile phases preferably use MS-quality acetonitrile.

3.4. Formic acid (concentrated; > 98%),

for the preparation of mobile phases preferably use MS-quality formic acid.

3.5. Acetic Acid (concentrated; >98%),

for the preparation of mobile phases preferably use MS-quality acetic acid.

3.6. Acidified methanol,

for the extraction of the majority of samples, prepared by pipetting 10 mL formic acid (**3.4**) into a 1000 mL volumetric flask and filling up to volume with methanol (**3.1**).

3.7. C-18 sorbent (ODS-sorbent),

e.g. Polygoprep 30-300 µm Macherey-Nagel GmbH & Co KG/Düren (Germany), article-no. 711720.100).

3.8. Citric acid-monohydrate (p.a.)

3.9. Dimethylamine,

e.g. 40 % by Fluka (article-no. 38940).

3.10. Ammonium formate (p.a.)

3.11. Ammonium citrate-tribasic, anhydrous (p.a.)

3.12. Sodium hydroxide (p.a.)

3.13. Di-Sodiumtetraborate-decahydrate (p.a.)

3.14. Ethylenediaminetetraacetic acid tetrasodium

e.g. tetrasodium <u>di</u>hydrate salt (CAS Number 10378-23-1): E6511 Sigma Aldrich (MW=416.20) OR tetrasodium <u>tetra</u>hydrate salt (CAS No.: 13235-36-4): 34103-M EMD Millipore/Merck (MW=452.23)

3.15. 10% aqueous EDTA solution,

prepared by weighing 15.85 EDTA tetrasodium tetrahydrate (OR 14.59 g EDTA tetrasodium dihydrate) into a 100 mL volumetric flask with stopper, dissolving it in 80 mL water and filling up to 100 mL with water. This solution contains 10 % (w/v) EDTA tetra-anion.

3.16. Dry ice,

technical grade can be used; periodically check that it does not contain compounds of interest at relevant levels.

3.17. Pesticide Standards,

of known purity.

3.18. Pesticide stock solutions,

e.g. 1 mg/mL solutions of pesticide standards (**3.17**) in a water miscible solvent. Suggestions of solvents suitable for the preparation of stock solutions can be found in **Table 43**.

Notes: Keep in mind that some standards are sold as salts or hydrates. Some exemplary **conversion factors** to be applied between typical standards and the analytes are shown in **Table 42.** Keep solutions in <u>plastic vessels</u> as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under **2.13**).

3.19. Pesticide working solutions / mixtures,

URL-SRM

prepared at appropriate concentrations by diluting pesticide stock solutions (**3.18**) of one or more pesticides with water-miscible solvents as required for the spiking of samples in recovery experiments (**5.4**) or for the preparation of calibration standards (**5.5**). Suggestions of solvents for preparing stock solutions can be found in **Table 43**. **Notes:** Keep solutions in **plastic vessels** as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under **2.13**).

3.20. Internal Standards (ISs),

Exemplary sources are shown in **Table 44**. Check whether the ISs contain native compounds at levels, which would lead to false positives or quantification errors.

3.21. IS-stock solutions,

European

Commission

e.g. 1 mg/mL solutions of ISs (**3.20**) in a water miscible solvent (e.g. methanol, acetonitrile, water or mixtures thereof). For solvent-suggestions see **Table 43** in the ANNEX.

Notes: Keep solutions in **plastic vessels** as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under **2.13**).

In general the absolute concentrations of the IL-IS-solutions are not important as long as the IL-IS-concentration in the final extract is high enough to produce a well measurable signal that is not relevantly disturbed by co-eluting matrix components. An IL-IS standard with a relatively low purity may be still acceptable as long as the content of native analytes (irrespective whether they were initially present - as impurity - or whether they were formed during storage of working solutions) is low enough to exclude false positive results and to ensure that any influence on quantification of positive results is negligible. Some examples where care is needed to avoid formation of native analytes from IL-ISs are N-Acetyl-Glyphosate (acetyl D₃) that may de-acetylate into native Glyphosate, Fosetyl-D₅ that tends to hydrolyse to native Phosphonic acid (see **5.6.3** under Hints on Method 1.2) and Maleic Hydrazide D₂ the standard of which typically contains a small, but relevant, fraction of the native compound as impurity (see **5.6.9**).

For quantification purposes it is of foremost importance that the ratio between the absolute IL-IS amount added to the sample prior to extraction (or to the isolated aliquot of the sample extract) and the absolute amount of IL-IS added to the calibration standard solutions is known as it is used in calculations.

3.22. IS-working solution I (IS-WSIn-1) for spiking samples prior to extraction,

prepared at appropriate concentrations by diluting IS-stock solutions (**3.21**) of one or more ISs with water-miscible solvents. Suggestions for solvents are shown in **Table 43** and suggestions for the concentrations in **Table 45**.

Notes: Keep solutions in **plastic vessels 2.15** as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under **2.13**).

In presence of water and especially at high pH levels, Phosphonic acid ${}^{18}O_3$ will gradually convert to ${}^{18}O_2{}^{16}O_1$, ${}^{18}O_1{}^{16}O_2$ and eventually of ${}^{16}O_3$ (native) Phosphonic acid. The ${}^{18}O_3$ Phosphonic acid standard solution provided by the EURLs should be preferably diluted in acetonitrile, where it was shown to be stable for long periods.

3.23. IS-working solution II (IS-WSIn-2) for preparation of calibration standards,

prepared at appropriate concentrations by diluting IS-WSIn-1 (**3.22**) with water-miscible solvents. Suggestions for solvents are shown in **Table 43** and for concentrations in **Table 45**.

Notes: Keep solutions in **plastic vessels** as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under **2.13**).

For short term usage (e.g. up to one month) the IL-IS of Phosphonic acid can be diluted in acidified methanol (3.6).

3.24. LC-MS/MS mobile phases and other consumables,

see details in chapters 5.6.2 to 5.6.21.

3.25. IC-MS/MS mobile phases and other consumables,

EURL-SRM

see details in chapter 5.6.22.

4. Disclaimer

This method refers to several trade names of products and instruments which are commercially available and suitable for the described procedure. This information is given for the convenience of the users of this method and does not constitute an endorsement by the EURL of the products named. The application of this method may involve hazardous materials, operations and equipment. It is the responsibility of the users of this method to establish appropriate safety and health practices prior to use. Any consumables and chemicals used in the procedure should be periodically checked, e.g. through reagent blank tests, for any relevant levels of the analytes of interest.

5. Procedure

5.1. Sample preparation

To obtain representative test-portions from the laboratory sample, proceed as required by the valid regulations and guidelines.

Fruits and vegetables are preferably milled cryogenically (e.g. using dry ice). This is done to reduce analyte degradation and particle sizes, with the latter resulting in improved homogeneity and residue accessibility. One possibility for cryogenic milling is to cut large units coarsely to ca 3x3 cm pieces, freeze them and then mill them for ca. 1-2 minutes with a powerful mill. Then add dry ice (ca. 150-200 g per 500 g sample) and continue milling until barely any carbon dioxide fumes are observed. Alternatively fill a plastic or polystyrene container with a ca 5-10 cm thick layer of liquid nitrogen and immerse the sample pieces into liquid nitrogen. When completely frozen transfer the material into a powerful knife mill and grind at high speed until it gets a free flowing snow-like consistency. If necessary crush large units with a hammer before milling. If the material starts defrosting during milling, add some more liquid nitrogen or dry ice and continue milling as described above.

Dry commodities (e.g. cereals, pulses) are intensively milled to reduce particle size and improve the accessibility of residues enclosed in the interior of the materials. Particle sizes (e.g. $<500 \mu$ m) are preferable. The larger the particles are the longer the extraction times required to achieve quantitative extraction of systemically distributed compounds. Ultra centrifugal mills with 500 µm sieves were found to be suitable for this purpose. Addition of dry ice during milling (e.g. at a sample: dry ice ratio of 2:1) reduces heat. The use of knife mills is also possible but prolonged milling times are needed to reduce the size of particles. Add some dry ice periodically to reduce heat formation. Alternatively a two stage milling can be helpful. For this a representative portion of the first milling step is transferred to a second smaller mill and homogenized further.

Dry and oily commodities (e.g. oily seeds and nuts) tend to form a thick paste that prevents proper milling and is difficult to handle, when using knife mills at room temperature. Milling with ultra centrifugal mills typically leads to a clogging of the filters. For such materials cryogenic grinding with a powerful knife mill is recommended. Precool the mill with dry ice and then mill the material at a sample to dry ice ratio of ca 2:1 until a fine powder is obtained. Keep temperature low to avoid that the material becomes clumpy and thus more difficult to handle. Alternatively immerse the sample in a plastic or polystyrene container containning liquid nitrogen. When completely frozen transfer it into a powerful knife mill and grind until a fine powder is obtained. Do not mill too long as the material with thaw and become clumpy and thus more difficult to handle.

For dried fruits and similar commodities (~15 to \leq 40% water content) the following procedure is proposed: Weigh 500 g of frozen dried fruits, add X g* of cold water (see

Table 1) and homogenize the mixture using a strong mixer (**2.1**), if possible with addition of dry ice to prevent or slow-down any chemical and enzymatic reactions (**3.13**). Weigh Y g* of homogenate (see

Table 1; corresponding to 5 g sample).

European

Commission

Table 1: Weight of dried fruits required for slurry homogenization and analztical portions of rehydratized homogenates to be emplozed for analzsis

Moisture content of product	Water amount added	Weight of analytical portion
	(X g)	(Y g; corresponding to 5 g of original dry sample)
~15 to <25 %	900 g	14 g
25 to <35 %	850 g	13.5 g
≥35 to 40 %	800 g	13 g

Alternatively, immerse the sample material in a plastic or polystyrol container containing liquid nitrogen. When completely frozen transfer it into a powerful knife mill and grind until a fine powder is obtained. Do not mill too long and quickly transfer the frozen powder into a storage container and place it into the freezer to avoid that it becomes clumpy and more difficult to handle.

For freeze-dried fruit and vegetables homogenize with a high speed knife mill preferably adding dry ice to keep the sample cool. Thereof 2 g sample may be employed for analysis (as in the case of spices, herbs and other extract-rich commodities).

5.2. Extraction / Freeze-Out / Centrifugation / Cleanup / Filtration

RL-SRM

A flow chart of the **analytical procedure** is shown in Figure 1 (for most commodities) and in Figure 2 (for pulses, nuts and oily seeds)

5.2.1. Weighing of analytical portions

Weigh a representative analytical portion (ma) of the sample homogenate (5.1) into a 50 mL centrifuge tube (2.3). In case of fresh fruits and vegetables and juices weigh $10 \text{ g} \pm 0.1 \text{ g}$ of the homogenized sample. In case of cereals, dried pulses, oily seeds, nuts, dried fruits, dried vegetables, dried mushrooms and honey weigh $5 \text{ g} \pm 0.05 \text{ g}$ of the homogenates. In case of dry fruits rehydrated according to 5.1, weigh Y g (e.g. 13.5 g ± 0.1 g, see

Table 1) of the re-hydrated and homogenized material (corresponding to 5 g sample). Smaller analytical portions may have to be used for extract-rich commodities, such as spices, herbs or fermented products, or commodities with very high water-absorbing capacity not allowing proper extraction.

5.2.2. Adjustment of water content

For commodities with \ge 80% of natural moisture, water adjustment to 10 mL is not essential and may be skipped when appropriate ISs are employed before any aliquotation. If no IS is used, add water (3.1), as indicated in Table 46 to minimize volumetric errors. Continue with step 5.2.3.

For commodities with < 80% of natural moisture (except honey, chia seeds and lineseeds, see notes), add water (3.1) to the analytical portion (5.2.1) to reach a total water content of approx. 10 g according to the indications in Table 46. No further water adjustment is needed where re-hydrated commodities (see 5.1) are employed. Continue with step 5.2.3.

Notes: Keep in mind that the water volume adjustments in **Table 46** are approximate.

In the case of **honey**, it needs to be taken into account, that sugars completely dissolve in the methanol/water mixture and that they contribute to the volume. Instead of adding 9 mL of water (to account for ~1 mL of water contained in honey with ~20% moisture content), the amount of water to be added is 7.5 mL.

For **oily seeds**, **nuts and pulses** the water contained in the aqueous EDTA solution (added during the extraction step (**5.2.3**) is also considered in the overall water content. Therefore 9 mL of water + 1 mL of aqueous EDTA solution are added in total. See also **Table 46**.

In the case of **chia seeds and lineseeds (flaxseeds**) adding water directly to the samples leads to a soaking and the formation of a gellike layer, which hinders the accessibility of residues. To suppress this phenomenon, change the order of solvent addi-

tion as follows. First add 10 mL acidified methanol (3.6) and 100 μ L formic acid (3.4), shake shortly, and then add the 9 mL water and the 1 mL EDTA solution and continue with 15 min shaking as described under 5.2.3. Then continue with step 5.2.4-(2) or (3) and further with step 5.2.5-(2).

URL-SRM

5.2.3. Extraction

European

Commission

A) General procedure

- (1) <u>All commodities of plant origin except cereals, pulses, nuts and oily seeds</u>: Add 10 mL acidified methanol (3.6) and 100 μ L (or another appropriate small volume) of the IS-WSIn-1 (3.22) containing isotopically labeled analogues of the analytes of interest (added IS mass = m_{IS}^{sample}). Close the tube and shake vigorously for 1 to 15 min by hand or a mechanical shaker.
- (2) <u>Cereals, pulses, nuts and oily seeds</u>: Add 10 mL acidified methanol (3.6) and 100 μL (or another appropriate small volume) of the IS-WSIn-1 (3.22) containing isotopically labeled analogues of the analytes of interest (added IS mass = m_{IS}^{sample}) and agitate shortly to distribute the ISs. Add an extra amount of 100 μL formic acid (3.4). Close the tube and shake for a few seconds to distribute the acid and allow proteins to coagulate. Add 1 mL 10% aqueous EDTA solution (3.15) and shake for 15 min by an automatic shaker. For chia seeds and lineseeds please refer to the notes under 5.2.2. Where no automatic shaker is available, dry products may be shaken for 1 min by hand followed by a soaking period of 15 min and a subsequent second 1 min vigorous shaking by hand.

Notes: Where no IL-ISs are used the aim should be to reach a total volume of the liquid phase as close as possible to 20 mL. This volume will mainly consist of the water naturally contained in the sample, the water added during the procedure (including that of the EDTA solution), the extraction solvent added, the IS solution added as well as the extra formic acid added. A volume contraction is also taking place and is partly matched by the IS and the formic acid. Further alternatives to avoid errors due to volumetric deviations are calibrations that compensate for recovery, such as standard additions to sample portions and procedural calibrations using a suitable blank matrix. The 20 mL volume of the extractant corresponds to 0.5 g / 0.25 g sample per mL extract if 10 g / 5 g sample are used. Where the raw extract is diluted with acetonitrile for cleanup purposes (see **5.2.5**-(**2**) concerning pulses, oily seeds and nuts) the final concentration in the extract is reduced to 0.125 g/mL.

For screening purposes, the IS can be alternatively added to a sample extract aliquot (e.g. the 1 mL aliquot transferred to the autosampler vial, see below), assuming that 1 mL extract entails exactly 0.5 or 0.25 or 0.125 g sample equivalents, see above. This way, the added amount of IS per sample can be drastically reduced (e.g. 20-fold if added to 1 mL extract). The IS added at this step will compensate for matrix effects including retention-time shifts but not for recovery and volume deviations during extraction. The quantitative result should therefore be considered tentative. For more accuracy, samples should be re-extracted with the IS being added to the analytical portion before aliquotation.

Particle size plays an important role for dry products (e.g. cereals, pulses) as far as extractability is concerned. If a considerable fraction of the particles exceed 500 µm, shaking or soaking times may have to be extended, otherwise the extraction will need to involve additional breakup of the sample particles, e.g. by the use of a high speed dispenser (e.g. Ultra Turrax). The addition of EDTA solution is highly recommended when targeting analytes showing poor recoveries in absence of EDTA. Affected are compounds with a tendency to form complexes with metals, such as Glyphosate and metabolites, Glufosinate and

metabolites. If affected analytes are not targeted, EDTA addition may be skipped and 10 mL of water are added.

B) Procedure for Paraquat and Diquat

For the analysis of Paraquat and Diquat add 10 mL of a 1:1 mixture of methanol + aqueous HCl 0.1M to the wateradjusted analytical portion (from **5.2.2**), close the vessel and shake initially for 1 minute. Then place the extraction vessel in a shaking water bath (**2.8**) at 80 °C for 15 minutes. Then shake again for 1 minute and wait for the sample to cool down to room temperature or lower before centrifuging.

Notes: The above mentioned extraction conditions for paraquat and diquat are needed for the quantitative extraction of incurred residues². Extractions with the normal QuPPe solvent (methanol containing 1% formic acid) at room temperature lead to poorer extraction yields but are still well suitable for screening. Extractions with the normal QuPPe solvent involving thermal treatment (80 °C for 15 minutes) were shown to provide quantitative extraction yields of incurred Diquat and Paraquat residues in wheat and potatoes but not in lentils.

² Kolberg DI, Mack D, Anastassiades M, Hetmanski MT, Fussell RJ, Meijer T, Mol HG. Anal Bioanal Chem. 404(8):2465-74 (2012); Development and independent laboratory validation of a simple method for the determination of paraquat and diquat in potato, cereals and pulses.

EU Reference Laboratory for pesticides requiring Single Residue Methods (EURL-SRM)

5.2.4. Freeze-Out and Centrifugation

Depending on the available centrifugation equipment there is various options, e.g.:

EURL-SRM

- (1) Ambient centrifugation: Centrifuge the extracts from 5.2.3 for 5 min at ≥3,000 g (the higher the centrifugation force the better). This procedure is <u>NOT</u> recommended for extracts of commodities that pose difficulties in filtration (e.g. finely milled cereals, pineapples, strawberry, asparagus, kaki, banana and pears). For such commodities better use the following options (2) or (3).
- (2) Ambient centrifugation following freeze-out: Place the extracts from 5.2.3 into a freezer (e.g. at ca. -80 °C for 30 min or for > 120 min at ca. -20 °C) and centrifuge while still cold for 5 min at ≥ 3,000 g. Higher centrifugation forces (e.g. ≥ 10,000 g) and cold centrifugation are preferred. This procedure is suitable for the extracts of all samples and especially recommended for those posing difficulties in filtration.
- (3) Refrigerated high-speed centrifugation: Centrifuge the extracts from 5.2.3 for > 20 min at high centrifugation speed (e.g. > 10,000 g) and low temperatures (e.g. lower than -5 °C). Centrifugation time may be reduced to 5 min if the extract is pre-frozen. This procedure is suitable for extracts of all samples and especially recommended for those posing difficulties in filtration.

Notes: Solid metal racks suitable for falcon tubes (e.g. VWR[®] Modular Blocks for Conical-Bottom 50 mL Centrifuge Tubes) may be used to speed up freeze-out.

Low temperatures reduce the solubility of interfering matrix components resulting in increased precipitation, which considerably facilitates the filtration step as well as the subsequent LC-MS/MS analysis by reducing matrix effects and increasing the lifespan of columns. To avoid redissolvation of the matrix components in the cases (2) and (3), it is recommended to **transfer an aliquot of the cold supernatant into a sealable container** for later use, or to proceed immediately with the next steps, while the extract is still cold.

5.2.5. Removal of proteins and lipids

- (1) <u>Cereals and pulses</u>: transfer 2 mL of the supernatant into a 10 mL centrifuge vial containing 2 mL of acetonitrile (3.3) and shake for 1 min. Then centrifuge for 5 minutes at >3000 g (see 2.7).
- (2) <u>Nuts and oily seeds</u>: transfer 2 mL of the supernatant into a 10 mL centrifuge vial containing 2 mL of acetonitrile (3.3) and 100 mg of C-18 sorbent and shake for 1 min. Then centrifuge for 5 minutes at >3000 g (see 2.7).
- (3) <u>Oily fruits (e.g. avocado)</u>: transfer 4 mL of the supernatant (from 5.2.4) into a 10 mL centrifuge vial containing 200 mg of C-18 sorbent and shake for 1 min. Centrifuge for 5 min at >3000 g (see 2.7). This step may be skipped if the sample was centrifuged frozen (5.2.4-(2) and 5.2.4-(3)), with the supernatant being removed while still very cold.

5.2.6. Filtration

(1) <u>All commodities of plant origin except cereals, pulses, nuts and oily seeds</u>: Withdraw an aliquot (e.g. 2-3 mL) of the supernatant from 5.2.4 or 5.2.5 using a syringe (2.10) and filter it through a syringe filter (2.11) either directly into an auto-sampler vial (2.13) or into a sealable storage vessel.

Notes: Where centrifugation with the available means results in extracts that are difficult to filter, a 2-step filtration may be performed by connecting a 0.45 μ m syringe filter on top of a 0.2 μ m one (**2.10**).

Where a high lipid and low protein content commodity (e.g. avocado) was centrifuged frozen (under **5.2.4)**, and step **5.2.5** was skipped, filter the supernatant quickly to avoid that lipids redissolve.

(2) <u>Cereals, pulses, nuts and oily seeds</u>: Transfer a 3 mL aliquot of the supernatant from 5.2.5 into an ultrafiltration unit (**2.12**) and centrifuge at ca. 3,000 g until enough filtrate is accumulated in the reservoir (5 min are typically enough). Transfer an aliquot of the filtrate into an autosampler vial for measurement.

Notes: Filtration of honey extracts: In case of clogging of the filters because of pollen or wax particles, use 5.0 μm pore size syringe filters (2.11) for pre-filtration (or even instead of the filters with smaller pore-sizes), as pollen grains are typically > 10 μm in diameter. High-speed centrifugation (see 5.2.4 (3)) also helps to separate pollen.

WEIGH sample homogenate into 50 mL centrifuge tube

Fresh fruits and vegetables (with high water content): $10 \text{ g} \pm 0.1 \text{ g}$ Previously re-hydrated dry fruit: e.g. $13.5 \text{ g} \pm 0.1 \text{ g}$ (containing 5 g sample) Dry commodities (e.g. herbs): $2 \text{ g} \pm 0.02 \text{ g}$

ADJUST WATER CONTENT of sample to 10 mL

(Mandatory for matrices w. <80% water. If no IL-IS used manadatory for ALL matrices) e.g. +10 mL of water to 2g of dried mint;

+2 mL water to 10 g potato; + 3.5 mL water to 10 g garlic

Add 100 µL isotopically-labeled internal standard (IL-IS) mix

ADD EXTRACTION SOLVENT (10 mL methanol containing 1 % formic acid)

SHAKE thoroughly for 1 min to 15 min for dry commodities

Preferably FREEZE-OUT extract until completely frozen e.g. >90 min at -18°C or ca. 30 min at -80 °C

CENTRIFUGE (5 min at >3,000 g but **preferably** >10,000 g); <u>preferably</u> cryogenic centrifugation (e.g. at -10 °C) (if centrifuge is not refrigerated, swiftly proceed with centrifugation and the following step to avoid redissolvation of matrix)

dSPE to Remove Lipids for High Oil Content samples (e.g. avocado): (this step may be skipped if sample was centrifuged frozen at \leq -10 °C and \geq 20 min)

TRANSFER 4 mL raw extract into a tube containing 200 mg C₁₈-sorbent, SHAKE for 1 min and CENTRIFUGE (>3,000 g for 5 min)

WITHDRAW SUPERNATANT AND FILTER it into a plastic autosampler vial (use syringe filter of 0.2 μm pore size; e.g. H-PTFE)

(*plastic vials are recommended* as some compounds tend to interact with glass) (withdraw cold supernatant quickly after centrifugation to avoid that matrix components redissolve)

LC-MS/MS and IC-MS/MS analysis

Figure 1: QuPPe-PO-Method at a glance (general procedure for most commodities, not considering paraquat and diquat)

Figure 2: QuPPe-PO-Method at a glance; procedure for cereals, pulses, oily seeds and nuts

5.3. Preparation of blank extracts

Using homogenates of suitable blank commodities (not containing any relevant residues of the analytes of interest), proceed sample preparation exactly as described in **5.2** but **SKIP THE ADDITION OF ISs.**

5.4. Recovery experiments

Weigh an appropriate portion (see **5.2.1**) of a blank commodity homogenate into a 50 mL centrifuge tube (**2.3**) and spike it with a suitable pesticide working solution (**3.19** and **Table 43**). Spike directly to the matrix, prior to any water or solvent addition. Use small volumes of pesticide working solutions (e.g. 50-300 μ L), to avoid too strong dilution. Conduct sample preparation as described in **5.2**.

EU Reference Laboratory for pesticides requiring Single Residue Methods (EURL-SRM)

5.5. Preparation of calibration standards

5.5.1. Solvent-based calibration standards

An exemplary pipetting scheme for preparing solvent-based calibration standards is shown in **Table 2**. The calculation of the mass-fraction W_R of the pesticide in the sample, when IS is used, is shown in **5.7.1**. Where solvent-based calibrations are used the use of IL-ISs for quantification is essential as the IS compensates for any matrix-related signal suppressions / enhancements.

Notes: Though matrix-matched calibration is considered the best option, solvent-based calibrations can also produce accurate results as IL-ISs can compensate for errors irrespective on whether the calibration is solvent-based, matrix-based or matrix-matched. Nevertheless, in some cases the use of matrix-based calibrations are to be preferred over solvent-based calibrations as the matrix present can decrease unwanted interactions with surfaces (e.g. in the injector area) thus leading to peak shapes and retention times that are closer to those observed from sample extracts.

5.5.2. Matrix-based and matrix-matched calibration standards

URL-SRM

Transfer suitable aliquots of a blank extract (5.3) to auto-sampler vials and proceed as shown in **Table 2**. The calculation of the mass-fraction W_R of the pesticide in the sample using matrix-matched calibration standards, with and without the use of IL-IS, is shown in **5.7.1** and **5.7.2** respectively.

					Calibration standards							
		Solve	Solvent based (5.5.1)			Matrix-matched (5.5.2)						
		,	using IL-IS ⁴			Vithout IL-	IS⁵	using IL-IS ⁴				
Calibr. levels in μg pesticide /mL OR in μg pesticide/ "IL-IS-portion" ¹		0.05 ⁶	0.1	0.25	0.05	0.1	0.25	0.05	0.1	0.25		
Blank extract (5.3)		-	-	-	850 μL	850 μL	850 μL	800 μL	800 μL	800 μL		
1:1 (v/v) mix of w acidified methanol (ater (3.1) and 3.6)	850 μL	800 μL	850 μL	100 µL	50 μL	100 µL	50 μL	-	50 μL		
Pesticide working	1 μg/mL	50 μL	100 μL	-	50 µL	100 µL	-	50 µL	100 μL	-		
solutions (3.19) ²	5 μg/mL	-	-	50 μL	-	-	50 μL	-	-	50 μL		
IS-WSIn-2 (3.23) ^{1,3}		100 μL	100 µL	100 μL	-	-	-	100 µL	100 µL	100 µL		
Total volume		1000 μL	1000 μL	1000 µL	1000 μL	1000 μL	1000 μL	1000 µL	1000 µL	1000 µL		

Table 2: Exemplary pipetting scheme for the preparation of calibration standards

 1 One IL-IS portion would correspond to the IL-IS mass contained in 100 μ L IS-WSIn-2 (which in the particular example is added to each calibration standard).

² The concentration of the pesticide working solution(s) should be sufficiently high to avoid excessive dilution of the blank extract, which would result in matrix effect deviations.

³For calibration standards of 1 mL it is highly recommended to prepare the IS-WSIn-2 (**3.23**) by diluting IS-WSIn-1 (**3.22**) appropriately (e.g. 20-fold). The same volume and pipette as in **5.2.3** can be used for preparing the calibration standards.

⁴ When employing IL-ISs matrix-matching, volume adjustments are of less importance as the IL-IS compensates for any matrixrelated signal suppressions / enhancements. Also solvent-based calibrations can be used here. Important is that a) the mass ratio of pesticide and IL-IS in the respective calibration standards and b) the ratio between the IL-IS mass added to the sample (**5.2.3**) and the IL-IS mass added to the calibration standard(s) (**5.5.1** and **5.5.2**) is known and recorded. For convenience the latter mass-ratio should be kept constant throughout all calibration levels (e.g. at 20:1 when preparing calibration standards of 1 mL).

⁴ Where IL-ISs are <u>not</u> available/employed, matrix-matched standards **Table 2**) or the standard additions approach (**5.5.3**) are particularly important to compensate for matrix effects in measurement. In both cases the total volume of the sample raw extracts is assumed to be exactly 20 mL. This translates into 0.5 g sample equivalents per mL when using 10 g test portions. ⁶ The calibration level of 0.05 µg/mL corresponds to 0.1 mg pesticide /kg sample, when using 10 g test portions, or to 0.2 mg/kg sample when using 5 g test portions. Where the raw extract is diluted further and when using 5 g test portions (e.g. pulses, nuts and oily seeds), the 0.05 µg/mL calibration level corresponds to 0.4 mg pesticide /kg sample.

European Commission

5.5.3. Standard-Additions approach

Where no appropriate IL-ISs are available the method of standard additions is a very effective approach for compensating matrix-induced enhancement or suppression phenomena. As this procedure involves a linear extrapolation it is mandatory that pesticide concentrations and detection signals show a linear relationship throughout the relevant concentration range. The procedure furthermore requires knowledge of the approximate (estimated) residue level in the sample ($w_{R(approx)}$). This info is derived from a preliminary analysis.

Prepare 4 equal portions of the final extract and spike 3 of them with increasing amounts of analyte. The amounts to be added should be chosen in such a way to remain within the linear range. It should be avoided that the added levels are too close to the expected analyte level to avoid that measurement variability will influence too much the slope, which is used to calculate the analyte level. In case the concentrations are outside the linear range a dilution of all 4 extracts with the extraction solvent is indicated.

Prepare a working solution (**3.19**) of the analyte at a concentration level where 50 or 100 μ L of the solution contain the lowest amount of analyte to be added.

Example A: Vial 1) no addition; vial 2) 0.5 x $w_{R(approx)}$, vial 3) 1 x $w_{R(approx)}$, and vial 4) 1.5 x $w_{R(approx)}$,

Example B: Vial 1) no addition; vial 2) 1 x $w_{R(approx)}$, vial 3) 2 x $w_{R(approx)}$, and vial 4) 3 x $w_{R(approx)}$.

Adjust the volume within all vials by adding the corresponding solvent amounts.

EURL-SRM

An exemplary pipetting scheme according to Example B in shown in **Table 3**. The calculation of the mass fraction of the pesticide in the sample w_R is shown in **5.7.2**.

Table 3: Exemplary pipetting scheme of a standard additions to extract aliquots approach (for a sample extract containing 0.5 g sample equivalents per mL and an estimated residue level ($w_{R(approx)}$) of 0.5 mg/kg = 0.25 µg/1000 µl

Additions	Vial 1	Vial 2	Vial 3	Vial 4
Volume of sample extract	1000 μL (= 0.5 g sample)			
Internal Standard (IS)	none	none	none	none
Added volume of pesticide working solution containing 5 μg/mL (3.19)		50 μL	100 µL	150 μL
Mass of pesticide added to each vial ($m_{pest}^{std add}$)	-	0.25 μg	0.5 μg	0.75 μg
Volume of solvent (for volume equalization)	150 μL	100 µL	50 μL	-
Final volume	1150 μL	1150 μL	1150 μL	1150 μL

5.5.4. Procedural calibration standards

EURL-SRM

Procedural calibration is most useful where numerous samples of the same commodity type are analyzed within the same badge and can help to largely compensate for recovery and matrix effects. An ideal precondition is the availability of a blank matrix of exactly the same type as the samples to be analyzed. For this, prepare 4 analytical portions of a suitable blank sample and spike three of them with increasing amounts of the pesticides of interest (as done in recovery experiments, see also **5.4**). The aim should be to cover the concentration range of the analytes expected in the samples. These spiked samples are extracted as described above and the obtained extracts are used in the same way as any other matrix-matched standards.

5.6. LC-and IC-MS/MS analysis

Any suitable LC- or IC-MS/MS conditions generating peaks that can be well integrated may be used. The use of IL-ISs typically ensures a good method accuracy and robustness even when matrix components have a strong influence on signals or retention times. Some exemplary instrument measurement conditions are given below. An overview of LC- and IC-MS/MS conditions proposed within this document is given in **Table 4** and following. Table 4: Scope of QuPPe-LC-Methods of analytes analyzed in the ESI-pos. mode (see legent under Table 7) Part.I

Ou DDa waatha daa da	M 1.1	M 1.2	M 1.3	M 1.4	M 1.5	M 1.6a/b	M 1.7 a/b	M 1.10	M 1.11	M 1.12
QuPPe method code	(5.6.2)	(5.6.3)	(5.6.4)	(5.6.5)	(5.6.6)	(5.6.7)	(5.6.8)	(5.6.9)	(5.6.10)	(5.6.11)
Separation principle	Anion Ex.	Anion Ex.	Carbon	Carbon	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC
Column type	AS 11	AS 11-HC	Hypercarb	Hypercarb	Trinity Q1	<u>a:</u> Torus DEA/ <u>b:</u> APPC	<u>a:</u> Torus DEA/ <u>b:</u> APPC	APPC	Raptor PolarX	ObeliscN
	ANALYTES COVERED BY LC-MS/MS IN THE ESI-POSITIVE MODE									
Amitrole	NT	NT	-	NT	NT	NT	NT	NT	NT	NT
ETU	NT	NT	\checkmark	NT	NT	NT	NT	NT	NT	NT
ΡΤυ	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
Cyromazine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Trimesium	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Daminozide	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chlormequat	NT	NT	\checkmark	NT	NT	NT	NT	NT	NT	NT
Mepiquat	NT	NT	\checkmark	NT	NT	NT	NT	NT	NT	NT
Difenzoquat	NT	NT	-	NT	NT	NT	NT	NT	NT	NT
Propamocarb	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Melamine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Diquat	NT	NT	-	NT	NT	NT	NT	NT	NT	NT
Paraquat	NT	NT	-	NT	NT	NT	NT	NT	NT	NT
N,N-Dimethylhydrazine	NT	NT	-	NT	NT	NT	NT	NT	NT	NT
Nereistoxin	NT	NT	\checkmark	NT	NT	NT	NT	NT	NT	NT
Streptomycin	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Kasugamycin	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Morpholine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Diethanolamine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Triethanolamine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2,4-Triazole	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Triazole-alanine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Triazole-acetic acid	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Triazole-lactic acid	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Aminocyclopyrachlor	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chloridazon-desphenyl	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Mepiquat-4-hydroxy	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Propamocarb-N-desmethyl	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Propamocarb-N-oxide	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Maleic Hydrazide	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Nicotine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Matrine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Oxymatrine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

	M 2	M 3	M 4.1	M 4.2	M 5	M 6	M 7	M8	M 9	M 10	M 11
QuPPe method code	(5.6.12)	(5.6.13)	(5.6.14)	(5.6.15)	(5.6.16)	(5.6.17)	(5.6.18)	(5.6.19)	(5.6.20)	(5.6.21)	(5.6.22)
Conception mainsing								Carbon		HILIC	Ion Chroma-
Separation principle	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	Carbon	HILIC		tography
Column type	Obelisc-R	Obelisc-R	Obelisc-R	BEH-Amide	PFP	Obelisc-R	Trinity P1	Hypercarb	Trinity P1	Torus DEA	AS19
ANALYTES COVERED BY LC-and IC-MS/MS IN THE ESI-POSITIVE MODE											
Amitrole	NT	✓	-	\checkmark	NT	NT	NT	NT	NT	NT	NT
ETU	NT	✓	-	\checkmark	✓	NT	NT	NT	NT	NT	NT
PTU	NT	✓	-	\checkmark	\checkmark	NT	NT	NT	NT	NT	NT
Cyromazine	NT	✓	\checkmark	\checkmark	NT	NT	NT	NT	NT	NT	NT
Trimesium	NT	\checkmark	\checkmark	∽	NT	NT	NT	NT	NT	NT	NT
Daminozide	NT	\checkmark	\checkmark	\checkmark	NT	NT	NT	NT	NT	NT	NT
Chlormequat	NT	✓	✓	✓	\checkmark	NT	NT	NT	NT	NT	NT
Mepiquat	NT	✓	\checkmark	\checkmark	\checkmark	NT	NT	NT	NT	NT	NT
Difenzoquat	NT	\checkmark	\checkmark	∽	\checkmark	NT	NT	NT	NT	NT	NT
Propamocarb	NT	✓	✓	✓	NT	NT	NT	NT	NT	NT	NT
Melamine	NT	NT	✓	\checkmark	NT	NT	NT	NT	NT	NT	NT
Diquat	NT	NT	✓	(√)****	NT	NT	NT	NT	NT	NT	NT
Paraquat	NT	NT	✓	(√)****	NT	NT	NT	NT	NT	NT	NT
N,N-Dimethylhydrazine	NT	NT	\checkmark	-	NT	NT	NT	NT	NT	NT	NT
Nereistoxin	NT	NT	\checkmark	\checkmark	NT	NT	NT	NT	NT	NT	NT
Streptomycin	NT	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT
Kasugamycin	NT	NT	NT	NT	NT	\checkmark	NT	NT	NT	NT	NT
Morpholine	NT	NT	(✓)	(✓)	NT	NT	✓	NT	\checkmark	NT	NT
Diethanolamine	NT	NT	(✓)	(✓)	NT	NT	✓	NT	NT	NT	NT
Triethanolamine	NT	NT	(✓)	(✓)	NT	NT	✓	NT	NT	NT	NT
1,2,4-Triazole	NT	NT	(✓)	-	NT	NT	NT	✓	NT	(✓)	NT
Triazole-alanine	NT	NT	(✓)	-	NT	NT	NT	✓	NT	✓	NT
Triazole-acetic acid	NT	NT	(✓)	-	NT	NT	NT	✓	NT	✓	NT
Triazole-lactic acid	NT	NT	NT	-	NT	NT	NT	✓	NT	✓	NT
Aminocyclopyrachlor	NT	NT	NT	\checkmark	NT	NT	NT	NT	NT	NT	NT
Chloridazon-desphenyl	NT	NT	NT	\checkmark	NT	NT	NT	NT	NT	NT	NT
Mepiquat-4-hydroxy	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
Propamocarb-N-desmethyl	NT	NT	NT	\checkmark	NT	NT	NT	NT	NT	NT	NT
Propamocarb-N-oxide	NT	NT	NT	\checkmark	NT	NT	NT	NT	NT	NT	NT
Maleic Hydrazide	NT	NT	NT	\checkmark	NT	NT	NT	NT	NT	NT	NT
Nicotine	NT	NT	NT	\checkmark	NT	NT	NT	NT	NT	NT	NT
Matrine	NT	NT	NT	\checkmark	NT	NT	NT	NT	NT	NT	NT
Oxymatrine	NT	NT	NT	\checkmark	NT	NT	NT	NT	NT	NT	NT

18 of 102

 Table 5: Scope of QuPPe-LC- and IC-Methods of analytes analyzed in the ESI-pos. mode (see legent under Table 7) Part.II

	2				egi metre i u					
OuPPe method code	M 1.1	M 1.2	M 1.3	M 1.4	M 1.5	M 1.6a/b	M 1.7 a/b	M 1.10	M 1.11	M 1.12
Qui i e methoù coue	(5.6.2)	(5.6.3)	(5.6.4)	(5.6.5)	(5.6.6)	(5.6.7)	(5.6.8)	(5.6.9)	(5.6.10)	(5.6.11)
Separation principle	Anion Ex.	Anion Ex.	Carbon	Carbon	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC
Column type	AS 11	AS 11-HC	Hypercarb	Hypercarb	Trinity O1	<u>a:</u> Torus DEA/	<u>a:</u> Torus DEA/	APPC	Raptor	ObeliscN
					,	<u>b:</u> АРРС	<u>b:</u> APPC		PolarX	
ANALYTES COVERED BY LC-MS/MS IN THE <u>ESI-NEGATIVE</u> MODE										
Ethephon	✓	✓	✓	NT	✓	✓	(✓)		\checkmark	✓
НЕРА	\checkmark	\checkmark	✓	NT	✓	✓	(✓)		\checkmark	\checkmark
Glufosinate	✓	✓	✓	NT	✓	✓	(✓)		✓	\checkmark
N-Acetyl-Glufosinate	✓	✓	✓	NT	✓	✓	(✓)		✓	\checkmark
МРРА	✓	✓	✓	NT	✓	✓	(✓)		✓	\checkmark
Glyphosate	✓	✓	✓	NT	✓	✓	(✓)		✓	\checkmark
АМРА	✓	\checkmark	✓	NT	✓	✓	(✓)		\checkmark	(✓)
Phosphonic acid	(✓)	(✓)	✓	\checkmark	 ✓ 	✓	\checkmark		\checkmark	(√)***
N-Acetyl-AMPA	NT	✓	✓	NT	✓	✓	(✓)		NT	NT
Fosetyl-Al	-	✓	✓	NT	✓	✓	(✓)		\checkmark	(√)***
Maleic Hydrazide	-	-	✓	NT	-	-	-	(✓)	(✓)	(✓)
Perchlorate	NT	-	✓	✓	\checkmark	(√)**	✓	\checkmark	✓	✓
Chlorate	NT	-	✓	✓	\checkmark	(√)**	✓	\checkmark	(✓)	✓
Bialaphos	NT	NT	✓	NT	✓	NT	NT		✓	NT
Cyanuric acid	NT	NT	✓	NT	-	-	-	\checkmark	(✓)	(🗸)
Bromide	NT	NT	-	\checkmark	\checkmark	(√)**	✓		\checkmark	✓
Bromate	NT	NT	(✓)	\checkmark	NT	NT	\checkmark		NT	NT
N-Acetyl-Glyphosate	NT	NT	✓	NT	(√)**	✓	(✓)		-	\checkmark
Difluoroacetic acid	NT	NT	NT	NT	NT	NT	NT		\checkmark	NT
Trifluoroacetic acid	NT	NT	NT	NT	NT	NT	NT		\checkmark	\checkmark
Thiocyanate	NT	NT	(√)**	\checkmark	NT	NT	NT		\checkmark	NT
Desmethyl-Dimethoate	NT	NT	\checkmark	-	NT	NT	NT		NT	NT

Table 6: Scope of QuPPe-LC-Methods of analytes analyzed in the ESI-neg. mode Part.I

 \checkmark = satisfactory chomatography and detection sensitivity achieved,

NT = Not tested under the conditions shown in the respective sections,

(\checkmark) = possible but compromised due to matrix effects or lacking separation or limited sensitivity or limitations in the detection of qualifiers compromising identification.

"-" analysis was tested and found to be poor under the described conditions,

* Using a gradient (98% B -> 60% B in 5 min, hold 2 min)

** Different LC-conditions required to improve peaks (see M1.7 or M1.9)

*** Compromised quantitation of Phosphonic acid due to co-elution of Phosphonic acid and Fosetyl, see also General Hints 5.6.1

**** Quality of analysis may strongly depend on instrument type and condition

	M 2	M 3	M 4.1	M 4.2	M 5	M 6	M 7	M8	M 9	M 10	M 11
QuPPe method code	(5.6.12)	(5.6.13)	(5.6.14)	(5.6.15)	(5.6.16)	(5.6.17)	(5.6.18)	(5.6.19)	(5.6.20)	(5.6.21)	(5.6.22)
Separation principle	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	Carbon	HILIC	HILIC	Ion Chroma- tography
Column type	Obelisc-R	Obelisc-R	Obelisc-R	BEH-Amide	PFP	Obelisc-R	Trinity P1	Hypercarb	Trinity P1	Torus DEA	AS19
ANALYTES COVERED BY LC-MS/MS IN THE ESI-NEGATIVE MODE											
Ethephon	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	✓
HEPA	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	✓
Glufosinate	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	✓
N-Acetyl-Glufosinate	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	\checkmark
МРРА	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	\checkmark
Glyphosate	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	\checkmark
АМРА	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	\checkmark
Phosphonic acid	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	✓
N-Acetyl-AMPA	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	✓
Fosetyl-Al	\checkmark	NT	NT	NT	NT	NT	√*	NT	NT	NT	\checkmark
Maleic Hydrazide	\checkmark	NT	NT	NT	NT	NT	√*	NT	NT	NT	(✓)
Perchlorate	\checkmark	NT	NT	NT	NT	NT	√*	NT	NT	NT	✓
Chlorate	NT	NT	NT	NT	NT	NT	√*	NT	NT	NT	✓
Bialaphos	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	-
Cyanuric acid	NT	NT	NT	NT	NT	NT	√*	NT	NT	NT	✓
Bromide	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	✓
Bromate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
N-Acetyl-Glyphosate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	\checkmark
Difluoroacetic acid	NT	NT	NT	NT	NT	NT	NT	NT	\checkmark	NT	\checkmark
Trifluoroacetic acid	NT	NT	NT	NT	NT	NT	NT	NT	✓	NT	✓
Thiocyanate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	\checkmark
Desmethyl-Dimethoate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-

 Table 7: Scope of QuPPe-LC- and IC-Methods of analytes analyzed in the ESI-neg. mode Part.II

 \checkmark = satisfactory chomatography and detection sensitivity achieved,

NT = Not tested under the conditions shown in the respective sections,

(\checkmark) = possible but compromised due to matrix effects or lacking separation or limited sensitivity or limitations in the detection of qualifiers compromising identification.

"-" analysis was tested and found to be poor under the described conditions,

* Using a gradient (98% B -> 60% B in 5 min, hold 2 min)

** Different LC-conditions required to improve peaks (see M1.7 or M1.9)

EURL-SRM

Table 8 : Methods mainly used by CVUA Stuttgart

Method	Special remarks on Substances	LC-MS/MS	Comments
M 1.3: Glyphosate & Co. Hyper- carb (see 5.6.4)	Glyphosate AMPA N-Acetyl-AMPA N-Acetyl-Glyphosate Ethephon HEPA Glufosinate N-Acetyl-Glufosinate MPPA Fosetyl-Al Phosphonic acid (screening) Maleic Hydrazide Perchlorate (screening)) Chlorate (screening) Cyanuric acid Bialaphos Desmethyl-Dimethoate	1290 Agilent In- finity II and Sciex QTRAP 6500+	Evaluation via solvent calibration and IL-ISs except for Bialaphos and N-Ace- tyl-AMPA (IL-IS not yet available) M 1.5 and M 1.6 are currently being tested for their suitability to replace M 1.3
M 1.4: Method 1.4 (M1.4): "Per- ChloPhos" (see 5.6.5)	Perchlorate (quantitative) Chlorate (quantitative) Phosphonic acid (quantitative) Bromide (Screening, quantitative) Bromate (quantitative) Thiocyanate	1290 Agilent In- finity II and Sciex QTRAP 6500+	Mostly employed directly (option: screening by M 1.3, if postive -> M 1.4) Dilution 5-fold Evaluation via solvent calibration and IL-ISs
M 4.1: "Quats & Co Obelisc R (see 5.6.14)	Paraquat (for specific commodities) Diquat (for specific commodities)	1290 Agilent In- finity II and Sciex QTRAP 5500	Analysis of specific relevant commod- ities. Evaluation via matrix-based cali- bration and IL-ISs
M 4.2: "Quats & Co BEH Amide" (see 5.6.15)	Amitrole ETU Chlormequat Mepiquat Daminozide PTU Cyromazine Trimethylsulfonium Nereistoxin Difenzoquat Melamine Propamocarb Morpholine (1 st screening) Diethanolamine (1 st screening) Triethanolamine (1 st screening) Triethanolamine (1 st screening) Aminocyclopyrachlor Chloridazon-desphenyl Mepiquat-4-hydroxy Propamocarb-N-desmethyl Propamocarb-N-oxide Nicotine Matrine Oxamatrine	1290 Agilent In- finity II and Sciex QTRAP 5500	Evaluation via matrix-based calibra- tion and IL-ISs (except for Difen- zoquat, Aminocyclopyrachlor, Mepi- quat-4-hydroxy, Propamocarb-N- desmethyl, Propamocarb-N-oxide)
M 7: "Morpholine, Diethanola- mine and Triethanolamine" (see 5.6.18)	Morpholine (quantitative) Diethanolamine (quantitative) Triethanolamine (quantitative)	1290 Agilent In- finity II and Sciex QTRAP 5500	Employed if screening by M 4.2 was positive and in matrices where DEA tends to give false negative results in M 4.2 (e.g. in cereals, dried mush- rooms). Quantification via solvent- based calibration and IL-ISs

5.6.1. General hints on analytes to avoid pitfalls

1. Mass spectrometric interferences:

JRL-SRM

a) AMPA and Fosetyl share the mass-transition 110/81. Chromatographic separation is thus needed.

b) Interference of Phosphonic acid by Phosphoric acid; take care when using M 1.4 (Hypercarb column): When extracts containing high levels of Phosphoric acid (which is naturally contained at high concentrations in many samples) are injected, the chromatographic separation of Phosphoric and Phosphonic acid is compromised. This often results in a suppression of the Phosphonic acid signal and in some cases even leads to false negative results. The most important qualifier mass-transition of Phosphonic acid (81/63) also occurs as a minor transition of Phosphoric acid, but as the latter is often present at much higher levels than Phosphonic acid its interference on this mass transition can still be significant, especially if these two compounds elute in close vicinity (e.g. M 1.4 using Hypercarb column). Exemplary chormatograms demonstrating this effect are shown in Table 10.

The chromatographic separation of Phosphoric and Phosphonic acid considerably improves following dilution of the extracts typically allowing proper detection, identification and quantification of Phosphonic acid next to high levels of phosphoric acid. When using method M 1.4 it is thus beneficial to inject smaller volumes of sample extract (e.g. 1-2 μ L) or to dilute QuPPe extracts 5-10-fold before injection.

Fortunately, both Phosphoric and Phosphonic acid have at least 1 proper individual mass-transition (97/63 and 81/79 respectively, shown in **Table 10**), which in the case of Phosphonic acid can be used for quantitation and to improve identification certainty. The elution time and peak shape of the Phosphonic acid IL-IS can also be used to distinguish it from Phosphoric acid and to avoid false positives. Using signals on the 81/63 mass trace it was calculated that 20 mg/kg Phosphoric acid would simulate 0.1 mg/kg Phosphonic acid if this mass transition was used for quantification. Different instrument settings may result in a different degree of interference.

In an experiment using Differential Mobility Separation (DMS) a separation of the phosphonate generated in-source from Phosphate and the original Phosphonate (mass trace m/z 81/63) was achieved, possibly due to a different molecular structure of the P(OH)₃ species and the HPO(OH)₂ species.

Tip: Using method M 1.7 (Torus DEA and APPC) and method M 1.8 (Raptor Polar X), sufficient chromatographic separation was achieved without dilution of the sample extract. Exemplary chromatograms for M1.7 are shown in **Table 9**

Table 9: Chromatograms of Phosphonate transition 81/63 (also common to Phosphate) at 0.01 µg phosphonate/mL in grape, onion and infant formula using **M 1.7**. Both substances are separated sufficiently.

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Detected signals at mass trace of 81/63 97/63 81/79 Sample common to Phosphoric and unique to Phosphoric acid unique to Phosphonic acid Phosphonic acid 5e6 1.72 1 72 1.49 1.0e7 2.0e6 4e6 8.0e6 1.5e6 3e6 6.0e6 12-fold 1.0e6 Pear approx. 160 mg/kg 13 mg/kg 4.0e6 5.0e5 1e6 2.0e6 0.0e0 0.0e0 0e0 5 6 7 8 5 6 5 Ż 9 ż Ż 8 6 8 9 Time r Time min Time 2.0e6 -1.72 1.72 1.49 1.5e7 4.0e6 1.5e6 1.0e7 3.0e6 White tensit 32-fold 1.0e6 approx. 230 mg/kg 2.0e6 7.2 mg/kg grapes 1 5.0e6 5.0e5 1.0e6 0.0e0 0.0e0 0.0e0 T 5 5 6 7 8 6 5 6 8 Time, mir Time, min Time m 5e4 1.2e5 1.73 1.50 1.73 1.0e7 1.0e5 4e4 8.0e6 8.0e4 3e4 ensity White 940-fold 6.0e6 6.0e4 0.16 mg/kg approx. 150 mg/kg 4.0e6 grapes 2 4.0e4 1e4 2.0e6 2.0e4 0e0 0.0e0 0.0e0 4 5 T Ъ 5 6 7 3 6 5 6 7 8 Time Time, min Time, r 1.2e5 3.0e5 1.73 1.74 1.49 1.0e5 1.5e7 2.5e5 8.0e4 2 0e5 540-fold 1.0e7 Cucum-6.0e4 1.5e5 approx. 440 mg/kg < 0.82 mg/kg 4.0e4 1.0e5 ber 5 0e6 2.0e4 5.0e4 0.0e0 0.0e0 0.0e0 5 6 Ż 5 5 6 ż 8 4 6 ź 8 8 ż Time Tin Tie 1.2e6 1.71 1.49 1.72 1.5e7 4e5 1.0e6 3e5 8 0e5 1.0e7 , Sib∕ 140-fold 6 0e5 2e5 Raisins approx. 470 mg/kg 3.3 mg/kg 4.0e5 5.0e6 1e5 2.0e5 0e0 0.0e0 0.0e0 1 4 5 6 3 4 5 6 8 ż. 7 8 ģ 3 4 5 6 7 8 ġ ż ģ Time, m Time, min Time, min

Table 10: Chromatographic and mass-spectrometric separation of Phosphoric and Phosphonic acid using M 1.4.

c) Intereference of Phosphonic acid by Fosetyl and Fosetyl-D₅:

Fosetyl and its D₅-analogon tend to degrade to Phosphonic acid both in solutions and via in-source fragmentation in LC-MS/MS, see also **below** and **6**. A good chromatographic separation between Fosetyl and Phosphonic acid is thus necessary.

Table 11 shows an <u>example</u> of this in-source fragmentation using M 1.3 and M 1.4 (Hypercarb column). Upon injection of 0.1 μ g/mL Fosetyl, a peak showed up on the mass traces of Phosphonic acid at the retention time of Fosetyl. The signal intensity of this peak corresponded to 0.04 μ g/mL Phosphonic acid. When injecting Fosetyl-D₅ at 0.1 μ g/kg the in-source fragmentation was less abundant (corresponding to approx. 0.001 μ g/mL Phosphonic acid) but Phosphonic acid as impurity showed up at its proper retention time at a concentration corresponding to approx. 0.007 μ g/mL.

Tip: To be on the safe side, Fosetyl-IL-IS should not be added to calibration solutions, sample test portions or sample extracts intended to be used for the analysing native Phosphonic acid. Further, calibration solutions used for the analysis of Phosphonic acid should better not contain any native Fosetyl.

Table 11: Chromatograms of Phosphonic acid, Fosetyl and Fosetyl-D₅ (each at 0.1 μ g/mL) using Method M 1.3 and M 1.4.

Note: In addition to the proper mass-traces of Fosetyl and Fosetyl- D_5 the mass trace of Phosphonic acid is also shown to demonstrate the occurrence of in-source fragmentation of Fosetyl and Fosetyl- D_5 towards Phosphonic acid as well as the presence of Phosphonic acid as an impurity of the Fosetyl- D_5 standard solution.

d) Paraquat interfered by Diquat:

Tranistions of Paraquat ($[M^{2+} - H^+]^+ 185/\#$) are interfered by Diquat. Diquat and Paraquat produce several parent ions within the ion-source, each one fragmenting to various product ions, see 3.a). MRMs of singly charged protonated Paraquat ($[M^{2+} - H^+]^+ 185/\#$) tend to be interfered by Diquat, e.g. $[M^{2+} - H^+]^+ 185/170$ and $[M^{2+} - H^+]^+ 185/169$. Same applies to the respective MRM of Paraquat D₈ ($[M^{2+} - H^+]^+ 193/\#$), which is interfered by Diquat D₈. Furthermore, those transitions are less sensitive.

e) Bromide; take care when using M 1.4:

High levels of Phosphoric acid (which is naturally contained at high concentrations in many samples) or Phosphonic acid (that is used as fungicide) could affect the determination of bromide. Depending on the condition of the column, the separation of these three compounds could be insufficient, resulting in compromised identification and quantification, especially when using M 1.4 (Hypercarb column).

Bromide is mainly composed of two naturally occurring stable isotopes, that are almost equally frequent ($^{79}Br^-$ and $^{81}Br^-$). For bromide (element-ion), no MS/MS fragmentation is possible so that MS/MS analysis has to rely on "parent/parent" analysis. The mass trace m/z 81/81 is highly recommended for quantifications whereas m/z 79/79 can be used as a qualifier.

The mass trace m/z 81/81 is interfered by Phosphonic acid (m/z of $[H_2PO_3]^- = 81$) whereas m/z 79/79 is highly affected by Phosphoric acid due to in-source fragmentation (**Table 12**, the two columns declared as "CE -5 V"). In practice the interference by Phosphoric acid is more critical as it is naturally contained at high levels (e.g. 100-2000 mg/kg) in various samples.

Tip: A 50-fold dilution of QuPPe extracts typically allows better identification and quantification of bromide next to high levels of Phosphoric and Phosphonic acid as chromatographic separation is improved and matrix-effects reduced (when using M 1.4, Hypercarb).

To improve selectivity and increase quantification accuracy and identification certainty, the interferences

caused by Phosphoric and Phosphonic acid can be further reduced by increasing the Collision Energy (CE) for the m/z 81 and 79 (**Table 12**, the two columns declared as "CE -70 V"). While Bromide cannot be fragmented, the interfering quasi-molecular ion of Phosphonic acid (m/z 81) as well as the interfering insource fragments of Phosphoric and Phosphonic acid (m/z 79) are largely destroyed by increased collision induced dissociation. While losing up to a 100-fold of absolute sensitivity, the interferences were largely decreased resulting in satisfactory signal-to-noise ratio.

Table 12: Chromatograms of Bromide using non-optimized collision energies (CE -5 V) showing the interference by Phosphoric and Phosphonic acid as well as optimized collision energies (CE -60 V and -70 V, the) showing reduced interferences using M 1.4.

RL-SRM

2. Degradation and Contamination:

JRL-SRM

a) Issues concerning the purity of N-Acetyl-Glufosinate D₃:

There is two types of N-Acetyl-Glufosinate D₃ standards on the market. Both contain the three deuterium atoms on a methyl group, but the first one contains them on the methyl group of the acetyl moiety and the other one on the methyl group that is attached to the phosphorus atom. In theory, the acetyl group can be hydrolytically detached, so that native glufosinate may be formed in working solutions of N-Acetyl-Glufosinate (acetyl-D₃), leading to false positive results. Fortunately the degradation rate observed in the water:acetonitrile 9:1 mixture (see **Figure 37**) was negligible. More important is the content of native glufosinate in purchased N-Acetyl-Glufosinate (acetyl-D₃) standards.

Tip: Before first use, the standards should be checked for the presence of native glufosinate impurities and not used if the levels of native compound are considered critical. The levels of native glufosinate impurities depend on the manufacturer and the badge. Where e.g. 0.5 μ g IL-IS is added to 1 g sample, the presence of 2% native glufosinate (a level once encountered) can lead to glufosinate levels of 0.01 mg/kg. See also chapter **6**.

b) Possible contaminations by consumables:

Check the filters and other consumables used for sample preparation for any contamination of Perchlorate and Chlorate. Cellulose mixed ester filters were found to be suitable for this application (see comments under 2.11).

c) Stability of the Phosphonic acid IL-IS:

In presence of water and especially at high pH levels, Phosphonic acid ¹⁸O₃ will gradually convert to ${}^{18}O_2{}^{16}O_1$, ${}^{18}O_1{}^{16}O_2$ and eventually of ${}^{16}O_3$ (native) Phosphonic acid. The ${}^{18}O_3$ Phosphonic acid standard solution provided by the EURLs should be preferably diluted in acetonitrile, where it was shown to be stable for long periods.

d) Degradation of Ethephon and Fosetyl to Phosphonic acid:

Fosetyl and Ethephon as well as their respective IL-IS's degrade to Phosphonic acid. **Table 13** shows a small peak of Phosphonic acid (corresponding to 0.002 μ g/mL) that showed up when Ethephon standard at 1 μ g/mL was injected using M 1.4. This contamination is considered negligible. However **Table 13** also shows chromatograms of an unsuitable Ethephon-D₄ standard containing only ca. 0.08 μ g/mL instead of the expected 1 μ g/mL Ethephon-D₄ and ca. 0.8 μ g/mL Phosphonic acid. The use of such an IL-IS would contaminate the sample with Phosphonic acid leading to false positive results.

Tip: To be on the safe side Fosetyl, Ethephon and their respective IL-IS's should thus not be added to calibration solutions or samples or sample extracts intended to be used for the analysis of native phosphonic acid. Furthermore calibration solutions used for the analysis of phosphonic acid should better not contain any native Ethephon or Fosetyl.

See also "Intereference of Phosphonic acid by Fosetyl: Fosetyl and its D₅-analogon tend to degrade to Phosphonic acid both in solutions and via in-source fragmentation in LC-MS/MS" and Chapter **6**.

Table 13: Chromatograms of Phosphonic acid, Ethephon and an unsuitable Ethephon-D₄ standard (each at $1.0 \mu g/mL$) using Method M 1.3 and M 1.4 (Hypercarb column).

Note: Whereas Phosphonic acid is only present at very low concentrations in the Ethephon standard the amount of Phosphonic acid in the Ethephon-D₄ standard is unacceptably high. That is caused by the Phosphonic acid having already been present at high amounts in the purchased standard.

e) Contamination of Maleic hydrazide D₂ with native Maleic hydrazide:

In the case of Maleic Hydrazide (MH), the amount of IL-IS added is comparably high due to the low detection sensitivity achieved for this compound. Assuming native MH being contained as impurity in D₂-MH at 0.25 % (a typical level encountered) the resulting concentration of native MH following the addition of 20 μ g D₂-MH to 10 g sample will be at 0.005 mg /kg sample. This aspect is to be considered when setting the Reporting Limits of MH as well as when judging residue levels in samples having low MRLs (e.g. baby food) or organic food.

f) Chlorate can be a minor contaminant of Perchlorate solutions

Chlorate can be a minor contaminant of Perchlorate solutions and is also a minor in-source fragment of Perchlorate. In the <u>example</u> below, Perchlorate standard at 0.2 μ g/mL was injected resulting in two peaks on the mass traces of Chlorate (see **Table 14**). The first one originating from Chlorate contained as impurity in the Perchlorate solution (at approx. 0.35%) and the second one originating from in-source fragmentation at the retention time of Perchlorate, corresponding to a Chlorate amount of 0.001 μ g/mL. This means that calibration solutions containing both chlorate and perchlorate at the same level the chlorate signal will be overestimated by approx. 0.5% which is negligible. Also samples containing perchlorate may fake the presence of chlorate at very low levels, normally well below the reporting level of chlorate. When chlorate IL-IS is co-injected misidentification is unlikely as the two compounds typically separate well chromatographically.

Table 14: Chromatograms of Chlorate and Perchlorate at 0.2 μ g/mL and of a mixture of Chlorate-¹⁸O₃ and Perchlorate-¹⁸O₄, containing approx. 0.2 μ g/mL Chlorate ¹⁸O₃ and approx. 0.02 μ g/mL Perchlorate-¹⁸O₄.

3. Miscellaneous

a) **Diquat and Paraquat:**

Diquat and Paraquat produce several parent ions within the ion-source, each one fragmenting to various product ions. The most prominent parent ions observed are the doubly charged ones $([M]^{2+})$, the singly charged protonated ones $([M^{2+} - H^{+}]^{+})$ and the singly charged radical ones $([M]^{++})$. The relative yields of the various parent ions were shown to greatly depend on the co-eluting matrix, which gives an additional dimension to the matrix-effects. Mass transitions originating from the same parent ion are simmilarly affected by co-eluting matrix (this also applies to the IL-IS), unlike those originating from different parent ions. For a proper equalization of matrix effects and correct quantitations, it is thus paramount to use equivalent parent ions (or even better, equivalent mass-transitions) of native analyte and the corresponsing IL-IS. Generally, measurements achieved when using transitions from doubly charged parent ions ([M]²⁺) were more robust and validation results fluctuating less.

Table 15 gives an overview of mass transitions of Diquat while Table 16 shows matrix effects for various mass-transitions in infant formula powder.

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Table 15: Individual transitions and MS/MS settings (Sciex API 5500) for Diquat and Paraquat and their respective IL-ISs on Sciex 5500 QTrap ESI(+). Transitions are grouped by parent type.

	Suitable IL-IS	Sensitivity	O1(m/z)	O2 (m/-)			
	transition	Ranking*	QI (m/z)	Q3 (m/z)	DP (V)	CE (V)	CAP(V)
Diquat [M] ²⁺ 92/84		1	92	84.4	61	21	4
Diquat [M] ²⁺ 92/157	IL-IS Diquat D ₈	3	92	157	61	19	12
Diquat [M] ²⁺ 92/78	[IVI] 96/88	6	92	78	61	31	12
Diquat [M] ²⁺ 92/130	50/88	5	92	130	61	25	8
Diquat [M ²⁺ - H ⁺] ⁺ 183/157		2	183	157	161	31	10
Diquat [M ²⁺ - H ⁺] ⁺ 183/130	IL-IS Diquat D ₈	4	183	130	161	43	8
Diquat [M ²⁺ - H ⁺] ⁺ 183/168	[IVI H·]· 191/165	5	183	168	161	37	10
Diquat [M ²⁺ - H ⁺] ⁺ 183/78	131/103	4	183	78	161	51	12
Diquat [M] ** 184/128***		4	184	128	60	55	8
Diquat [M] ** 184/106		5	184	106	60	23	8
Diquat [M+•184/78	IL-IS Diquat D ₈	5	184	78	60	65	12
Diquat [M] ** 184/156***	[M] +•	4	184	156	60	29	10
Diquat [M] ** 184/169	192/134	5	184	169	60	27	12
Diquat [M] ** 184/155		5	184	155	60	43	12
Diquat [M] +• 184/168		5	184	168	60	45	12
IL-IS Diquat D ₈ [M] ²⁺ 96/88	-		96	88.4	61	21	4
IL-IS Diquat $D_8 [M^{2+}-H^+]^+$ 191/165	-		191	165	101	31	10
IL-IS Diquat D ₈ [M] +• 192/134	-		192	134	156	55	8
Paraguat [M] ²⁺ 93/171		2	93	171	46	15	12
Paraguat [M] ²⁺ 93/77	IL-IS Paraquat D ₈	3	93	77	46	31	12
Paraguat [M] ²⁺ 93/155	[M] ²⁺	4	93	155	46	25	10
Paraguat [M] ²⁺ 93/144	97/179	4	93	144	46	17	8
Paraguat [M]+• 186/171		1	186	171	41	25	12
Paraguat [M]+• 186/77	II -IS Paraquat D.	3	186	77	41	57	4
Paraguat [M] ^{+•} 186/155	[M]+•	4	186	155	41	55	8
Paraguat [M]+• 186/128	194/179	5	186	128	41	57	12
Paraquat [M]+* 186/103		4	186	103	41	49	12
Paraquat [M ²⁺ - H ⁺] ⁺ 185/170		**	185	170	61	23	8
Paraquat [M ²⁺ - H ⁺] ⁺ 185/169	IL-IS Paraquat D ₈	**	185	169	61	37	8
Paraquat [M ²⁺ - H ⁺] ⁺ 185/144	[M ^{∠+} - H ⁺] ⁺ 102/179	**	185	144	61	29	8
Paraquat [M ²⁺ - H ⁺] ⁺ 185/115	192/1/8	**	185	115	61	55	8
IL-IS Paraquat D ₈ [M] ²⁺ 97/179	-		97	179	46	15	12
IL-IS Paraquat D ₈ [M] +• 194/179	-		194	179	71	27	10
			4.00	170	96	20	10

* The ranking in this table only refers to the signal to noise ratio. Further experiments are planned to study signal repeatability of various mass transitions also in comparison with the transitions of the respective IL-IS.

** MRMs of singly charged protonated Paraquat ($[M^{2+}-H^+]^+$ 185/#) are typically less sensitive and tend to show more variable signals than the MRMs of the other two parent ions ($[M]^{2+}$ and $[M]^{++}$). Furthermore these transitions tend to be interfered by Diquat. Same applies to the respective MRM of Paraquat D₈ ($[M^{2+}-H^+]^+$ 193/#), which is interfered by Diquat D₈.

*** Removed from this Table as the signals showed more variability than the ones newly included

-SRM EU Reference Labor

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Table 16: Exemplary matrix effects of Diquat in infant formula powder considering mass transitions resulting from different parents (the conc. of Diquat and Paraquat in the final extract was 0.015 μ g/mL each)

, <u>,</u>	, ,	1 3. ,	
Analyte	Type of parent ion	Matrix Effect of parent (%)	Matrix Effect of corresponding IL-IS D ₈ (%)
		(MRM)	(MRM)
	[M] ²⁺	+57 (92/84)	+54 <i>(96/88)</i>
Diquat	[M ²⁺ - H ⁺] ⁺	-92 (183/157)	-91 (191/165)
	[M] *•	-91 (184/128)	-93 (192/134)
	[M] ²⁺	+111 (93/171)	+112 (97/179)
Paraquat	[M ²⁺ - H ⁺] ⁺	-74 (185/170)	-78 (193/178)
	[M] +•	-81 (186/171)	-78 (194/179)

b) Carry-over:

Be aware that some analytes are prone to carry-over effects and regularly observe blank solvent or blank matrix extract injections for the occurrence of any carry-over. In some cases signals deriving from carry-over are more intensive when injecting blank matrix extracts compared to pure solvent.

Examples of analytes where carry-over has been observed: Diquat, Paraquat, Phosphonic acid, Chlorate, Glyphosate.

c) Avoid glass containers for certain analytes:

Keep solutions in plastic vessels **2.15** as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under **2.12**).

4. Handling of column, pre-column and pre-filters:

a) AS11 and AS11HC:

Priming and reconditioning of column: before first use, after long storage (e.g. >2 weeks), after injection of 50-100 sample extracts):

- Flush column for 30 minutes with **100 mmol aqueous Borax solution** (7.62 g di-sodium tetraborate decahydrate in 200 mL water) at 0.3 mL/min <u>OR</u>
- Flush for 1 hour with 30 mM NaOH (240 mg NaOH in 200 mL water) at 0.3 mL/min
- Flush column for 30 minutes with **Eluent A** (water) at 0.3 mL/minRun system 3-4 times with full gradient (inject standards in matrix)

Note: When flushing NaOH or Borax solution through the column make sure that it will go directly into waste and not to the MS ion source!.

Storage of column: If to be stored for short periods (<2 weeks), columns can be put aside after any normal sequence/run (full gradient). Run system 3-4 times with full gradient to reactivate the column (inject standards in matrix) before starting a sequence. If to be stored for longer periods (e.g. >2 months) recondition the column as described above.

<u>Pre-filters</u>: If pre-filters are used exchange them as soon as backpressure increases significantly. For practical and convenience reasons it is highly recommended to exchange pre-filters when performing other maintenance operations such as reconditioning or pre-column exchange. Losses of glyphosate, that could be clearly linked to interactions with a dirty pre-filter, have been once observed.

<u>Pre-columns (guard columns)</u>: The pre-column should be exchanged as soon as a clear deterioration of the separation performance (worsening of peak-shape) is noticed. The pre-column of M 1.1. needs to be exchanged more often than that of M 1.2 and M 1.3. If after pre-filter exchange (see above) the pressure does not come back to normal levels, the frit of the pre-column should be exchanged.

For further information on the storage and cleanup of column, see: http://www.dionex.com/en-us/webdocs/113497-Man-065463-03-IonPac-AS11-HC-4um-Nov12.pdf

b) Hypercarb

IRL-SRM

Priming and reconditioning of column: Before first use, Hypercarb columns and pre-columns have to be thoroughly primed to cover certain active sites on the surface. Priming with solutions containing planar molecules such as chlorophyll and anthocyans accelerates the priming period. Priming may be performed by multiple injection of a QuPPe extract of spinach or of a grape skin extract solution (prepared by dissolving 100 mg grape skin extract in 20 mL methanol + 1% FA-H₂O 1:1). For a quick equilibration, the LC-conditions shown in **Table 17** may be used. 10-15 injections of spinach extracts are typically required for the pre-column and ca. 50 injections for the column and pre-column combined. If possible inject 50 μ L each time. This masking of the active sites is temporary as the activity of the column gradually increases with the injection of solvent or diluted extracts. Following a sequence of injections with low or no matrix load will typically raise the need for intermediate conditioning with extracts to reobtain sufficient column masking. The impact of priming on the chromatographic properties of the column is exemplary shown in Figure 4, Figure 5 and Figure 6.

	1 5 5	5 71							
Instrument parameters	Conditions								
Ionisation mode	ESI neg								
Column/temperature	Hypercarb 2.1 x 100 mm 5	μm (P/N 35005-102130); 40°0	2						
Pre-column	Hypercarb Guard 2.1 x 10 m	Hypercarb Guard 2.1 x 10 mm 5 μm (P/N 35005-102101)							
Pre-filters	e.g. Supelco column saver 2.0 μm Filter (optional)								
Eluent A	1% acetic acid in water + 5% methanol								
Eluent B	1% acetic acid in methanol								
	%A	Flow [mL/min]	Time [min]						
Gradient	100	0.3	0						
Gradient	70	0.3	7						
	100	0.3	7.1						
	100	0.3	12						
Injection volume	50 μL								
		• · · · · · · ·	C.1. 1.10						

Table 17: Proposed LC-MS/MS conditions for priming and reconditioning of the Hypercarb column.

MS-System

If possible disconnect the MS-System to prevent contamination of the MS.

Figure 4: Chromatograms obtained using a new Hypercarb column, poor chromatographic behavior due to strong interactions of analytes with active sites. Same behavior is observed when the pre-column is new.

Figure 5: Chromatograms following priming with 25 injections QuPPe extracts of spinach. Injection volume 50 µL per injection

Figure 6: Chromatograms after additional injection of approximately 100 QuPPe-extracts of various fruit and vegetables during normal routine use.

<u>Pre-columns (guard columns)</u>: The pre-column should be exchanged as soon as a clear deterioration of the separation performance (worsening of peak-shape) is noticed. The pre-column of M 1.3 needs to be clearly less often exchanged compared to the pre-columns of M 1.1 and M 1.2. Any exchange of the pre-column requires priming as described above. For this the pre-column does not have to be attached to the column. Connecting several pre-columns in a row and priming them simultaneously is also an option.

Storage of columns: Following normal operation the column can be stored directly after any normal sequence/run (full gradient). Run system 3-4 times with full gradient to reactivate the column (inject standards in matrix) before starting the sequence. If to be stored for longer periods (e.g. >2 months) it is highly recommended to recondition the column as described above.

<u>Pre-filters</u>: If pre-filters are used exchange them as soon as backpressure increases significantly. For practical and convenience reasons it is highly recommended to exchange pre-filters when performing other maintenance operations such as reconditioning or pre-column exchange. If after pre-filter exchange (see above) the pressure does not come back to normal levels, the frit of the pre-column may need to be exchanged.

Note: Losses of Glyphosate, that could be clearly linked to interactions with a dirty pre-filter, have been once observed.

c) Torus DEA

Priming:

The Torus DEA column should be conditioned before use following the manufacturer's **Start-up Guide**, which foresees flushing the column with a 5 mmol/L solution of Na₂EDTA. Afterwards it is important to prime thoroughly.

d) Raptor Polar X

Priming:

The manufacturing company of this column recommends "passivating" the LC-system with a methanolic solution of Methylenediphosphonic Acid (Medronic Acid) (1984-15-2).

5.6.2. Method 1.1 (M1.1): "Gly&Co. AS 11"

-SR

Table 18: Proposed LC-MS/MS conditions for Ethephon, HEPA (Ethephon metabolite), Glyphosat, AMPA (Glyphosate metabolite),

 Glufosinate, MPPA (Glufosinate metabolite), N-Acetyl-Glufosinate (Glufosinate metabolite),

 Phose the second second

Instrument parameters	Conditions					
Ionization mode	ESI neg					
Column/temperature (see notes)	Dionex IonPac AS 11 2 x 250 mm (P/N 44077); 40°C					
Pre-column	Dionex IonPac AG 11 2 x 50 mm (P/N 44079)					
Pre-filters	e.g. Supelco column saver 2.0 μm Filter (optional)					
Eluent A	Water (3.1)					
Eluent B	1 mM citric acid in water adjusted to pH 11 with dimethylamine (DMA)					
	Note: You will need approx 0.5 mL DMA solution for 500 mL 1 mM citric acid in water					
	Make sure your eluent filters can handle alkaline solvents (see notes)!!					
Gradient	%A	Flow [mL/min]		Time [min]		
	100	0.3		0		
	50	0.3		8		
	50	0.3		15		
	100	0.3		15.1		
	100	0.3		23		
Injection volume	10-20 μL					
	(Note: in case of analyzing only Ethephon 5 μL may be enough -depending on the instrument					
Calibration standards and levels	e.g. 0.05 or 0.1 μ g/IS-portion* + one level at the reporting limit					
Acquired mass transitions (m/z)	Compound		Mass Transitions (m/z)			
	Glyphosate		168/63, 168/124, 168/150, 168/81			
	Glyphosate- ¹³ C ₂ , ¹⁵ N ₁ (IL-IS)		171/63, 171/126			
	АМРА		110/63, 110/79, 110/81**			
	AMPA- ¹³ C ₁ ¹⁵ N ₁ (IL-IS)		112/63, 112/81			
	Ethephon		143/107, 143/79, 145/107			
	Ethephon-D ₄ (IL-IS)		147/111, 147/79 (optional, in case of interferences)			
	НЕРА		125/79, 125/95, 125/63			
	HEPA-D₄ (IL-IS)		129/79, 129/97			
	Glufosinate		180/63, 180/136, 180/85, 180/95			
	Glufosinate-D₃ (IL-IS)		183/63, 183/98			
	N-Acetyl-Glufosinate		222/63, 222/59, 222/136			
	N-Acetyl-Glufosinate-[acetyl]D ₃ (IL-IS)		225/63, 225/137			
	N-Acetyl-Glufosinate-[methyl]D ₃ (IL-IS)		225/63			
	МРРА		151/63, 151/107, 151/133			
	MPPA-D ₂ (II-IS)		154/63 154/136			

AMPA: Aminomethylphosphonic acid;

MPPA: 3-Methylphosphinicopropionic acid;

HEPA: 2-Hydroxyethylphosphonic acid (= hydroxy-ethephon),

* One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

** See also 5.6.1.

Hints on Method 1.1

- 1. **pH-related precautions:** As the pH of the mobile phase is quite high, it is recommendable to **use alkali-compatible components**, e.g. metal frits instead of silica frits in the Eluent B reservoir; borosilicate 3.3 bottles instead of glass bottles for eluent B; rotor-seals from alkali-persistent materials, such as PEEK (polyetherketone) or Tefzel, rather than Vespel.
- 2. Handling of column, pre-column and pre-filters: See 5.6.1. point 4.a)
- 3. For general hints on analytes: See 5.6.1

Figure 7: Typical chromatograms of Glyphosate, AMPA, Glufosinate, MPPA and Ethephon spiked on blank-QuPPe extracts

Figure 8: Typical chromatograms of HEPA in real samples

5.6.3. Method 1.2 (M1.2): "Gly&Co. AS 11-HC"

RL-SRA

Table 19: Proposed LC-MS/MS conditions for Ethephon, HEPA (Ethephon metabolite), Glyphosat, AMPA (Glyphosate metabolite), Glufosinate, MPPA (Glufosinate metabolite), N-Acetyl-Glufosinate (Glufosinate metabolite), Fosetyl-AI, N-Acetyl-AMPA and Phosphonic acid.

Instrument parameters	Conditions				
Ionization mode	ESI neg				
Column/temperature	Dionex IonPac AS 11-HC 2 x 250 mm (P/N 052961); 40°C				
	(see also notes below)				
Pre-column	Dionex IonPac AG11-HC 2 x	50 mm (P/N	l 052963)		
Pre-filters	e.g. Supelco column saver 2.0 μm Filter (optional)				
Eluent A	water (3.1)				
Eluent B	1 mM tribasic Ammonium citrate in water				
Gradient	%A	Flow [mL/min]		Time [min]	
	100	0.3		0	
	0	0.3		8	
	0	0.3		16	
	100	0.3		16.1	
	100	0.3		23	
Injection volume	10 µL				
Calibration standards and levels	e.g. 0.05 or 0.1 μ g/IS-portion* + one level at the reporting limit				
	Compound		Mass Transitions (m/z)		
	Glyphosate		168/63, 168/124, 168/150, 168/81		
	Glyphosate- ¹³ C ₂ , ¹⁵ N (IL-IS)		171/63, 171/126		
	АМРА		110/63, 110/79, 110/81**		
	AMPA- ¹³ C, ¹⁵ N (IL-IS)		112/63, 112/81		
	N-Acetyl-AMPA		152/63, 152/79, 152/110		
	Ethephon		143/107, 143/79, 145/107		
	Ethephon-D₄ (IL-IS)		147/111, 147/79 (optional, in case of interferences)		
	НЕРА		125/79, 125/95, 125/63		
Acquired mass transitions (m/z)	HEPA-D ₄ (IL-IS)		129/79, 129/97		
	Glufosinate		180/63, 180/136, 180/85, 180/95		
	Glufosinate-D ₃ (IL-IS)		183/63, 183/98		
	N-Acetyl-Glufosinate		222/63, 222/59, 222/136		
	N-Acetyl-Glufosinate-[acetyl]D ₃ (IL-IS)		225/63, 225/137		
	N-Acetyl-Glufosinate-[methyl]D ₃ (IL-IS)		225/63		
	МРРА		151/63, 151/107, 151/133		
	MPPA-D₃ (IL-IS)		154/63, 154/136		
	Fosetyl-Al:		109/81, 109/63 (Fosetyl)		
	Fosetyl-Al-D ₁₅ (IL-IS):		114/82, 114/63 (Fosetyl-D ₅)		
	Phosphonic acid***		81/79, 81/63		
	Phosphonic acid- ¹⁸ O ₃ (IL-IS)		87/85, 87/67		

AMPA: Aminomethylphosphonic acid;

MPPA: 3-Methylphosphinicopropionic acid;

HEPA: 2-Hydroxyethylphosphonic acid (=hydroxy-ethephon)

* One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

** See also 5.6.1

*** See also 5.6.1

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Hints on Method 1.2

URL-SRM

- 1. Handling of column, pre-column and pre-filters: See 5.6.1. point 4.a)
- 2. **Peak splitting:** Using this M 1.2 some compounds (e.g. Glyphosate) in some commodities tend to give two sharp peaks. The corresponding IL-IS typically behaves equally, so that quantification with any of the two peaks remains accurate
- 3. Intereference of Phosphonic acid by Fosetyl: See 5.6.1.
- 4. Intereference of Phosphonic acid by Phosphoric acid: See 5.6.1.
- 5. IL-IS of N-Acetyl-Glufosinate D₃: See 6
- 6. For general hints on analytes: See 5.6.1

Figure 9: Typical chromatograms of Ethephon, HEPA, Glyphosat, AMPA, Glufosinate, MPPA, N-Acetyl-AMPA, N-Acetyl-Glufosinate, Fosetyl-Al and Phosphonic acid at 0.1 mg/L in methanol with 1% formic acid.
5.6.4.Method 1.3 (M1.3): "Gly&Co. Hypercarb"

RL-SR

Table 20: Proposed LC-MS/MS conditions for Ethephon, HEPA (Ethephon metabolite), Glyphosat, AMPA (Glyphosate metabolite),N-Acetyl-Glyphosate (Glyphosate metabolite), N-Acetyl-AMPA (Glyphosate metabolite), Glufosinate, MPPA (Glufosinate metabolite),Ite), N-Acetyl-Glufosinate (Glufosinate metabolite), Fosetyl-Al, Maleic Hydrazide, Cyanuric acid and Bialaphos.

Instrument parameters	Conditions				
Ionization mode	ESI neg				
Column/temperature	Hypercarb 2.1 x 100 mm 5 μm (P/N 35005-102130); 40°C				
Pre-column	Hypercarb Guard 2.1 x 10 n	nm 5 μm (F	P/N 35005-102101)		
Pre-filters	e.g. Supelco column saver 2.0) μm Filter (o	ptional)		
Eluent A	1% acetic acid in water + 5%	methanol			
Eluent B	1% acetic acid in methanol				
	%A	Flow [mL/n	nin]	Time [min]	
	100	0.2	-	0	
	70	0.2		10	
Gradient	70	0.4		11	
	70	0.4		18	
	10	0.4		19	
	10	0.4		22	
	100	0.2		22.1	
	100	0.2		30	
Injection volume	5 μL				
Dilution	Not regularly; in case of stror	ng matrix inte	rferences 5-10-fold (s	ee also Hints 8.)	
Calibration standards and levels	e.g. 0.05 or 0.1 µg/IS-portion	* + one level	at the reporting limit		
	Compound		Mass Transitions (m/z)		
	Glyphosate		168/63, 168/124, 168/150, 168/81		
	Glyphosate- ¹³ C ₂ , ¹⁵ N (IL-IS)		171/63, 171/126		
	AMPA**		110/63, 110/79, 110	0/81**	
	AMPA- ¹³ C, ¹⁵ N (IL-IS)		112/63, 112/81		
	N-Acetyl-AMPA:		152/63, 152/79, 152	2/110	
	N-Acetyl-Glyphosate		210/63, 210/150, 21	10/79, 210/148	
	N-Acetyl-Glyphosate-D ₃ (IL-IS)		213/63, 213/153		
	Ethephon		143/107, 143/79, 14	45/107	
	Ethephon-D₄ (IL-IS)		147/111, 147/79		
	НЕРА		125/79, 125/95, 125	5/63	
	HEPA-D₄ (IL-IS)		129/79, 129/97		
	Glufosinate		180/63, 180/136, 180/85, 180/95		
	Glufosinate-D ₃ (IL-IS)		183/63, 183/98		
Acquired mass transitions (m/z)	N-Acetyl-Glufosinate:		222/63, 222/59, 222/136		
	N-Acetyl-Glufosinate-[acetyl]D₃ (IL-IS)	225/63, 225/137		
	N-Acetyl-Glufosinate-[methy	/I]D₃ (IL-IS)	225/63		
	MPPA		151/63, 151/107, 151/133		
	MPPA-D₃ (IL-IS)		154/63, 154/136		
	Fosetyl-Al		109/81, 109/63 (detected as Fosetvl)		
	Fosetyl-Al-D ₁₅ (IL-IS)		114/82, 114/63 (det	tected as Fosetyl-D₅)	
	Maleic Hydrazide		111/82, 111/42, 111	1/55, 111/83	
	Maleic Hydrazide-D ₂ (IL-IS)		113/42, 113/85		
	Maleic Hydrazide-13C ₄ (IL-IS)		115/87, 115/58		
	Cyanuric acid		128/42, 128/85		
	Cyanuric acid-13C ₃		131/43, 131/87		
	Bialaphos		322/88, 322/94, 322	2/134	
	Desmethyl-Dimethoate		214/104, 214/95, 214/136		

* One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

** See also 5.6.1

*** See also 5.6.1

EURL-SRM 🚺

Hints on Method 1.3

- 1. Handling of column, pre-column and pre-filters: See 5.6.1 point 4.a)4.b)
- 2. Mass spectrometric interference of AMPA and Fosetyl: see 5.6.1
- 3. Intereference of Phosphonic acid by Fosetyl: see 5.6.1
- 4. Degradation of Ethephon to Phosphonic acid: see 5.6.1
- **5. Dilution:** For certain matrices it can be beneficial to dilute the sample extract 5-10-fold before injection or to inject smaller volumes (1-2 μL). Dilution of the sample extract is highly recommended for matrices containing high amounts of protein such as oily seeds, pulses and commodities of animal origin in general. In routine analysis there is an option run undiluted extracts for screening and in case of a positive result repeat measurement with a diluted extract (provided that there is no issues with false negatives, in non-diluted extracts are injected, **see also 5.6.1**).
- 6. IL-IS of N-Acetyl-Glufosinate D₃ see 6
- 7. **Reference**: In case of the determination of Fosetyl and Phosphonic acid on the Hypercarb-column, we refer to the patent of D. Rosati and C. Venet from Bayer CropScience (Patent-No. WO 2006079566 A1).
- 8. For general hints on analytes: See 5.6.1

Figure 10: Chromatograms of Glyphosate, AMPA, N-Acetyl-AMPA, N-Acetyl-Glyphosate, Ethephon, HEPA, Glufosinate, MPPA, N-Acetyl-Glufosinate, Fosetyl, Maleic Hydrazide, Cyanuric acid and Bialaphos at 0.02 mg/kg on apple extract and Desmethyl-Dimethoate at 0.03 mg/kg on cherry extract.

5.6.5.Method 1.4 (M1.4): "PerChloPhos"

 Table 21: Proposed LC-MS/MS conditions for Phosphonic acid (Fosetyl metabolite), Perchlorate, Chlorate, Bromide and Bromate.

Instrument parameters	Conditions				
Ionisation mode	ESI neg				
Column/temperature	Hypercarb 2.1 x 100 mm 5 μm (P/N 35005-102130); 40°C				
Pre-column	Hypercarb Guard 2.1 x 10 m	nm 5 μm (P/N	35005-102101)		
Pre-filters	e.g. Supelco column saver 2.0 μm Filter (optional)				
Eluent A	1% acetic acid in water + 5% r	nethanol			
Eluent B	1% acetic acid in methanol				
	%A Flow [mL/min] Time [min]				
Gradient	100	0.4		0	
Gradient	70	0.4		10	
	100	0.4		10.1	
	100	0.4		15	
Injection volume	5 μL				
Dilution	5-fold dilution with methanol	+ 1% formic aci	d		
	(1 μ L sample extract + 4 μ L m	ethanol + 1% for	rmic acid)		
Calibration standards and levels	e.g. 0.05 or 0.1 μ g/IS portion* + one level at the reporting limit				
	Compound		Mass Transiti	ons (m/z)	
	Bromate		127/95, 129/113, 127/111, 129/97		
	Bromate- ¹⁸ O ₃ (IL-IS)		135/117		
	Bromide*		81/81, 79/79		
	Chlorate		83/67, 85/69		
Acquired mass transitions	Chlorate-18O ₃ (IL-IS)		89/71, 91/73		
	Perchlorate		99/83, 101/85	5	
	Perchlorate-18O ₄ (IL-IS)		107/89, 109/9	91	
	Phosphonic acid		81/79, 81/63		
	Phosphonic acid- ¹⁸ O ₃ (IL-IS)		87/85, 87/67		
	Thiocyanate		58/58		
	Thiocyanate ¹³ C ¹⁵ N		60/60		

* A 5-fold dilution is used for Bromide screening. For quantification purposes where Bromide exceeds approx. 1 mg/kg, the sample extracts should be diluted e.g. 250-fold (50-fold manually and 5-fold by the HPLC).

Hints on Method 1.4

- 1. Handling of column, pre-column and pre-filters: see 5.6.1 point 4.a)4.b).
- 2. Cross-contamination and other issues on Perchlorate and Chlorate: See 5.6.1
- 3. Degradation of Ethephon and Fosetyl to Phosphonic acid: See 5.6.1.
- 4. Intereference of Phosphonic acid by Phosphoric acid and impact of dilution: See 5.6.1.
- 5. Improving selectivity of Bromide analysis: See 5.6.1.
- 6. For general hints on analytes: See 5.6.1

Figure 11: Chromatograms of Bromate (0.02 mg/kg) in currant extract, Bromide (1 mg/kg) in currant extract, Phosphonic acid (0.05 mg/kg) in currant extract, Perchlorate (0.01 mg/kg) in currant extract, Chlorate (0.01 mg/kg) in currant extract and Thiocyanate (1 mg/kg) in porree extract.

5.6.6.Method 1.5 (M1.5): "Gly&Co. on Trinity Q1"

RL-SR

Table 22: Proposed LC-MS/MS conditions for Glyphosate, AMPA, N-Acetyl-AMPA, N-Acetyl-glyphosate, Ethephon, HEPA, Glufosinate, N-Acetyl-Glufosinate, MPPA and Fosetyl-Al, Maleic Hydrazide, Cyanuric acid, Bialaphos, Bromide, Chlorate, Perchlorate, Phosphonic acid

Instrument parameters	Conditions				
Ionisation mode	ESI neg				
Column/temperature	Acclaim Trinity Q1 100x2.1 m	m; 3 μm (P/I	N 079717; Thermo Fish	ner Scientific); 30 °C	
Pre-column	Acclaim Trinity Q1 Guard Car	tridge 2.1x10) mm, 5 μm (P/N 0832	44; Thermo Fisher Scientific)	
Pre-filters	e.g. Supelco column saver 2.0	μm Filter (c	optional)		
	50 mM Ammonium formate (pH 2.9) in w	ater+acetonitrile 6+4		
Eluent A	5 mL 5 M Ammoniumformate	and 4.5 mL	Formic acid ad 300 ml	L water, add 200 mL ACN	
Eluent B	Acetonitrile				
	Time [min]	Flow [mL/	min]	%A	
	0	0.5		100	
Curadianat	10	0.5		100	
Gradient	10.1	0.5		18.2 (\triangleq 90 % acetonitrile)	
	13	0.5		18.2 (\triangleq 90 % acetonitrile)	
	13.1	0.5		100	
	18	0.5		100	
Injection volume	10 μL				
Dilution	Not regularly; in case of many	/ matrix inte	rferences 5-10-fold		
Calibration standards and levels	e.g. 0.05 or 0.1 μg/IS portion ³	* + one level	at the reporting limit		
	Compound		Mass Transitions (m	/z)	
	Glyphosate		168/63.168/124.16	8/150. 168/81	
	Glyphosate- ¹³ C ₂ . ¹⁵ N (IL-IS)		171/63. 171/126	-,,,	
			110/63 110/79 110/81**		
	AMPA- ¹³ C. ¹⁵ N (IL-IS)		112/63. 112/81		
	N-Acetyl-AMPA:		152/63, 152/79, 152/110		
	N-Acetyl-Glyphosate		210/63, 210/150, 210/79, 210/148		
	N-Acetyl-Glyphosate-D ₃ (IL-IS)		213/63, 213/153		
	Ethephon		143/107, 143/79, 14	5/107	
	Ethephon-D4 (IL-IS)		147/111, 147/79 (op	tional, when interferences)	
	НЕРА		125/79, 125/95, 125	/63	
	HEPA-D₄ (IL-IS)		129/79, 129/97		
	Glufosinate:		180/63, 180/136, 18	0/85, 180/95	
	Glufosinate-D ₃ (IL-IS):		183/63, 183/98		
	N-Acetyl-Glufosinate		222/63, 222/59, 222	/136	
	N-Acetyl-Glufosinate-[acetyl]D₃ (IL-IS)	225/63, 225/137		
	N-Acetyl-Glufosinate-[methy	′I]D₃ (IL-IS)	225/63		
Acquired mass transitions (m/z)	MPPA:		151/63, 151/107, 151/133		
	MPPA-D ₃ (IL-IS)		154/63, 154/136		
	Fosetyl-Al		109/81, 109/63 (each detected as Fosetyl)		
	Fosetyl-Al-D ₁₅ (IL-IS)		114/82, 114/63 (each detected as Fosetyl- D_5)		
	Maleic Hydrazide		111/82, 111/42, 111/55, 111/83		
	Maleic Hydrazide-D ₂ (IL-IS)		113/42, 113/85		
	Maleic Hydrazide- ¹³ C ₄ (IL-IS)		115/87, 115/58		
	Cyanuric acid		128/42, 128/85		
	Cyanuric acid- ¹³ C ₃		131/43, 131/87		
	Bialaphos		322/88, 322/94, 322	/134	
	Bromide*		81/81, 79/79		
	Chlorate		83/67, 85/69		
	Chlorate- ¹⁸ O ₃ (IL-IS)		89/71, 91/73		
	Perchlorate		99/83, 101/85		
	Perchlorate-18O4 (IL-IS)		107/89, 109/91		
	Phosphonic acid		81/79, 81/63		
	Phosphonic acid ¹⁸ O ₃ (IL-IS)		87/85, 87/67		

* It is recommended to use an optimized collision energy for Bromide as described in 5.6.1.

Hints on Method 1.5

1. For general hints on analytes see 5.6.1

Figure 12: Chromatograms of Glyphosate, AMPA, N-Acetyl-AMPA, N-Acetyl-Glyphosate, Ethephon, HEPA, Glufosinate, MPPA, N-Acetyl-Glufosinate, Fosetyl, Maleic Hydrazide, Cyanuric acid, Bialaphos and Bromide at 0.02 mg/kg each, Phosphonic acid at 0.05 mg/kg, as well as Chlorate and Perchlorate at 0.005 mg/kg each, all in black currant extract.

5.6.7. Method 1.6 "Gly&Co. on Torus DEA; (M1.6a)" or "Gly&Co. on Anionic Polar Pesticide Column (APPC); (M1.6b)"

Table 23: Proposed LC-MS/MS conditions for Glyphosate, AMPA, N-Acetyl-AMPA, N-Acetyl-Glyphosate, Ethephon, HEPA,
Glufosinate, N-Acetyl-Glufosinate, MPPA, Fosetyl-Al, Trifluoroacetic acid, Phosphonic acid and Bromide.

Instrument parameters	Conditions				
Ionisation mode	ESI neg				
Column/tomporaturo	M1.6a: Waters Torus™DEA 2.1	. mm x 100 r	nm; 1.7 μm; 50 °C		
Columny temperature	M1.6b: Waters Anionic Polar P	esticide Colu	umn (APPC), 130Å, 5 μm,	2.1 mm x 100 mm; 50 °C	
Pre-column	M1.6a <u>:</u> Waters Torus™DEA Var	nGuard™ 2.1	. mm x 5 mm; 1.7 μm		
	M1.6b: Waters Anionic Polar P	esticide Var	nGuard Cartridge, 130Å, 5	μm, 2.1 mm X 5 mm	
Pre-filters	Waters ACQUITY UPLC Column	In-Line Filte	er Kit [205000343]		
Eluent A	1.2% formic acid in water				
Eluent B	0.5 % formic acid in Acetonitril	e			
	%A	Flow [mL/	'min]	Time [min]	
	10	0.5		0	
	10	0.5		0.5	
Gradient	80	0.5		1.5	
	90	0.5		4.5	
	90	0.5		17.5	
	10	0.5		17.6	
	10	0.5		23	
Injection volume	10 μL				
	e.g. 0.05 or 0.1 μg/IS portion*	+ one level a	at the reporting limit;		
Calibration standards and levels	d levels Standard solutions of Fosetyl and Ethephon (and their IL-ISs) may be				
	Phosphonic acid which may potentially lead to false positives or shifted calibration, see 5.6.1.				
	Compound		Mass Transitions (m/z)		
	Glyphosate		168/63, 168/124, 168/150, 168/81		
	Glyphosate- ¹³ C ₂ , ¹⁵ N (IL-IS)		171/63, 171/126		
	AMPA		110/63, 110/79, 110/81		
	AMPA- ¹³ C, ¹⁵ N (IL-IS)		112/63, 112/81		
	N-Acetyl-AMPA:		152/63, 152/79, 152/11	10	
	N-Acetyl-Glyphosate		210/63, 210/150, 210/7	79, 210/148	
	N-Acetyl-Glyphosate-D ₃ (IL-IS)		213/63, 213/153		
	Ethephon		143/107, 143/79, 145/1	107	
	Ethephon-D4 (IL-IS)		147/111, 147/79 (optional, when interferences)		
	НЕРА		125/79, 125/95, 125/63	}	
	HEPA-D₄ (IL-IS)		129/79, 129/97		
	Glufosinate		180/63, 180/136, 180/85, 180/95		
Acquired mass transitions (m/z)	Glufosinate-D ₃ (IL-IS)		183/63, 183/98		
	N-Acetyl-Glufosinate		222/63, 222/59, 222/136		
	N-Acetyl-Glufosinate-[acetyl])₃ (IL-IS)	225/63. 225/137		
	N-Acetyl-Glufosinate-[methyl]	D ₃ (IL-IS)	225/63		
	МРРА	- ()	151/63, 151/107, 151/133		
	MPPA-D ₃ (IL-IS)		154/63. 154/136		
	Fosetvi-Al		109/81, 109/63 (each d	etected as Fosetvl)	
	Fosetyl-Al-D ₁₅ (IL-IS)		114/82, 114/63 (each d	etected as Fosetyl- D ₅)	
	Trifluoroacetic acid (TFA)		113/69, 113/113		
	Trifluoroacetic acid -13C2 (IL-IS)		115/70		
	Phosphonic acid		81/79, 81/63		
	Phosphonic acid-18O ₃ (IL-IS)		87/85, 87/67		
	Bromide		81/81, 79/79		
			, . , .,		

Hints on Method 1.6a and Method 1.6b

EURL-SRM

- 1. Handling of column, pre-column and pre-filters: see 5.6.1 point 4.a)4.c)
- 2. Maleic hydrazide and Cyanuric acid on Torus DEA: The intention was to cover all analytes of M1.3 with M1.6. During method development, however, it became clear that Maleic hydrazide and Cyanuric acid showed a very poor retention on this column, with retention times close to the dead-time, heavy interefernces of matrix components on peak shapes and intensities (signal suppression). Figure **15** shows exemplarily chromatograms obtained upon injection of standards in solvent and in extracts of plum, broccoli, soy and onion at 0.1 μg/mL. Proper evaluation of the peaks at low concentrations is often not possible. Fortunately Maleic Hydrazide can also be covered by M 4.2 (5.6.15), whereas Cyanuric acid is not regulated.

3. For general hints on analytes: See 5.6.1

Figure 13: Chromatograms of Glyphosate, AMPA, N-Acetyl-AMPA, N-Acetyl-Glyphosate, Ethephon, HEPA, Glufosinate, MPPA, N-Acetyl-Glufosinate, Fosetyl at 0.04 mg/kg on cucumber extract using <u>i:</u> Waters Torus™DEA 2.1 mm x 100 mm .

Figure 14: Chromatograms of Glyphosate, AMPA, N-Acetyl-Glyphosate at 0.06 mg/kg, Glufosinate at 0.036 mg/kg, HEPA, MPPA, N-Acetyl-Glufosinate at 0.024 mg/kg, Ethephon, Fosetyl at 0.012 mg/kg, all in strawberry extract and Phosphonic acid at 0.06 mg/kg, Bromide at 6 mg/kg both in lemon extract using <u>ii:</u> Waters Anionic Polar Pesticide Column, 130Å, 5 µm, 2.1 mm x 100 mm.

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

	Solvent	Plum	Broccoli	Soy	Onion
Cyanuric acid ¹³ C ₃ 131/43	545 445 12 12 00 00 15 Time, min	20 1045 5 044 0.000 0.5 10 15 Time, nin	444 344 344 040 0.5 10 15 Tree, min	1345 2 1345 5 0et 0 0e0 0.5 10 15 Transme	1.045 0.044 0.044 0.044 0.044 0.04 0.5 10 15 Ten.min
Cyanuric acid 128/42	466 466 106 00 0 0 0 10 1.5 Tran, no	1 1065 0 1065 0 0000 0 0000 0 000 0 000 0 75 0 75 0 75 0 75 0 75 0 75 Tim_min	4e4 3e4 1e4 6e0 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	1.5 dt 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.050 0	1.046 0.044 0.044 0.040 0.040 0.040 0.040 0.05 0.05 0.05 0.05 0.05 0.05 0.07
Cyanuric acid 128/85	546 446 246 246 146 0.00 0.72 0.3 ¹ 10 1.5 Time, min	1565 50-1045 0.049 0.05 10 15 Tme.min	4et 2et 0ed 005 * 10 15 Transition	1566 5.044 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.055 0.045 0.055 0.0	8.0ef 6.0ef 4.0ef 0.
Maleic hydrazide D ₂ 113/42	044 644 0a0 05 10 15 2.0 Tma, min	2.046 1.546 5.645 0.040 0.55 10 15 15 15 15 15 15 15 15 15 15	645 545 245 145 040 0.0 10 10 10 10 10 10 10 10 10 10 10 10 10	Anno 1et 0e0 00 05 10 ♥ 15 20 Time, m 2	346 00 05 10 00 05 10 15 20
Maleic hydrazide 111/42	0,05 0,05 0,06 0,05	504 444 504 069 060 104 000 050 10 15 20 Trme min	1045 8044 0.04 0.05 4 .04 0.05 4 .0 1 .15 20 Tine min	1.545 1.045 0.060 0.060 0.060 0.0777 0.0777 0.077 0.077 0.077	444 201 201 144 040 0.5 * 1.0 1.5 2.0 Trime min
Maleic hydrazide 111/82	604 444 600 0.5 1 0 15 20 Tree, nin	2000 1500 0 000 0 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 4 - 0 2 5 - 0 2 5 - 0 2 5 - 0 2 5 - 0 2 5 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	6000 1000 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Maleic hydrazide 111/83	0 5 4 0 5 4 10 15 0 0 0 0 0 10 15 Trime min	1.046 8.044 9.046 0.040 0.040 0.040 0.05 10 15 Time.nin	645 645 245 045 05 10 15 Trne min	5e4 4e4 1e4 6e5 00 5 10 10 10 10 10 10 10 10 10 10 10 10 10	4e4 344 1e1 0e0 05 * 10 15 Time mm

EURL-SRM

Figure 15: Exemplary peak shapes of Cyanuric acid and Maleic hydrazide in solvent-based standards and in standards of plum, broccoli, soy and onion extracts at 0.1 µg/mL (*Please also read the note under "Hints on Method 1.6a and Method 1.6b" above*)

5.6.8. Method 1.7 "PerChloPhos on Torus DEA; (M1.7a)" or "PerChloPhos on Anionic Polar Pesticide Column (APPC); (M1.7b)"

Table 24: Proposed LC-MS/MS conditions for PerChlorate, Chlorate, Phosphonic acid and Bormide

instrument parameters	Conditions						
Ionisation mode	ESI neg						
		M1.7a				M1.7b	
Column/temperature	Waters Torus"	MDEA 2.1 mm :	x 100 n	nm; 1.7	Waters Anionic Polar Pesticide Column, 130Å,		
columny temperature	μm; 50 °C				5 μm, 2.1 mm x 100 mm; 50 °C		
Pre-column	Waters Torus"	Waters Torus™DEA VanGuard™ 2.1 mm x 5			Waters Anionic Polar Pesticide VanGuard Car-		
	mm; 1.7 μm				tridge, 130Å, 5	μm, 2.1 mm X 5	mm
Pre-filters	Waters ACQUI	TY UPLC Colum	n In-Lin	e Filter	Waters ACQUI	TY UPLC Colum	n In-Line Filter
	Kit [205000343	3]			Kit [205000343	3]	
Eluent A	1.2% formic ac	cid + 10 mmol a	immoni	um for-	1.2% formic a	cid + 15 mmol a	immonium for-
	mate in water				mate in water		
Eluent B	0.5 % formic ad	cid in Acetonitril	e		0.5 % formic a	cid in Acetonitril	e
	%A	Flow [mL/min]	Time	[min]	%A	Flow [mL/min]	Time [min]
	10	0.5	0		10	0.5	0
	10	0.5	0.5		10	0.5	0.5
Gradient	80	0.5	1.5		80	0.5	1.5
	90	0.5	4.5		90	0.5	4.5
	90	0.5	17.5		90	0.5	13.5
	10	0.5	17.6		10	0.5	13.6
	10	0.5	23		10	0.5	23
Injection volume	10 µL						
Calibration standards and levels	e.g. 0.05 or 0.1	. μ g/IS portion* \cdot	+ one le	vel at the	reporting limit		
	Compound			Mass T	ass Transitions (m/z)		
	Bromide			81/81, 79/79			
	Chlorate			83/67, 85/69			
Acquired mass transitions (m/z)	Chlorate- ¹⁸ O ₃ ((IL-IS)		89/71, 9	89/71, 91/73		
	Perchlorate			99/83,	101/85		
	Perchlorate-18	O₄ (IL-IS)		107/89	109/91		
	Phosphonic ac	id		81/79,	81/63		
	Phosphonic acid- ¹⁸ O ₃ (IL-IS)			87/85, 87/67			

Hints on Method 1.7

RL-SRM

- 1. Handling of column, pre-column and pre-filters: See 5.6.1 point 4.a)4.c)
- 2. Intereference of Phosphonic acid by Phosphoric acid: See 5.6.1
- 3. For general hints on analytes: See 5.6.1

Figure 16: Chromatograms of Chlorate at 0.03mg/kg, Perchlorate at 0.01 mg/kg, Phosphonic acid at 0.05 mg/kg and Bromide at 5.0 mg/kg, all in lemon extract using <u>ii:</u> Waters Anionic Polar Pesticide Column, 130Å, 5 μm, 2.1 mm x 100 mm; 50 °C.

Figure 17: Exemplary chromatograms of Phosphonic acid, Perchlorate, Chlorate and Bromide at 0.01 mg/kg on Garpe and Onion using <u>i:</u> Waters Torus™DEA 2.1 mm x 100 mm; 1.7 µm; 50 °C.

5.6.9. Method 1.8 (M1.8): "PerChloCyanMalein on Anionic Polar Pesticide Column (APPC)"

Table 25: Proposed LC-MS/MS conditions for Perchlorate, Cl	Chlorate, Cyanuric acid and Maleic hydrazide
--	--

Instrument parameters	Conditions				
Ionisation mode	ESI neg				
Column/temperature	Waters Anionic Polar Pesticide	Column, 13	0Å, 5 μm, 2.1 mm x 100 n	חm; 50 °C	
Pre-column	Waters Anionic Polar Pesticide	VanGuard C	Cartridge, 130Å, 5µm, 2.1	mm X 5 mm	
Pre-filters	Waters ACQUITY UPLC Column In-Line Filter Kit [205000343]				
Eluent A	1.2% formic acid and 50mM NH	H ₄ -formate i	n water		
Eluent B	85 % ACN : 10 % MeOH : 5 % w	ater			
	%A	Flow [mL/	'min]	Time [min]	
	0	0.5		0	
Gradient	0	0.5		1.5	
Gradient	70	0.5		4.5	
	70	0.5		7.0	
	0	0.5		7.1	
	0	0.5		15	
Injection volume	10 μL				
Calibration standards and levels	e.g. 0.05 or 0.1 $\mu\text{g/IS}$ portion* -	+ one level a	at the reporting limit		
	Compound		Mass Transitions (m/z)		
	Cyanuric acid		128/42, 128/85		
	Cyanuric acid ¹³ C ₃ (IL-IS)		131/43		
	Chlorate		83/67, 85/69, 83/51		
Acquired mass transitions (m/z)	Chlorate- ¹⁸ O ₃ (IL-IS)		89/71, 91/73		
Acquired mass transitions (m/2)	Perchlorate		99/83, 101/85, 99/67		
	Perchlorate- ¹⁸ O ₄ (IL-IS)		107/89, 109/91		
	Maleic hydrazide		111/83, 111/55, 111/41		
	Maleic hydrazide D2 (IL-IS)		113/85		
	Maleic Hydrazide- ¹³ C ₄ (IL-IS)		115/87, 115/58		

* One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

** Depending on matrix; better use M 1.3

.-SRM

Hints on Method 1.8

1. For general hints on analytes: See 5.6.1

Figure 18: Chromatograms of Chlorate at 0.03mg/kg, Perchlorate at 0.01 mg/kg, Cyanuric acid and Maleic hydrazide at 0.05 mg/kg, all in lemon extract

5.6.10.Method 1.9 (M1.9): "Gly&Co. on Raptor Polar X"

Table 26: Proposed LC-MS/MS conditions for Glyphosate, AMPA, Ethephon, HEPA, Glufosinate, MPPA, N-Acetyl-Glufosinate, Fosetyl-Al, Bialaphos, Bromide, (Chlorate,) Perchlorate, Phosphonic acid

Instrument parameters	Conditions				
Ionisation mode	ESI neg				
Column/temperature	Restek Raptor Polar X LC colum	ın, 90Å, 2,7	μm, 2.1 mm x 30 mm; 50	°C	
Pre-column	Restek Raptor Polar X LC colum	ın, 90Å, 2,7	µm, 2.1 mm x 5 mm; 50 °	С	
Eluent A	0.5% formic acid in water				
Eluent B	0.5% formic acid in acetonitrile				
	%A	Flow [mL/	'min]	Time [min]	
	10	0.5		0.5	
Gradient	60	0.5		1.5	
Gradient	90	0.5		11.5	
	90	0.5		14	
	10	0.5		14.1	
	10	0.5		17	
Injection volume	10 μL				
	e.g. 0.05 or 0.1 μ g/IS portion +	one level at	the reporting limit;		
Calibration standards and levels	Standard solutions of Fosetyl a	nd Ethepho	n (and their IL-ISs) may b	e contaminated with native	
	Phosphonic acid which may potentially lead to false positives or shifted calil				
	Compound		Mass Transitions (m/z)		
	Glyphosate		168/63, 168/124, 168/150, 168/81		
	Glyphosate- ¹³ C ₂ , ¹⁵ N (IL-IS)		171/63, 171/126		
	АМРА		110/63, 110/79, 110/81		
	AMPA- ¹³ C, ¹⁵ N (IL-IS)		112/63, 112/81		
	Ethephon		143/107, 143/79, 145/1	.07	
	Ethephon-D ₄ (IL-IS)		147/111, 147/79 (optio	nal, when interferences)	
	НЕРА		125/79, 125/95, 125/63	3	
	HEPA-D₄ (IL-IS)		129/79, 129/97		
	Glufosinate		180/63, 180/136, 180/8	35, 180/95	
	Glufosinate-D ₃ (IL-IS)		183/63, 183/98		
	N-Acetyl-Glufosinate		222/63, 222/59, 222/13	86	
	N-Acetyl-Glufosinate-[acetyl]	0₃ (IL-IS)	225/63, 225/137		
Acquired mass transitions (m/z)	N-Acetyl-Glufosinate-[methyl]	D₃ (IL-IS)	225/63		
	МРРА		151/63, 151/107, 151/133		
	MPPA-D ₃ (IL-IS)		154/63, 154/136		
	Fosetyl-Al		109/81, 109/63 (each detected as Fosetyl)		
	Fosetyl-Al-D ₁₅ (IL-IS)		114/82, 114/63 (each detected as Fosetyl- D_5)		
	Trifluoroacetic acid (TFA)		113/69, 113/113		
	Trifluoroacetic acid - ¹³ C ₂ (IL-IS)		115/70		
	Bialaphos		322/88, 322/94, 322/134		
	Bromide		81/81, 79/79		
	Chlorate		83/67, 85/69		
	Chlorate- ¹⁸ O ₃ (IL-IS)		89/71, 91/73		
	Perchlorate		99/83, 101/85		
	Perchlorate- ¹⁸ O ₄ (IL-IS)		107/89, 109/91		
	Phosphonic acid		81/79, 81/63		
	Phosphonic acid- ¹⁸ O ₃ (IL-IS)		87/85, 87/67		

Hints on Method 1.9

- 1. Handling of column, pre-column and pre-filters: See 5.6.1 point 4.a)4.c)
- 2. For general hints on analytes: See 5.6.1

EURL-SRM 🝸

Figure 19: Typical chromatograms in strawberry extracts spiked at 0.1 mg/kg. *for Chlorate matrix dependent retention time shifts were observed

5.6.11.Method 1.10 (M1.10): "Gly&Co. on Obelisc N"

RL-SR

Table 27: Proposed LC-MS/MS conditions for for Glyphosate, AMPA, N-Acetyl-Glyphosate, Ethephon, HEPA, Glufosinate, MPPA, N-Acetyl-Glufosinate, Bromide, Chlorate, Perchlorate, (Fosetyl-Al and Phosphonic acid)

Instrument parameters	Conditions				
Ionisation mode	ESI neg				
Column/temperature	Sielc Obelisc Ν, 100Å, 5 μm, 2.1	mm x 150	mm (SIELC; ON-21.150.05	10), 50°C	
Pre-column	Sielc Obelisc Ν, 100Å, 5 μm, 2.1	. mm x 10 m	nm (SIELC; ON-21.G.0510)	, 50°C	
Pre-filters	e.g. Supelco column saver 2.0 µ	ım Filter			
Eluent A	1% formic acid in water				
Eluent B	0.5 % formic acid in Acetonitrile	5			
	%A	Flow [mL/	'min]	Time [min]	
	10	0.4		0.5	
Gradient	80	0.4		2	
	90	0.4		9	
	10	0.4		9.1	
	10	0.4		13	
Injection volume	10 μL				
	e.g. 0.05 or 0.1 μ g/IS portion + one level at the reporting limit;				
Calibration standards and levels	Standard solutions of Fosetyl a	nd Ethepho	n (and their IL-ISs) may b	e contaminated with native	
	Phosphonic acid which may pot	entially lea	d to false positives or shif	ted calibration, see 5.6.1.	
	Compound	,	Mass Transitions (m/z)	,	
	Glyphosate		168/63, 168/124, 168/1	.50, 168/81	
	Glyphosate- ¹³ C ₂ , ¹⁵ N (IL-IS)		171/63, 171/126		
	AMPA		110/63. 110/79. 110/81		
	AMPA- ¹³ C. ¹⁵ N (IL-IS)		112/63. 112/81		
	N-Acetyl-Glyphosate		210/63. 210/150. 210/7	/9. 210/148	
	N-Acetyl-Glyphosate-D ₃ (IL-IS)		213/63, 213/153	-,,	
	Ethephon		143/107, 143/79, 145/1	07	
	Ethephon-D₄ (IL-IS)		147/111. 147/79		
	НЕРА		125/79. 125/95. 125/63	}	
	HEPA-D₄ (IL-IS)		129/79. 129/97		
	Glufosinate		180/63, 180/136, 180/8	35, 180/95	
	Glufosinate-D ₂ (II-IS		183/63 183/98	, 200,00	
	N-Acetyl-Glufosinate		222/63, 222/59, 222/13	6	
	N-Acetyl-Glufosinate-[acetyl]D	a (IL-IS)	225/63.225/137		
	N-Acetyl-Glufosinate-[methyl]	D ₂ (IL-IS)	225/63		
	MPPA	-3 (151/63 151/107 151/1	33	
Acquired mass transitions (m/z)	MPPA-D ₂ (IL-IS)		154/63, 154/136		
	Fosetvi-Al		109/81, 109/63 (each detected as Fosetvl)		
	Fosetyl-Al-D1= (II-IS)		114/82, $114/63$ (each detected as Fosetyl- D ₅)		
	Trifluoroacetic acid (TFA)		113/69. 113/113		
	Trifluoroacetic acid - ¹³ C ₂ (IL-IS)		115/70		
	Maleic Hydrazide		111/82 111/42 111/55 111/83		
	Maleic Hydrazide-D ₂ (IL-IS)		113/42, 113/85	,,, ~~	
	Maleic Hydrazide- ¹³ C ₄ (IL-IS)		115/87, 115/58		
	Cyanuric acid		128/42 128/85		
	$C_{Vanuric}$ acid- ¹³ C_2		131/43 131/87		
	Bromide:		81/81, 79/79		
	Chlorate		83/67, 85/69		
	Chlorate- ¹⁸ O ₂ (II-IS)		89/71 91/73		
	Perchlorate		99/83 101/85		
	Perchlorate- ¹⁸ O ₄ (II-IS)		107/89, 109/91		
	Phosphonic acid		81/79 81/63		
	Phosphonic acid- ¹⁸ O ₃ (IL-IS)		87/85. 87/67		

Hints on Method 1.9

5.6.12. Method 2 (M2): "Fosetyl and Maleic Hydrazide"

IRL-<u>SRM</u>

Table 28: Proposed LC-MS/MS conditions for Fosetyl-Al, Maleic Hydrazide and Perchlorate

Instrument parameters				
Ionization mode	ESI neg			
Column/temperature	Obelisc R 2.1 x 150 mm 5 μm 100 Å; (SIELC; OR-21.150.0510)			
Pre-filters	e.g. Supelco column saver 2.0 μm Filter			
Dro column	Obelisc R 2.1 x 10mm 5 µm			
Pre-column	(SIELC; OR-21.G.0510)			
Fluent A	50 mmol NH ₄ -formate in water + 0.1 % formic acid			
Eluent A	use brown glass bottles			
Eluent B	Acetonitrile			
	%A	Flow [mL/n	nin]	Time [min]
	3	0.3		0
Gradient	10	0.3		6
Gradient	70	0.5		15
	70	0.5		18
	3	0.5		18.1
	3	0.5		28
Injection volume	5 μL			
	e.g. 0.05 or 0.1 μg/IS portion*, +	one level at t	he reporting limit	
Calibration standards and levels	For Maleic Hydrazide (MH) an additional level at 1 or 2 $\mu\text{g}/\text{mL}$ may be useful as well, due to high			
calibration standards and levels	residue levels; consider that MH is typically only relevant for potatoes and crops of the leek			
	family (onions etc.)			
	Compound		Mass Transitions	s (m/z)
	Fosetyl-Al		109/81, 109/63 (detected as fosetyl)	
	Fosetyl-Al-D ₁₅ (IL-IS)		114/82, 114/63 (detected as fosetyl-D ₅)	
Acquired mass transitions	Maleic Hydrazide		111/82, 111/42,	111/55, 111/83
	Maleic Hydrazide-D ₂ (IL-IS)		113/42, 113/85	
	Maleic Hydrazide- ¹³ C ₄ (IL-IS)		115/87, 115/58	
	Perchlorate		99/83, 101/85	
Perchlorate- ¹⁸ O ₄ (IL-IS)		107/89, 109/91		

* One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

Hints on Method 2

- 1. Contamination of Maleic hydrazide D₂ with native Maleic hydrazide: See 5.6.1
- 2. For Perchlorate better run Method 1.3 or 1.4 !
- 3. For general hints on analytes: See 5.6.1

EU Reference Laboratories for Residues of Pesticides

Figure 20: Typical chromatograms of Fosetyl-Al in strawberry extract and in solvent-based standards

Figure 21: Typical chromatograms of Maleic Hydrazide in onion extracts and in solvent-based standards

5.6.13. Method 3 (M3): "Amitrole&Co."

Table 29: Proposed LC-MS/MS conditions for Amitrole, Chlormequat, Mepiquat, Daminozide, ETU, PTU, Trimesium, Difenzoquat and Cyromazine.

Instrument parameters	Conditions				
Ionisation mode	ESI pos				
Column/temperature	Obelisc R 2.1 x 150 mm 5 µm 10	0 Å (SIELC; OR-21	.150.0510); 40°C		
Pre-column	Obelisc R 2.1 x 10 mm 5 μm				
	(SIELC; OR-21.G.0510)				
Pre-filters	e.g. Supelco column saver 2.0 μr	n Filter			
Eluent A	5 mmol NH ₄ -formate in water				
	Use brown glass bottles				
Eluent B	5 mmol NH ₄ -formate acetonitril	e/water 95 :5 (v/	v)		
	%A	Flow [mL/min]]	Time [min]	
	2	0.4		0	
Gradient	2	0.4		2.5	
	80	0.4		5	
	80	0.4		11	
	2	0.4		11.1	
	2	0.4		18	
Injection volume	5 μL				
Calibration standards and levels	e.g. 0.05 or 0.1 μg/IS portion* +	one level at the r	eporting limit		
	Compound		Mass Transition	s (m/z)	
	Amitrole		85/43, 85/57, 85/58		
	Amitrole- ¹⁵ N (IL-IS)		86/43		
	Amitrole- ¹⁵ N ₂ , ¹³ C ₂ (IL-IS)		89/44		
	Chlormequat		122/58, 122/63,	124/58	
	Chlormequat-D₄ (IL-IS)		126/58		
	Mepiquat		114/98, 114/58		
	Mepiquat-D₃ (IL-IS)		117/101		
	Daminozide		161/143, 161/61, 161/101 , 161/115, 161/44		
	Daminozide- ¹³ C ₄ (IL-IS)		165/147, 165/44		
Acquired mass transitions	Daminozide-D ₆ (IL-IS)		16//149, 165/97		
	Cyromazine		167/68, 167/125, 167/85, 167/108,		
	Cyromazine-D ₄ (IL-IS)		171/86, 171/68		
	ETU (Ethylenethiourea)		103/44, 103/60, 103/86		
	ETU-D ₄ (IL-IS)		107/48		
	PTU - N,N'-(1,2-Propylene)thiou	irea)**:	117/100, 117/58	3, 117/60, 117/72	
	PTU-D6 - N,N'-(1,2-Propylene)tl	niourea –D6**:	123/64, 126/74		
	PTU-D6 - N,N'-(1,3-Propylene)th	niourea -D6)**	(123/64)		
	Trimethylsulfonium		77/62, 77/47		
	Trimethylsulfonium-D ₉ (IL-IS)		86/68, 86/50		
	Difenzoquat		249/77, 249/130	0, 249/193	
	No IL-IS currently available		-		

* One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also **Table 2**). ** The acronym PTU, commonly used for the propineb degradant 4-Methyl-2-imidazolidinethione = N,N'-(1,2-Propylene)thiourea = N,N'-iso-propylenethiourea (CAS No. 2055-46-1). The same accronym is, however, also used for N,N'-propylenethiourea = N,N'-(1,3-Propylene)thiourea = N,N'-Trimethylenethiourea (CAS No.: 2122-19-2).

Hints on Method 3

- 1. For Paraquat, Diquat, Trimethylsulfonium and N,N-Dimethylhydrazine better run Method 4 (5.6.14)
- 2. For general hints on analytes: See 5.6.1

Figure 22: Typical chromatograms of Amitrole, Chlormequat, Mepiquat, Daminozide, ETU, PTU and Cyromazine in apple extract at 0.01 mg/kg

5.6.14.Method 4.1 (M4.1): "Quats&Co. Obelisc R"

<u> RL-SRN</u>

Table 30: Proposed LC-MS/MS conditions Diquat, Paraquat, Chlormequat, Mepiquat, Daminozide N,N-Dimethylhydrazine, Cyromazine, Trimethylsulfonium, Nereistoxin, Difenzoquat, Melamine and Propamocarb.

Instrument parameters	Conditions	·				
Ionisation mode	ESI pos					
Column/temperature	Obelisc R 2.1 x 150 mm 5 μm 100 Å (SIELC; OR-21.150.0510); 40°C					
Pre-filters	e.g. Supelco column saver 2.0 μm Filter					
Pre-column	Obelisc R 2.1 x 10 mm 5 μm (SIELC; C)R-21.G	i.0510)			
	20 mmol NH ₄ -formate in water (adju	ust to p	H 3 with formic acid), fo	r this mix 1.8 mL formic acid (3.4)		
Fluent A	with 500 mL 20 mmol NH ₄ -formate in water Use brown glass bottles!					
Eluent A	Alternative eluent A: 50 mmol NH ₄ formate in water (adjust to pH 3 with formic acid). This eluent com-					
	ponents is also used in M 4.2 "Quats	& Co B	EH Amide"			
Eluent B	Acetonitrile					
	%A	Flow	[mL/min]	Time [min]		
	20	0.4		0		
Gradient	80	0.4		4		
	80	0.4		12		
	20	0.4		12.1		
	20	0.4		20		
Injection volume	10 μL					
Calibration standards and levels	e.g. 0.05 or 0.1 μ g/IS portion* + one	level a	t the reporting limit			
	(use plastic vials if Paraquat and Diqu	d Diquat are within your scope!)				
	Compound		Mass Transitions (m/z)			
	Diquat		92/84, 183/157, 92/157, 184/156, 184/128			
	Diquat-D ₄ (IL-IS)		188/160 (this IL-IS showed problems with stability)			
	Diquat-D ₈ (IL-IS)		96/88, 191/165			
	Paraquat		186/171, 93/171, 93/77	7, 171/77, 171/155		
	Paraquat-D ₈ (IL-IS)		194/179, 97/179			
	Chlormequat		122/58, 122/63, 124/58	3		
	Chlormequat-D ₄ (IL-IS)		126/58			
	Mepiquat		114/98, 114/58			
	Mepiquat-D ₃ (IL-IS)		11//101			
	Daminozide		161/143, 161/61, 161/1	101 , 161/115, 161/44		
	Daminozide- $^{13}C_4$ (IL-IS)		105/14/			
Acquired mass transitions	Daminozide-D ₆ (IL-IS)					
	N,N-Dimetnyinyarazine		67/40			
	N,N-Dimethyinyarazine-D ₆ (iL-iS)		07/49			
	Cyromazine-D ₄ (II-IS)		107/08, 107/125, 107/85, 107/108,			
	Trimethylsulfonium		77/62 77/47			
	Trimethylsulfonium-D _o (IL-IS)		86/68			
	Nereistoxin		150/105. 150/61. 150/7	71		
	Nereistoxin-D ₆ (IL-IS)		156/105			
	Difenzoquat		249/77, 249/130, 249/1	193		
	No IL-IS currently available		-			
	Melamine		127/85, 127/68, (127/6	0)		
	Melamine- ¹⁵ N ₃ (IL-IS)		130/87			
	Propamocarb		189/144, 189/102, 189/74			
	Propamocarb-D ₇ (IL-IS)		196/103			

* One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also **Table 1**).

Hints on Method 4.1

- 1. For Morpholin, DEA and TEA better run Method 7 (5.6.18). As DEA converts to Morpholine in the ion source, chromatogr. separation is paramount. With Method 4.1 (5.6.14) these two peaks do not sufficiently separate.
- 2. Diquat and Paraquat require special extraction conditions (see 5.2.3-B)
- 3. For general hints on analytes: See 5.6.1

EU Reference Laboratories for Residues of Pesticides

Figure 23: Typical chromatograms of Diquat, Paraquat, Chlormequat, Mepiquat, Daminozide, N,N-Dimethylhydrazine, Trimethylsulfonium, Cyromazine, Nereistoxin, Difenzoquat, Melamine and Propamocarb in apple extract at 0.1 mg/kg.

Figure 24: Typical chromatograms of Diquat and Paraquat in rice 0.005 µg/mL final extract (corresponding to 0,04 mg/kg)

5.6.15. Method 4.2 (M4.2): "Quats&Co. BEH Amide"

<u>RL-SRN</u>

Table 31: Proposed LC-MS/MS conditions for ESI-pos. compounds listed in the table below.

Instrument parameters	Conditions					
Ionisation mode	ESI pos.					
Column/temperature	BEH Amide 2.1 x 100mm 1.7 μm (P/N: 186004801); 40°C					
Pre-column / Pre-filters	BEH Amide 1.7 μm (P/N: 186004799) / e.g. Supelco column saver 2.0 μm Filter					
Eluent A	50 mmol NH ₄ -formate in water (adjust to pH 3 with formic acid) Use brown glass !					
Eluent B	Acetonitrile					
	%A	Flow [mL/mi	inl	Time [min]		
	3	0.5		0		
	3	0.5		0.5		
Gradient	30	0.5		4.0		
	60	0.5		5.0		
	60	0.5		6.0		
	3	0.5		6.1		
	3	0.5		10		
Injection volume	$2 \mu\text{L}$ (0.5 μL for Waters Xevo	TQ-Sμ)				
Calibration standards and levels	e.g. one level at the reporting	g limit plus 0.05	5 or 0.1 μg/IS por	tion* +		
	Compound		Mass Transition	ns (m/z)		
	Aminocyclopyrachlor		214/170, 214/168	8, 214/101, 214/68		
	Amitrole		85/43, 85/57, 85/	/58		
	Amitrole ¹⁵ N (IL-IS)		80/43			
	Chlormequat		122/58 124/58	122/63 122/59 124/59		
	Chlormeguat-D₄ (IL-IS)		126/58: 126/59	<u></u> ,, <u></u> ,,,,		
	Chloridazon-desphenyl		146/117, 146/102	1, 146/66, 148/119		
	Chloridazon-desphenyl-15N2 (IL-IS)	148/117, 148/102	2		
	Cyromazine		167/68, 167/125,	167/108, 167/85, 167/60		
	Cyromazine-D ₄ (IL-IS)		171/86, 171/68			
	Daminozide		161/143, 161/61,	161/101, 161/115, 161/44		
	Daminozide - ¹³ C ₄ (IL-IS)		165/147, 165/44			
	Daminozide-D ₆ (IL-IS)		16//149, 165/9/			
	Diethanolamine (DEA)		110/92			
	Difenzoquat		249/130 249/77	249/193		
	Diquat:***		92/84. 92/157. 18	33/157		
	Diquat D ₈ (IL-IS)		96/89, 191/165			
	ETU (Ethylenethiourea)		103/60, 103/44, 2	103/86		
	ETU-D ₄ (IS)		107/48			
	Melamine		127/85, 127/68, (127/60)		
	Melamine- ¹⁵ N ₃ (IL-IS)		130/87, 130/44			
	Maleic Hydrazide		113/6/, 113/40 115/60, 115/87			
Acquired mass transitions	Maleic Hydrazide D2		115/09, 115/87			
	Matrine		249/148, 249/150, 249/110, 249/55			
	Matrine D ₃		252/148, 252/150, 252/96			
	Mepiquat		114/98, 114/58			
	Mepiquat-D ₃ (IL-IS)		117/101			
	Mepiquat-4-hydroxy		130/58, 130/96, 130/114			
	Morpholine		88/70, 88/45, 88/44			
	Morpholine-D ₈ (IL-IS)		96/78, 96/46			
	Nereistoxin:		150/105, 150/61,	150/71, 150/72		
	Nicotine		163/105, 150/01	2 163/84 163/106		
	Nicotine D ₄		167/84	2, 103/04, 103/100		
	Oxymatrine		265/247, 265/20	5, 265/148, 265/136		
	Oxymatrine D ₃		268/250, 268/208	3		
	Paraquat***		93/171, 93/85, 18	35/170		
	Paraquat D ₈ (IL-IS)		97/179, 193/178			
	Propamocarb:		189/144, 189/74,	189/102		
	Propamocarb-D ₇ (IL-IS)		196/103, 196/75			
	Propamocarb-N-desmethyl		205/102, 1/5/144	+, 1/3//4, 1/3/11b 1 205/74		
	PTU - N N'-(1 2-Propylene)thiour	ea)**	117/100 117/58	+, 200/74 117/60 117/72 117/41		
	$PTU-D_6 - N.N'-(1.2-Propylene)thio$	ourea –D ₆ **	123/64, 123/74	11//00, 11///2, 11//41		
	Triethanolamine (TEA)		125/04, 125/74 150/132, 150/70, 150/88			
	Triethanolamine-D ₁₂ (IL-IS)		162/144			
	Trimethylsulfonium		77/62, 77/47			
	Trimethylsulfonium-D ₉ (IL-IS)		86/68, 86/50			

* One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

**See comments on PTU under M3 (5.6.13).

*** Diquat and paraquat were only measured on the Waters Xevo TQ-S μ

Hints on Method 4.2

- 1. As the signals of **Morpholin**, **DEA and TEA better run Method 7 (5.6.18)**: are often strongly suppressed by matrix using these LC-conditions. For DEA even false negative results are observed in some cases. This effect is reduced if the extract is diluted e.g. 5/10 fold.
- Diquat and Paraquat require special extraction conditions (see 5.2.3-B). The screening option for diquat was removed as the diquat peak is very broad. Deprotonated diquat (which is formed, e.g. in methanolic standards) gives an earlier eluting sharp peak, but this peak does not appear in fresh extracts of real samples and is thus unsuited for screening
- 3. For general hints on analytes: See 5.6.1

Figure 25: Typical chromatograms of Diquat and Paraquat in sesame extracts spiked at 0.05 mg/kg using Waters Xevo TQ-Sµ.

Figure 26: Exemplary chromatograms of nicotine in flour (spelt, whole-grain) Maleic hydrazide in solvent. Nicotine at 0.01 mg/kg (0.005 μ g/mL); nicotine D₄ at 0.1 mg/kg (0.05 μ g/mL); Maleic hydrazide and Maleic hydrazide D₂ at 0.2 mg/kg (0.1 μ g/mL).

Figure 27: Typical chromatograms of Aminocyclopyrachlor, Amitrole, Chlormequat, Chloridazon-desphenyl, Cyromazine, Daminozide, Diethanolamine, Difenzoquat, ETU, Melamine, Mepiquat, Mepiquat-4-hydroxy, Morpholine, Nereistoxin, Propamocarb, Propamocarb-N-desmethyl, Propamocarb-N-oxide, PTU, Triethanolamine, Trimesium (Trimethylsulfonium) in tomato extracts spiked at 0.05 mg/kg; additionally Matrine and Oxymatrine at 0.01mg/kg in grape extract.

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

EURL-SRM

Figure 28: Typical chromatograms of Aminocyclopyrachlor, Amitrole, Chlormequat, Chloridazon-desphenyl, Cyromazine, Daminozide, Diethanolamine, Difenzoquat, ETU, Melamine, Mepiquat, Mepiquat-4-hydroxy, Morpholine, Nereistoxin, Propamocarb, Propamocarb-N-desmethyl, Propamocarb-N-oxide, PTU, Triethanolamine, Trimesium (Trimethylsulfonium) in tomato extracts spiked at 0.06 mg/kg.

5.6.16. Method 5 (M5): "Quats&Co. MonoChrom MS"

IRL-SRM

Instrument parameters	Conditions					
Ionisation mode	ESI pos	ESI pos				
Column/temperature	MonoChrom MS 100x2 mm; 5 μ	m (Varian); at 40°C				
Eluent A	5 mmol/L NH ₄ -acetate + 0.1% ac	etic acid in water				
Eluent B	Acetonitrile					
	%A	Flow [mL/min]		Time [min]		
	5	0.4		0		
Gradient	95	0.4		2		
Gradient	95	0.4		5		
	5	0.4		5.1		
	5	0.4		15		
Injection volume	5 μL					
Calibration standards and levels	e.g. 0.05 or 0.1 μ g/IS portion*+ one level at the reporting limit					
	Compound		Mass Tra	insitions (m/z)		
	Chlormequat		122/58, 122/63, 124/58			
	Chlormequat-D ₄ (IL-IS)		126/58			
	Mepiquat		114/98, 114/58			
	Mepiquat-D₃ (IL-IS)		117/101			
Acquired mass transitions	Difenzoquat:		249/77, 249/130, 249/193			
	No IS currently available		-			
	ETU (Ethylenethiourea)		103/44, 103/60, 103/86			
	ETU-D₄ (IL-IS)		107/48			
	PTU - N,N'-(1,2-Propylene)thiourea)**		117/100,	, 117/58, 117/60, 117/72		
	PTU-D6 - N,N'-(1,2-Propylene)thiourea –D6**		123/64, 123/74			

Table 32: Proposed alternative LC-MS/MS conditions for Chlormequat and Mepiquat

* One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

** See comments on PTU under M 3 (5.6.13).

Hints on Method 5

- 1. For general hints on analytes: See 5.6.1
- 2. For more information on method 5 please refer to the following document within the EURL homepage: <u>http://www.crl-pesticides.eu/library/docs/srm/meth_ChlormequatMepiquat_CrlSrm.pdf</u>

5.6.17. Method 6 (M6): "Streptomycin and Kasugamycin"

RL-SRN

 Table 33: Proposed LC-MS/MS conditions Streptomycin and Kasugamycin

Instrument parameters	Conditions	Conditions				
Ionisation mode	ESI pos	ESI pos				
Column	Obelisc R 2.1 x 150 mm 5µm 100 Å					
Column	(SIELC; OR-21.150.0510); 40°C					
Pre-filters	e.g. Supelco column saver 2.0) μm Filt	er			
Pre-column	Obelisc R 2.1 x 10 mm 5 μm					
	(SIELC; OR-21.G.0510)					
Eluent A	0.1% formic acid in water					
Eluent B	0.1% formic acid in acetonitrile					
	%A	Flow [mL/min]	Time [min]		
	20	0.3		0		
Gradient	20	0.3		8		
	20	0.3		13		
	80	0.5		18		
	80	0.5		23		
Injection volume	20 $\mu\text{L}\textsc{;}$ dwell time increased to	o 200 m	S			
Calibration standards and levels	e.g. 0.05 or 0.1 μ g/IS portion	* one lev	vel at the reporting lim	it		
	(use plastic vials if Streptomy	cin is wi	thin your scope)			
	Compound		Mass Transitions (m/z)			
	Streptomycin		582/263, 582/246, 582/ 221			
Acquired mass transitions	No IS currently available		-			
	Dihydrostreptomycin (IS)		584/263			
	Kasugamycin		380/112, 380/200			
	No IS currently available		-			

* One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also **Table 2**).

Hints on Method 6

- 1. For general hints on analytes: See 5.6.1
- 2. **Dihydrostreptomycin is a veterinary drug itself.** It may be used as IS for the quantification of strepromycin if shown to be absent from the sample (and vice versa)

Figure 29: Typical chromatograms of Streptomycin and Kasugamycin in apple extracts spiked at 0.01 mg/kg.

5.6.18. Method 7 (M7): "Morpholine, Diethanolamine and Triethanolamine"

Instrument parameters	Conditions						
Ionisation mode	ESI pos	ESI pos					
Column	Dionex Acclaim Trinity P1 2.	1 x 100	mm (3 μm) (P/N 07138	39); 40°C			
Pre-filters	e.g. Supelco column saver 2.0	μm Filt	er				
Pre-column	Dionex Acclaim Trinity P1 2.	1 x 10 m	nm (3 µm) (P/N 071391	L)			
Fluent A	50 mmol NH ₄ -formate in wate	er (adjus	st to pH 3 with formic a	cid)			
	Use brown glass bottles!						
Eluent B	Acetonitrile						
Gradient	%A	Flow [mL/min]	Time [min]			
Gradient	10	0.4		0			
	10	0.4		10			
Injection volume	5 μL						
Calibration standards and levels	e.g. 0.05 or 0.1 μg/IS portion+	one lev	vel at the reporting limi	t			
	Compound		Mass Transitions (m/	z)			
	Morpholine		88/70, 88/45, 88/44				
Acquired mass transitions	Morpholine-D ₈ (IS)		96/78, 96/46				
Acquired mass transitions	Diethanolamine (DEA)		106/88, 106/70, 106/45				
	Diethanolamine-D ₄ (IS)		110/92				
	Triethanolamine (TEA)		150/132, 150/70, 150)/88			
	Triethanolamine-D ₁₂ (IS)	Triethanolamine-D ₁₂ (IS) 162/144					

* One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

Hints on Method 7

1. For general hints on analytes: See 5.6.1

-SRA

 Morpholin, DEA and TEA are not pesticides, they are additive of waxes used to coat crops (citrus, apples and mangoes etc). They are included in this method for the sake of convenience and synergy. As these three compounds can be analyzed very sensitively 5-10-fold dilution of the extracts before injection is recommendable where possible, especially in absence of an IS requiring standard additions approach (5.5.3)

Figure 30: Typical chromatograms of Morpholine, Diethanolamine and Triethanolamine in apple extracts at 0.05 mg/kg (extract were diluted 10-fold before injection)

5.6.19.Method 8 (M8): "Triazole derivative metabolites (TDMs)"

JRL-SRM

Table 35: Proposed LC-MS/MS conditions 1,2,4-Triazole, Triazole-alanine, Triazole-acetic acid, Triazole-lactic acid and 1,2,3- Triazole

Instrument parameters	Conditions				
Ionisation mode	ESI pos				
Column	Hypercarb 2.1 x 100 mm 5 μm	(P/N	N 35005-102130); 40°C		
Pre-column	Hypercarb Guard 2.1 x 10 mm 5	5 µm	(P/N 35005-102101)		
Pre-filter	e.g. Supelco column saver 2.0 μm	Filter	r (optional)		
Eluent A	1% acetic acid in water + 5% meth	nanol			
Eluent B	1% acetic acid in methanol				
	%A	Flow	v [mL/min]	Time [min]	
	100	0.6		0	
Gradient	10	0.6		5	
	10	0.6		6	
	100	0.6		6.1	
	100	0.6		10	
Injection volume	2 μL				
Calibration standards and levels	e.g. 0.05 or 0.1 μ g/IS portion* one level at the reporting limit				
				DMS-S	ettings
	Compound		Mass Transitions (m/z)	(Selexion Q-Tra	p® 5500) **
				COV (V)	SV (V)
	1,2,4-Triazole ^{#:}		70/43, 70/70	-10	2600
Acquired mass transitions	1,2,4-Triazole- ¹³ C ₂ , ¹⁵ N ₃ (IS)		75/46	-13.75	3000
	Triazole-alanine:		157/70, 157/88, 157/42	-2.0	3000
	Triazole-alanine- ¹³ C ₂ , ¹⁵ N ₃ (IS)		162/75	-1.75	3100
	Triazole-acetic acid:		128/70, 128/43, 128/73	-6.0	3100
	Triazole-acetic acid- ¹³ C ₂ , ¹⁵ N ₃ (IS)		133/75	-6.0	3500
	Triazole-lactic acid:		158/70, 158/43, 158/112	-3.0	3300
	Triazole-lactic acid- ¹³ C ₂ , ¹⁵ N ₃ (IS)		163/75	-2.25	3500

* One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

** Further parameters: DMS temp.: low; CUR 20, GS1 60, GS2 70, DMO -3.0; DMS condition differ to some extent from instrument to instrument DMS condition differ to some extent from instrument to instrument

Hints on Method 8

- 1. For general hints on analytes: See 5.6.1
- 2. 1,2,4-Triazole is used as nitrification inhibitors in fertilizers
- 3. The following commercially available isotopically labelled components were not tested with this method: 1,2,4-Triazole-D₂, 1, 2, 4-Triazole-acetic acid-D₂, 1, 2, 4-Triazole-alanine-D₂, 1, 2, 4-Triazole-lactic acid-D₂

Figure 31: Typical chromatograms of TDMs in avocado extracts spiked at 0.01 mg/kg.

5.6.20. Method 9 (M9): "Difluoroacetic acid and Trifluoroacetic acid"

RL-SRM

Instrument parameters	Conditions						
Ionisation mode	ESI neg	ESI neg					
Column	Dionex/Thermo, Acclaim Trinity	P1 , 2.1 x 100	mm, (3 μm) (P/N 071	389); 40°C			
Pre-column	Thermo Guard Cartrige Acclaim T	rinity P1, 2.1	x 10 mm, (3 μm) (P/N	071391)			
Pre-filter	e.g. Supelco column saver 2.0 μm	n Filter (optior	nal)				
Eluent A	50 mmol NH4-formate, adjusted	to pH 3 with f	formic acid				
Eluent B	Acetonitrile						
	%A	Flow [mL/m	nin]	Time [min]			
	10	0.45		0			
Gradiant	10	0.45		3.5			
Gradient	50	0.45	0.45		4		
	50	0.45	0.45		6		
	10	0.45		6.1	6.1		
	10	0.45		10			
Injection volume	2 μL						
Calibration standards and levels	e.g. 0.05 or 0.1 μ g/IS portion*, one level at the reporting limit. Always use matrix based calibrations						
Calibration standards and levels	(e.g. blank tomato extract) instea	d of solvent b	based.				
				DMS-Se	ettings		
	Compound	Mass 1	Transitions (m/z)	(Selexion Q-Tra	ap® 5500) ***		
Acquired mass transitions				COV (V)	SV (V)		
Acquired mass transitions	Difluoroacetic acid (DFA)	95/51,	, 95/95**	-9.5	2500		
	Difluoroacetic acid - ¹³ C ₂ (IL-IS)	75/46		-12	3000		
	Trifluoroacetic acid (TFA)	113/69	9, 113/113**	-5.6	2200		
	Trifluoroacetic acid -13C ₂ (IL-IS)	Trifluoroacetic acid -1 ³ C ₂ (IL-IS) 115/70 -5.5 2300					
* One IS partian is the absolute IS	mass contained in the propared	d calibration	standard colution (coo alco Table 3	1		

Table 36: Proposed LC-MS/MS and Selexion conditions Difluoroacetic and Trifluoroacetic acid

One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also **Table 2**).

** Despite not having a mass transition the DMS provides good selectivity

*** Further parameters: DMS temp.: medium; CUR 20, GS1 60, GS2 70, DMO -3.0; DMS condition differ to some extent from instrument to instrument

Hints on Method 9

For general hints on analytes: See 5.6.1 1.

Figure 32: Typical chromatograms of DFA and TFA in tomato extracts spiked at 0.05 mg/kg

5.6.21. Method 10 (M10): "Triazole derivative metabolites (TDMs) on Torus DEA"

 Table 37: Proposed LC-MS/MS conditions 1,2,4-Triazole, Triazole-alanine, Triazole-acetic acid, Triazole-lactic acid and 1,2,3-Triazole

 zole

Instrument parameters	Conditions						
Ionisation mode	ESI pos	ESI pos					
Column	Waters Torus™DEA 2.1 mm x 100	0 mm	; 1.7 μm; 50 °C				
Pre-column	Waters Torus™DEA VanGuard™ 2	2.1 mr	n x 5 mm; 1.7 μm				
Pre-filter	Waters ACQUITY UPLC Column In	-Line	Filter Kit [205000343]				
Eluent A	1.2% formic acid in water						
Eluent B	0.5 % formic acid in Acetonitrile						
	%A	Flov	v [mL/min]	Time [min]			
	10	0.5		0			
	10	0.5		0.5			
Gradient	80	0.5		1.5			
	90	0.5		4.5			
	90	0.5		5			
	10	0.5		5.5			
	10	0.5		10			
Injection volume	2 μL						
Calibration standards and levels	e.g. 0.05 or 0.1 μ g/IS portion* one level at the reporting limit						
	Compound		Mass Transitions (m/z)				
	Triazole-alanine:		15//88, 15///0, 15//42				
	Iriazole-alanine- ${}^{13}C_2$, ${}^{15}N_3$ (IS):		162/75				
Acquired mass transitions	Triazole-alanine D_2 :		159/42				
	Triazole-acetic acid:		128/70, 128/43, 128/73				
	Triazole-acetic acid- ¹³ C ₂ , ¹⁵ N ₃ (IS):		133/75				
	Triazole-acetic acid D ₂ :		130/72				
	Triazole-lactic acid:		158/70, 158/43, 158/112				
	Triazole-lactic acid- ${}^{13}C_2$, ${}^{15}N_3$ (IS):		163/75				
	Triazole-lactic acid D ₂ :		160/72				

* One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also **Table 2**).

Hints on Method 10

1. For general hints on analytes: See 5.6.1

-SRA

2. **1,2,4-Triazole is measured by M8:** See 5.6.19

Figure 33: Typical chromatograms of TDMs in strawberry extracts spiked at 0.05 mg/kg.

5.6.22. Method 11 (M11): "Gly&Co. by IC on AS19"3

RL-SR

 Table 38:
 Proposed IC-MS/MS conditions for Glyphosate, AMPA, N-Acetyl-Glyphosate, Ethephon, HEPA, Glufosinate, MPPA,

 Fosetyl-Al, Cyanuric acid, Bromide, Chlorate, Perchlorate, Phosphonic acid and TFA

Instrument parameters	Conditions				
Ionisation mode	ESI neg				
Column/temperature	Thermo Scientific [™] Dionex [™] IonPac [™] AS19,2x250mm; 32°C				
Pre-column	Thermo Scientific™ Dionex™ IonPac™ AG19,2x50mm				
Eluent	Thermo Scientific [™] Dionex [™] EGC 500 [™] KOH eluent generator cartridge				
	c [KOH]	Flow [mL/	/min]	Time [min]	
	15 0.3			0	
	15	0.3		8	
Cradient	36	0.3		13	
Gradient	36	0.3		21	
	70	0.3		21.5	
	70	0.3		25	
	15	0.3		25.5	
	15	0.3		30	
Injection volume	5 μ L of 5-fold diluted extracts in	n water (pre	ferably ultrapure)		
Flow Make-up Solvent before ion source	0.15 mL/min acetonitrile				
	e.g. 0.05 or 0.1 $\mu g/IS$ portion +	one level at	the reporting limit;		
Calibration standards and levels	Standard solutions of Fosetyl a	nd Ethepho	n (and their IL-ISs) may b	e contaminated with native	
	Phosphonic acid which may por	tentially lea	d to false positives or shif	ted calibration, see 5.6.1.	
	Compound		Mass Transitions (m/z)		
	Glyphosate:		168/63, 168/124, 168/150, 168/81		
	Glyphosate- ¹³ C ₂ , ¹⁵ N (IL-IS):		171/63, 171/126		
	AMPA:		110/63, 110/79, 110/81		
	AMPA- ¹³ C, ¹⁵ N (IL-IS):		112/63, 112/81		
	N-Acetyl-Glyphosate:		210/63, 210/150, 210/7	79, 210/148	
	N-Acetyl-Glyphosate-D ₃ (IL-IS):		213/63, 213/153		
	Ethephon:		143/107, 143/79, 145/1	107	
	Ethephon-D₄ (IL-IS):		147/111, 147/79		
	HEPA:		125/79, 125/95, 125/63	3	
	HEPA-D₄ (IL-IS):		129/79, 129/97		
	Glufosinate:		180/63, 180/136, 180/8	35, 180/95	
	Glufosinate-D ₃ (IL-IS):		183/63, 183/98		
	N-Acetyl-Glufosinate:		222/63, 222/59, 222/13	36	
	N-Acetyl-Glufosinate-[acetyl]D	0₃ (IL-IS):	225/63, 225/137		
Acquired mass transitions (m/z)	N-Acetyl-Glufosinate-[methyl]D ₃ (IL-IS):		225/63		
	MPPA:		151/63, 151/107, 151/133		
	MPPA-D ₃ (IL-IS):		154/63, 154/136		
	Fosetyl-Al:		109/81, 109/63 (each detected as Fosetyl)		
	Fosetyl-Al-D ₁₅ (IL-IS):		114/82, 114/63 (each detected as Fosetyl- D_5)		
	Trifluoroacetic acid (TFA)		113/69, 113/113		
	Trifluoroacetic acid -13C ₂ (IL-IS)	:	115/70		
	Cyanuric acid:		128/42, 128/85		
	Cyanuric acid- ¹³ C ₃ :		131/43, 131/8/		
	Bromide:		81/81, /9//9		
	Chlorate:		83/67,85/69		
	Chiorate-+°O ₃ (IL-IS):		89/71,91/73		
	Perchlorate:		99/83, 101/85		
	Perchiorate-1004 (IL-IS):		107/89, 109/91		
	Phosphonic acid:		81/79, 81/63		
	Phosphonic acid- ¹⁸ O ₃ (IL-IS):		87/85, 87/67		

Hints on Method 11

1. For general hints on analytes: See 5.6.1

³ https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EPRW%202020%20-%20PD87.pdf

EU Reference Laboratory for pesticides requiring Single Residue Methods (EURL-SRM)

EU Reference Laboratories for Residues of Pesticides

Single Residue Methods

Figure 34: Typical chromatograms in cucumber extracts spiked at 0.05 mg/kg.

RL-SRM

Figure 35: Typical chromatograms in milk extracts spiked at 0.01 mg/kg (Perchlorate and Chlorate); at 0.05 mg/kg (Phosphonic acid); 0.025 mg/kg (Trifluoracetic acid) and 5 mg/kg (Bromide).

EURL-SRM 🚺

5.7. Calibration and Calculations

5.7.1. Using IS

Where IS is added to the sample before any aliquotation:

The following calculation approach requires that the ratio of the IS masses added to the test portions (**5.2.3**) and to the calibration standard(s) (14**5.5**) ($m_{IS}^{sample} / m_{IS}^{cal mix}$) is known and constant. By keeping the IS constant throughout the calibration levels the peak ratio $PR^{cal mix}$ ($A_{pest}^{cal mix} / A_{IS}^{cal mix}$) of each calibration level can be plotted against the absolute mass of the pesticide $m_{pest}^{cal mix}$ rather than the ratio $m_{pest}^{cal mix} / m_{IS}^{cal mix}$ (the $m_{IS}^{cal mix}$ is set as 1). The calibration graph (to be plotted for each pesticide separately) is described by the following formula:

$$PR^{calmix} = a_{cal} \times m_{pest}^{calmix} + b_{cal} \tag{1}$$

The mass fraction (w_R) of a given pesticide in a given sample can be calculated as follows using the respective peak ratio of pesticide and internal standard obtained from the sample extract (*PR* ^{sample} = A_{pest} ^{sample} / A_{IS} ^{sample}), the correction factor (m_{IS} ^{sample} / m_{IS} ^{cal mix}) as well as the weight of the test portion (m_a).

$$w_{R} = \frac{(PR^{Sample} - b_{cal})}{a_{cal}} \times \frac{1}{m_{a}} \times \frac{m_{ISTD}^{Sample}}{m_{ISTD}^{sample}} \left(\frac{\text{mg}}{\text{kg}}\right)$$
(2)

Reasonably (but not necessarily) the calibration standards should be prepared in such a way that the ratio m_{IS}^{sample} / $m_{IS}^{cal mix}$ equals the assumed volume ratio of sample extract versus calibration standard (20 for most samples and 40 for cereals, pulses, nuts and oily seeds). The absolute masses of the IS-WS I and II do not need to be necessarily known (see also the notes of **Table 2**).

Where IS is added to an aliquot of the extract

When adding the IS to an aliquot of the extract (e.g. 1 mL) the knowledge of the exact total volume of the sample extract becomes important. Water adjustment is thus essential and if it is done as described in **5.2.2** and **Table 35**, the total volume can be assumed to be exactly 20 mL. 1 mL sample extract will correspond to $1/20^{th}$ of the test portion (m_a) in case of most samples (or to $1/40^{th}$. in case of cereals, pulses, nuts and oily seeds, where extracts are diluted 2-fold during cleanup). The mass of the IS to be added to an aliquot (m_{Is}^{aliquot}) should be scaled according to the aliquot volume used (V_{aliquot}) with the IS mass ratio (m_{Is}^{aliquot} / m_{Is}^{cal mix}) being important for the calculation. Reasonably (but not necessarily) m_{Is}^{aliquot} should be derived using the following formula m_{Is}^{sample} x V_{aliquot}/20 (or m_{Is}^{aliquot} = m_{Is}^{sample} x V_{aliquot}/40 in case of cereals, pulses, nuts and oily seeds), with m_{Is}^{sample} being the IS mass that would have been added to the entire sample portion according to **5.2.2** and **Table 35**.

Following the above, the mass fraction (w_R) of a given pesticide in a given sample can be calculated as follows using the respective peak ratio of pesticide and internal standard obtained from the sample extract ($PR^{sample} = A_{pest}^{sample}$ / A_{IS}^{sample}), the correction factor ($m_{IS}^{aliquot}$ / $m_{IS}^{cal mix}$) as well as the weight of the sample equivalents in the aliquot ($m_{aliquot} = m_a x V_{aliquot}/20 \text{ or } m_{aliquot} = m_a x V_{aliquot}/40$ in case of a 2-fold dilution during cleanup).

$$w_{R} = \frac{(PR^{sample} - b_{cal})}{a_{cal}} \times \frac{1}{m_{aliquot}} \times \frac{m_{ISTD}^{aliquot}}{m_{ISTD}^{cal mix}} \left(\frac{\text{mg}}{\text{kg}}\right)$$
(3)

Variables used

Mass of pesticide in calibration mixture	$m_{pest}^{cal\ mix}$	μg
Mass of pesticide in final extract	m_{pest}^{sample}	μg
Mass of internal standard in calibration mixture	m ^{cal mix} ISTD	μg
Mass of internal standard added to test portion (sample)	m_{ISTD}^{sample}	μg

Single Residue Methods	
$m_{ISTD}^{aliquot}$	μg
for $V^{aliquot}$	mL
m a	g
m _{aliquot}	g
W R	mg/kg
$A_{\it pest}^{\it calmix}$	(counts)
$A_{ISTD}^{cal\ mix}$	(counts)
A_{pest}^{sample}	(counts)
A_{ISTD}^{sample}	(counts)
PR ^{cal mix}	(dimensionless)
PR sample	(dimensionless)
a cal	(dimensionless)
b cal	(dimensionless)
1	Single Residue Methods $m_{ISTD}^{aliquot}$ for $V^{aliquot}$ m_a $m_aliquot$ w_R $A_{pest}^{cal mix}$ $A_{ISTD}^{cal mix}$ $A_{pest}^{cal mix}$ $A_{ISTD}^{cal mix}$ $PR^{cal mix}$ $PR^{cal mix}$ PR^{sample} a_{cal} b_{cal}

EU Reference Laboratories for Residues of Pesticides

5.7.2. Not using IS

If no appropriate ISs are used it is of high importance to properly compensate for matrix effects. For the compensation of matrix effects matrix-matched calibrations (**5.5.2**) and the standard additions approach (**5.5.3**) are recommended. In both cases the assumption is made that the total volume of the sample extract is exactly 20 mL. Adjustment of the water content (and extract volume) in the sample is thus paramount.

Calculations when employing matrix-matched calibration without IS

The calibration graph (to be plotted for each pesticide separately) is described by the following formula:

$$A_{pest}^{cal\ mix} = a_{cal} \times C_{pest}^{cal\ mix} + b_{cal}$$

The mass fraction (w_R) of a given pesticide in a given sample can be calculated as follows using the respective peak area of the pesticide obtained from the sample extract (A_{pest}^{sample}) and a correction factor (V) as well as the weight of the test portion (m_a).

$$w_{R} = \frac{(A_{pest}^{Sample} - b_{cal})}{a_{cal}} \times \frac{1}{m_{a}} \times V_{end} \left(\frac{\text{mg}}{\text{kg}}\right)$$
(2)

where V_{end} is the total volume of the sample extract (20 mL or 40 mL in case of a 2-fold dilution during cleanup).

All other variables are listed in 5.7.1.

Calculations when employing the standard additions approach

The standard additions approach is the method of choice where no appropriate IL-IS is available. This approach typically compensates matrix effect better than the matrix-matched calibrations (**5.5.2**). The mass fraction of the pesticide in the sample (W_R) is calculated via linear regression using a graphical presentation as shown in **Figure 36**. The Y-intercept of the calibration graph will indicate the pesticide mass contained in the non-fortified aliquot of the sample extract.

Key:

Y Peak area of analyte

X Added absolute mass of analyte $m_{pest}^{std\,add}$ in µg

|x| absolute amount of analyte in the sample extract (in μg) before standard addition (y = 0)

With x = $\frac{y - \text{int } ercept(b)}{slope of the curve(a)}$ (µg)

The calculation is performed as follows using the regression graph shown in

$$w_{R} = \frac{b}{a} \times \frac{V_{end}}{V_{al} \times m_{a}} \left(\frac{\mathrm{mg}}{\mathrm{kg}}\right)$$

where:

b Y-intercept of the calibration graph of the analyte in question;

a Slope of the calibration graph of the analyte in question $(1/\mu g)$;

Vend Volume of sample extract (mL) (should be 20 mL)

Val Volume of aliquots used for the standard additions approach (mL)

m^{*a*} Weight of initial sample portion (g)

6. Stability and purity of standards

IRL-<u>SRM</u>

A general overview regarding the stability of Glyphosate & Co. compounds in stock solutions is given in **Table 39**. For the compounds of this method (Maleic Hydrazide and Cyanuric acid excluded) the use of water with 10 % acetonitrile was shown to be a suitable solvent, see also **Table 43**.

In case of Ethephon (native compound or IL-IS), which is sensitive towards neutral and alkaline pH, acidifying the stock solution with hydrochloric acid is recommended. The addition of 0,1 % (v/v) of concentrated HCl (37 %) is proposed. This acid content will also sufficiently stabilize 100-fold diluted working solutions (of e.g. 10 µg/mL) without the need of adding further acid. Other compounds of this method are not markedly compromised in their stability by this acid content.

The previously recommended solvent of methanol/water+1 % formic acid 1/1 proved to be less suitable in the long run with methylations, formylations as well as dehydrations being observed for some compounds, such as glyphosate. To some extent degradation also takes place in QuPPe extracts (consisting of Water/Methanol+1 % Formic acid (1/1, v/v)) with AMPA and N-Acetyl-Glyphosate being most affected. In general degradation is negligible if extracts stored at room temperature are analyzed within 14 days. In any case such losses can be effectively corrected by the respective IL-ISs (if added at any stage prior to extract storage). The stability of compounds of the "Glyphosate & Co. group" in water containin g 10% acetonitrile, over a period of 7 months in the refrigerator, is demonstrated in **Figure 37**. The stability in stock solutions is generally better that in working solutions.

				C	ompositic	on of sto	orage s	olvent				
		Pure	e Wate	r	Wate	er / Me	он	Pure N	ЛеОН	Wat	er / AC	CN .
					(MeOH 25 and 50 %)*					(ACN 25 and 50 %)) %)*
Native Compound	w/o acid	1% FA	1% AA	0.1% HCl**	w/o acid	1% FA	1% AA	w/o acid	1% FA	w/o acid	1% FA	1% AA
AMPA	NT	NT	NT	NT	√	NT	NT	NT	NT	NT	NT	NT
Bialaphos	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
Cyanuric acid	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
Ethephon	x	✓	✓	✓	NT	NT	NT	NT	✓	NT	NT	NT
Fosetyl-Al	√	×	✓	×	√	NT	NT	NT	NT	NT	NT	NT
Glufosinate	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
Glyphosate	✓	×	x	NT	x	×	x	NT	NT	x	x	×
HEPA	NT	NT	NT	NT	NT	NT	NT	✓	✓	NT	NT	NT
Maleic Hydrazide	NT	NT	NT	NT	NT	NT	NT	✓	✓	NT	NT	NT
MPPA	✓	✓	✓	NT	×	×	×	NT	NT	✓	✓	✓
N-Acetyl-AMPA	✓	✓	✓	NT	x	×	x	NT	NT	√	✓	✓
N-Acetyl-Glufosinate	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
N-Acetyl-Glyphosate	✓	✓	✓	NT	x	×	×	NT	NT	✓	✓	✓

Table 39: Overview of experiments on long-term stability "Glyphosate & Co." compounds dissolved in differently composed solvents. Concentration of analytes in stored mixtures $10 \mu g/mL$; storage duration: 6 months; storage temperature: 6°C

 \checkmark = sufficiently stable (deviating less than ±10 % from a freshly prepared standard of the same composition) ; ×=not stable MeOH = Methanol; ACN = Acetonitrile

* Solutions of both 25 % and 50 % of organic solvent have been tested.

** 0.1% HCl-conc. (37%) in water (v/v)

Figure 37: Deviations of the concentration of Glyphosate & Co. compounds in a working solution of 10 μ g/mL water containing 10 % acetonitrile and 1‰ HCl conc. (v/v), following 7 months of storage at 6 °C. Compared against a freshly prepared standard of same composition

Issues concerning the purity of N-Acetyl-Glufosinate D₃: There is two types of N-Acetyl-Glufosinate D₃ standards on the market. Both contain the three deuterium atoms on a methyl group, but the first one contains them on the methyl group of the acetyl moiety and the other one on the methyl group that is attached to the phosphorus atom. In theory the acetyl group can be hydrolytically detached, native glufosinate may be formed in working solutions of N-Acetyl-Glufosinate (acetyl-D₃), leading to false positive results. Fortunately the degradation rate observed in the water:acetonitrile 9:1 mixture (see Figure 37) was negligible. More important is the content of native glufosinate in purchased N-Acetyl-Glufosinate (acetyl-D₃) standards. Before first use the standards should be checked for the presence of native glufosinate impurities and object the product if it does not meet the producer's specifications. The levels of native glufosinate impurities depend on the manufacturer and the badge. Where e.g. 0.5 μg IL-IS is added to 1 g sample, the presence of 2% native glufosinate (a typical level encountered) can lead to glufosinate levels of 0.01 mg/kg.

7. Performance Data

EURL-SRM

Validation data of the presented methods according to SANTE/11945/2015 guidance document are shown at the EURL validation database at www.eurl-pesticides-datapool.eu. Exemplary LOQs of the presented methods are listed in **Table 40**.

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level	n	Recov.	RSD
				(mg/kg)		%	
	AMPA	High water content + acidic	Grapes	0.02	12	110	9
	AMPA	Dry (cereals)	Barley	0.02	5	101	14
Method A A A A A A A A A A A A A A	AMPA	Dry (pulses)	Lentil	0.1	10	95	17
	AMPA	Dry (cereals)	Wheat flour	0.1	5	119	6
	AMPA	High water content	Apple	0.02	17	100	12
	AMPA	Dry (cereals)*	Rice	0.1	5	99	6
	AMPA	Dry (pulses)*	Soybean	0.1	5	106	6
	AMPA	High sugar and low water content	Honey	<mark>0.02</mark>	5	<mark>101</mark>	<mark>2</mark>
	Cyanuric Acid	High water content	Cucumber	0.02	3	106	13
	Cyanuric Acid	Dry (cereals)*	Rice	0.1	5	105	5
	Cyanuric Acid	Dry (pulses)*	Soybean	0.1	5	115	12
	Ethephon	Dry (cereals)	Barley	0.02	5	110	2
	Ethephon	Dry (cereals)	Wheat flour	0.1	5	85	6
	Ethephon	High water content	Apple	0.02	7	105	11
	Ethephon	High water content	Cucumber	0.02	3	101	11
	Ethephon	High water content + acidic	Grapes	0.01	5	104	4
	Ethephon	Dry (cereals)*	Rice	0.02	5	92	8
	Ethephon	Dry (pulses)*	Soybean	0.02	5	107	11
Ethephon Ethephon Fosetyl Fosetyl Fosetyl	High sugar and low water content	Honey	0.02	5	<mark>101</mark>	7	
	Fosetvl	High water content + acidic	Strawberry	0.1	6	94	4
	Fosetyl	Dry (cereals)	Barley	0.02	5	106	7
	Fosetyl	High water content	Apple	0.02	7	104	5
	Fosetyl	High water content	Cucumber	0.02	3	103	5
M1.3	Fosetyl	High water content + acidic	Grapes	0.01	5	105	2
	Fosetyl	Dry (cereals)*	Rice	0.02	5	91	3
	Fosetyl	Dry (pulses)*	Sovbean	0.02	5	96	4
	Fosetyl	High sugar and low water content	Honey	0.02	5	109	4
	Glufosinate	High water content + acidic	Grapes	0.05	5	96	10
	Glufosinate	Dry (cereals)	Barley	0.02	5	101	13
	Glufosinate	Dry (cereals)	Wheat flour	0.1	5	85	5
	Glufosinate	High water content	Apple	0.02	7	106	8
	Glufosinate	High water content	Cucumber	0.02	3	115	4
	Glufosinate	Dry (cereals)*	Rice	0.06	5	96	5
	Glufosinate	Dry (pulses)*	Sovbean	0.06	5	105	8
	Glufosinate	High sugar and low water content	Honey	0.02	5	<mark>96</mark>	2
	Glyphosate	High water content + acidic	Grapes	0.02	12	112	8
	Glyphosate	High water content + acidic	Grapes	0.02	5	102	6
	Glyphosate	Dry (cereals)	Barley	0.02	5	105	8
	Glyphosate	Dry (pulses)	Lentil	0.1	11	107	18
	Glyphosate	High oil content, dry (oily seeds, nuts)	Bean. Sova	0.1	10	95	10
	Glyphosate	High water content	Apple	0.02	16	93	12
	Glyphosate	High water content	Cucumber	0.02	3	94	3
	Glyphosate	Dry (cereals)*	Rice	0.1	5	91	6
	Glyphosate	Dry (pulses)*	Sovbean	0.06	5	99	5
	Glyphosate	High sugar and low water content	Honey	0.02	5	105	4
					1 -		

Table 40: Overview of lowest successfully validated levels per matrix

Dry (cereals)

HEPA

5 106

17

0.02

Barley

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level	n	Recov.	RSD
				(mg/kg)		%	
	НЕРА	High water content	Apple	0.02	7	109	14
	HEPA	High water content	Cucumber	0.02	3	104	6
MethodAnaHEpHEPHEPHEPHEPHEPHEPMali </td <td>HEPA</td> <td>Dry (cereals)*</td> <td>Rice</td> <td>0.04</td> <td>5</td> <td>98</td> <td>1</td>	HEPA	Dry (cereals)*	Rice	0.04	5	98	1
	HEPA	Dry (pulses)*	Soybean	0.04	5	93	6
	HEPA	High sugar and low water content	Honey	0.02	5	100	2
	Maleic Hydrazide	Dry (cereals)	Barley	0.02	5	100	9
	, Maleic Hydrazide	High water content	Apple	0.02	7	110	9
	, Maleic Hydrazide	High water content	Cucumber	0.02	3	103	13
	Maleic Hydrazide	High water content, extract rich	Onion	0.1	5	106	4
	Maleic Hydrazide	High water content + acidic	Grapes	0.01	5	110	11
	Maleic Hydrazide	Dry (cereals)*	Rice	0.08	5	96	8
	Maleic Hydrazide	Dry (pulses)*	Sovbean	0.08	5	97	14
	MPPA	Dry (cereals)	Barley	0.02	5	106	10
	МРРА	Dry (cereals)	Wheat flour	0.1	5	85	1
	MPPA	High water content	Apple	0.02	7	88	- 11
	МРРА	High water content	Cucumber	0.02	3	107	14
	MPPA	High water content + acidic	Grapes	0.02	5	102	3
	MPPA	Dry (cereals)*	Rice	0.02	5	97	3
	MDDA	Dry (pulses)*	Sovhean	0.04	5	101	2
		High sugar and low water content	Honey	0.04	5	00	2 2
		Dry (coroals)	Barlov	0.02	5	109	2
		High water content	Applo	0.02	5	108	5
		High water content	Apple	0.02	2	120	11 7
	N-Acetyl Alvipa		Darlay	0.02	5	09	/ _
	N-Acetyl Glufosinate	Dry (cereals)	Barley	0.02	5	103	5
N-Acetyl Glufosinate N-Acetyl Glufosinate		High water content	Appie	0.02	/	112	9
	N-Acetyl Glufosinate	High water content	Cucumber	0.02	3	101	3
	N-Acetyl Glufosinate	High water content + acidic	Grapes	0.01	5	97	4
	N-Acetyl Glufosinate	Dry (cereals)*	Rice	0.04	5	99	2
	N-Acetyl Glufosinate	Dry (puises)*	Soybean	0.04	5	98	3
	N-Acetyl Glufosinate	High sugar and low water content	Honey	0.02	5	99 100	2
	N-Acetyl Glyphosate	High water content + acidic	Grapes	0.01	10	109	8
	N-Acetyl Glyphosate	Dry (cereals)	Corn nour	0.02	10	104	10
	N-Acetyl Glyphosate	Dry (puises)	Lentii	0.05	10	104	8
	N-Acetyl Glyphosate	High oil content, dry (olly seeds, huts)	Bean, Soya	0.05	10	102	/
	N-Acetyl Glyphosate	High water content	Appie	0.01	10	109	8
	N-Acetyl Glyphosate	Dry (cereals)*	Rice	0.1	5	94	2
	N-Acetyl Glyphosate	Dry (puises)*	Soybean	0.1	5	101	3
	N-Acetyl Glyphosate	High sugar and low water content	Honey	0.02	5	100	3 (
	Bromido (inorg.)	night water content	Current	0.02	5	103	0
	Bromide (inorg.)		Currant		5	98	4
M1.4	Bromide (morg.)	High water content	Caulinower	1	5	94	12
	Chlorate		Currant	0.01	5	102	/
	Chlorate	Dry (cereals)	Rice	0.02	5	108	2
	Chiorate	High water content	Caulifiower	0.01	5	100	5
	Perchiorate	High Water content + acidic	Currant	0.01	5	100	4
M1.4	Perchiorate	Dry (cereals)	Barley	0.01	5	106	2
	Perchiorate	Dry (cereals)	Rice	0.02	5	100	/
	Perchlorate	High water content	Apple	0.01	5	108	3
	Perchiorate	High water content	Caulifiower	0.01	5	97	3
	Phosphonic Acid	High water content + acidic	Currant	0.1	5	102	3
M1.4	Phosphonic Acid	Hign water content + acidic	Iviandarine	0.1	5	99	10
	Phosphonic Acid	Dry (cereals)	Rice	0.2	5	97	4
	Phosphonic Acid	High water content	Apple	0.1	6	102	9
M1.4	Phosphonic Acid	I High water content	Cauliflower	10.1	15	8/	12

Number Commonity Group Matrix Level n Record Record N Prosphonic Acid High water content Appi 0.2 5 2 2 AMPA High water content + acidic Grape 0.21 5 2 2 2 AMPA Dry (plused) Sortfaut 0.11 5 2 2 7 AMPA Dry (plused) Lentits 0.12 5 3 7 0 Ethephon Dry (plused) Lentits 0.22 5 3 7 4 Tosstyl Dry (plused) Soytfaur 0.05 5 92 4 Tosstyl Dry (plused) Soytfaur 0.11 5 92 4 Tosstyl Dry (plused) Soytfaur 0.11 5 10 5 Fostyl Dry (plused) Soytfaur 0.11 5 10 5 Fostyl Dry (plused) Lentits Galufosinate Dry					Spiking		Mean	
Phosphonic Acid High water content Margin 0.1 5 90 AMPA High water content Appie 0.02 5 102 8 AMPA High water content Appie 0.02 5 102 7 AMPA Dry (pulses) Lentils 0.1 5 102 7 AMPA Dry (pulses) Lentils 0.1 5 102 7 AMPA Dry (pulses) Lentils 0.025 5 80 8 7 Ethephon Dry (pulses) Lentils 0.01 5 92 7 Ethephon Dry (pulses) Lentils 0.05 5 92 7 Fostly High water content + acidic Grape 0.01 5 100 3 Fostly Dry (pulses) Lentils 0.1 5 106 4 Glufosinate High water content Appie 0.02 5 105 4 Glufosinate	Method	Analyte	Commodity Group	Matrix	Level	n	Recov.	RSD
Phosphone Acid High water content Marge 0.1. 5 99. 99. AMPA High water content Apple 0.027 5 112. 8 AMPA High water content Apple 0.021 5 112. 8 AMPA Dry (olvseq) Lantib 0.1. 5 103. 6 Ethephon High water content Apple 0.025 5 80. 8 Ethephon Dry (olvse) Lantib. 0.05 5 97. 7 Fosetyl High water content Apple 0.011 5 99. 9 Fosetyl High water content Apple 0.011 5 98. 1 Fosetyl High water content Apple 0.011 5 98. 4 Glufosinate High water content Apple 0.02 5 88. 4 Glufosinate High water content Apple 0.02 5 88. 4 4					(mg/kg)		%	
M1.51 M1.54 MPA High water content + ciclic Grope 0.02 5 1.02 8.02 7.02 AMPA High water content + ciclic Grope 0.11 5 9.02 8.02 7.02 6.02 8.02 7.0 6.02 8.02		Phosphonic Acid	High water content	Mango	0.1	5	99	9
AMPA High water content Grape 0.02 5 12.2 8 AMPA Dry (pu/sed) Lentils 0.1 5 10.3 6 Ethephon High water content Apple 0.025 5 8 7.4 Ethephon High water content Apple 0.025 5 9 7.4 Ethephon Dry (ph/seeds) Say flour 0.05 5 92.7 7 FosteryI High water content Apple 0.01 5 92.9 9 FosteryI Dry (ph/seeds) Say flour 0.1 5 92.9 9 FosteryI Dry (ph/seeds) Say flour 0.1 5 92.9 9 Glufosinate High water content Apple 0.02 5 106.4 9 Glufosinate Dry (ph/seeds) Grape 0.02 5 106.9 9 Glufosinate Dry (ph/seeds) Grape 0.2 5 102.9 10		AMPA	High water content	Apple	0.02	5	102	8
AMPA Dry (pily seeds) Soyr (bur) 0.1 5 92 7 Ethephon High water content Apple 0.025 5 92 7 Ethephon Dry (puly seeds) Soyr (four) 0.035 5 92 7 Ethephon Dry (puly seeds) Soyr (four) 0.035 5 92 7 Ethephon Dry (puly seeds) Lentils 0.61 5 92 9 Fosstyl High water content Apple 0.01 5 94 3 3 3 94 3 3 94 3 <		AMPA	High water content + acidic	Grape	0.02	5	112	8
AMPA Dry (pulses) Lentils 0.1 5 10.3 6 Ethephon High water content Apple 0.025 5 80.0 8 Ethephon Dry (poly seeds) Sov flour 0.025 5 92.0 7 4 Fosetyl High water content + acidic Grape 0.01 5 99.0 9 Fosetyl High water content + acidic Grape 0.01 5 94.0 3 Fosetyl Dry (poly seeds) Lentils 0.11 5 94.4 2 Glufosinate High water content Apple 0.02 5 94.4 2 Glufosinate Dry (poly seeds) Lentils 0.1 5 92.5 3 3 Glufosinate Dry (poly seeds) Centils 0.1 5 3 10.6 3 Glufosinate Dry (poly seeds) Soy flour 0.1 5 3 20.2 8 Glufosinate Dry (poly seeds) Soy		AMPA	Dry (oily seeds)	Soy flour	0.1	5	92	7
Ehephon High water content + acidic Grape 0.025 5 97 0 Ethephon Dry (oily seeds) Soy flour 0.035 5 92 7 Ethephon Dry (oily seeds) Soy flour 0.035 5 97 4 Fosetyl High water content Apple 0.01 5 98 3 Fosetyl Dry (pulses) Soy flour 0.11 5 98 3 Fosetyl Dry (pulses) Lentils 0.11 5 98 3 Gufosinate High water content Acidic Grape 0.02 5 34 2 3 Gufosinate Dry (pulsesd) Lentils 0.1 5 100 5 101 5 102 4 Gufosinate Dry (pulsesd) Soy flour 0.1 5 102 3 102 3 Gufosinate Dry (pulsesd) Soy flour 0.1 5 102 3 102 3		AMPA	Dry (pulses)	Lentils	0.1	5	103	6
Ethephon High water content + acidic Grape 0.02 5 80.7 8 Ethephon Dry (olyaseds) Lentils 0.05 5 97 4 Fosetyl High water content Apple 0.01 5 97 4 Fosetyl High water content Apple 0.01 5 98 3 Fosetyl Dry (olyseds) Lentils 0.11 5 98 3 Gutosinate High water content Apple 0.02 5 94 2 Gutosinate High water content Apple 0.02 5 98 8 Gutosinate Dry (pulses) Lentils 0.1 5 92 1.06 5 Gutosinate Dry (pulses) Lentils 0.1 5 1.02 3 1.06 5 Gutosinate Dry (pulses) Lentils 0.1 5 1.02 3 1.06 1 Gutosinate Dry (pulses) Lentils		Ethephon	High water content	Apple	0.025	5	97	0
Ethephon Dry (pluy seeds) Sop floar 0.05 5 92 7 Ethephon Dry (pluses) Lentils 0.05 5 97 4 Issety/ High water content Apple 0.01 5 98 3 Fosety/ Dry (pluses) Lentils 0.11 5 98 3 Glufosinate High water content Apple 0.02 5 94 2 Glufosinate High water content Apple 0.02 5 94 2 Glufosinate Dry (pluses) Lentils 0.11 5 88 4 Glufosinate Dry (pluses) Lentils 0.11 5 10.02 5 10.05 10.02 5 10.02 5 10.02 5 10.02 5 10.02 5 10.02 5 10.02 5 10.02 5 10.02 5 10.02 5 10.02 5 10.02 5 10.02 5 10		Ethephon	High water content + acidic	Grape	0.025	5	80	8
Effection Dry (pulses) Lentils 0.03 5 97 4 Fosety/ High water content Apple 0.01 5 90 9 Fosety/ Dry (olly seeds) Sory flour 0.11 5 98 3 Fosety/ Dry (olly seeds) Sory flour 0.11 5 98 4 Glufosinate High water content Apple 0.02 5 10.6 4 Glufosinate Dry (olly seeds) Sory flour 0.11 5 88 8 Glufosinate Dry (olly seeds) Sory flour 0.11 5 10.6 8 Gluphosate High water content + acidic Grape 0.02 5 10.0 4 Glyphosate Dry (olly seeds) Sory flour 0.11 5 10.2 8 HEPA High water content + acidic Grape 0.02 5 10.2 8 2 MPA High water content + acidic Grape 0.02 5		Ethephon	Dry (oily seeds)	Soy flour	0.05	5	92	7
Posety/ High water content + acidic Grape 0.01 5 90 9 Posety/ Dry (poly seeds) Soy flour 0.11 5 98.0 3 Fosety/ Dry (poly seeds) Soy flour 0.11 5 99.1 1 Glufosinate High water content Apple 0.02 5 3.06 4 Glufosinate Dry (poly seeds) Soy flour 0.11 5 98. 4 Glufosinate Dry (polyses) Lentils 0.11 5 1.01 5 1.01 5 1.01 5 1.01 5 1.01 5 1.01 5 1.02 4 Glufosinate Dry (polyseds) Soy flour 0.11 5 1.02 4 HEPA High water content + acidic Grape 0.02 5 1.02 4 HEPA Dry (polyseds) Soy flour 0.11 5 0.02 5 1.02 4 MPPA High water content +		Ethephon	Dry (pulses)	Lentils	0.05	5	97	4
Fosety/ High water content + acidic Grape 0.01 5 900 3 Fosety/ Dry (olly seeds) Soy flour 0.1 5 98 3 Fosety/ Dry (olly seeds) Lentils 0.1 5 94 2 Glufosinate High water content + acidic Grape 0.02 5 94 4 Glufosinate Dry (olly seeds) Soy flour 0.1 5 98 8 Glufosinate Dry (olly seeds) Soy flour 0.1 5 10.6 5 Glyphosate High water content acidic Grape 0.02 5 10.6 5 Glyphosate Dry (pulses) Lentils 0.1 5 98 8 HEPA High water content acidic Grape 0.02 5 10.0 8 9 HEPA High water content acidic Grape 0.02 5 10.0 3 10.0 1.0 5 90.0 3		Fosetyl	High water content	Apple	0.01	5	99	9
Fosetyl Dry (plyseeds) Soy flour 0.1 5 98 3 Fosetyl Dry (pulses) Lentils 0.1 5 94 2 Glufosinate High water content Apple 0.02 5 94 2 Glufosinate Dry (pulses) Lentils 0.1 5 98 4 Glufosinate Dry (pulses) Lentils 0.1 5 10.1 5 Glyphosate High water content Apple 0.02 5 10.2 3 Glyphosate Dry (pulses) Lentils 0.1 5 10.2 4 HEPA High water content Apple 0.02 5 10.0 6 HEPA High water content Apple 0.02 5 10.0 6 HEPA High water content Apple 0.02 5 96 2 MPA High water content Apple 0.02 5 10.0 6 HEPA		Fosetyl	High water content + acidic	Grape	0.01	5	100	3
Fosetyl Dry (pulses) Lentils 0.1 5 99 1 Glufosinate High water content Apple 0.02 5 96 4 Glufosinate Hylgh water content + acidic Grape 0.02 5 98 4 Glufosinate Dry (pulses) Lentils 0.1 5 98 8 Glufosinate Dry (pulses) Lentils 0.1 5 98 8 Glyphosate High water content Apple 0.02 5 105 3 Glyphosate Dry (pulses) Lentils 0.1 5 102 8 Glyphosate Dry (pulses) Lentils 0.1 5 96 4 HEPA High water content Apple 0.02 5 102 8 HEPA High water content Apple 0.02 5 106 3 MPA Dry (pulses) Lentils 0.1 5 103 1 Nacetyl-Gl		Fosetyl	Dry (oily seeds)	Soy flour	0.1	5	98	3
Bits High water content Apple 0.02 5 94 2 Glufosinate High water content + acidic Grape 0.02 5 106 4 Glufosinate Dry (pulses) Lentlis 0.1 5 98 4 Glufosinate Dry (pulses) Lentlis 0.1 5 98 8 Glyphosate High water content Apple 0.02 5 106 5 Glyphosate Dry (pulses) Lentlis 0.1 5 102 8 Glyphosate Dry (pulses) Lentlis 0.1 5 102 8 HEPA High water content + acidic Grape 0.02 5 100 6 HEPA Dry (pulses) Lentlis 0.1 5 98 2 MPA High water content Apple 0.02 5 100 6 MPA Dry (pulses) Lentlis 0.1 5 103 1 MPA		Fosetyl	Dry (pulses)	Lentils	0.1	5	99	1
M1.5 Glufosinate High water content + acidic Grape 0.02 5 10.6 4 Glufosinate Dry (plulses) Lentils 0.1 5 98 4 Glufosinate Dry (plulses) Lentils 0.1 5 98 8 Glyphosate High water content Apple 0.02 5 106 5 Glyphosate Dry (pluses) Lentils 0.1 5 102 3 Glyphosate Dry (pluses) Lentils 0.1 5 102 8 HEPA High water content + acidic Grape 0.02 5 100 6 HEPA Dry (pluses) Lentils 0.1 5 98 2 MPPA Dry (pluses) Lentils 0.1 5 103 1 MPPA Dry (pluses) Lentils 0.1 5 103 1 MPPA Dry (pluses) Lentils 0.1 5 103 1		Glufosinate	High water content	Apple	0.02	5	94	2
Bit/Gainate Dry (pilyseds) Soy flour 0.1 5 98 4 Glufosinate Dry (pilysed) Lentils 0.1 5 101 5 Glyphosate High water content Apple 0.02 5 98 8 Glyphosate Dry (pilyseds) Soy flour 0.1 5 102 4 HEPA High water content Apple 0.02 5 102 4 HEPA High water content Apple 0.02 5 102 4 HEPA High water content + acidic Grape 0.02 5 100 6 HEPA Dry (pilyseds) Soy flour 0.1 5 96 4 HEPA Dry (pilyseds) Soy flour 0.1 5 103 1 MPA High water content Apple 0.02 5 103 1 MPA Dry (pilyseds) Lentils 0.1 5 103 1 MPA		Glufosinate	High water content + acidic	Grape	0.02	5	106	4
M1.5 Glufosinate Dry (pulses) Lentils 0.1 5 10.1 5 Glyphosate High water content Adple 0.02 5 98 8 Glyphosate Dry (oily seeds) Soy flour 0.1 5 102 3 Glyphosate Dry (oily seeds) Soy flour 0.1 5 102 8 HEPA High water content Adple 0.02 5 100 6 HEPA High water content Adple 0.02 5 100 6 HEPA Dry (oily seeds) Lentils 0.1 5 98 2 MPPA High water content Apple 0.02 5 106 3 MPPA High water content + acidic Grape 0.01 5 103 2 N-Acetyl-Glufosinate High water content Apple 0.01 5 103 3 N-Acetyl-Glufosinate Dry (oily seeds) Soy flour 0.05 5 102 <td></td> <td>Glufosinate</td> <td>Dry (oily seeds)</td> <td>Soy flour</td> <td>0.1</td> <td>5</td> <td>98</td> <td>4</td>		Glufosinate	Dry (oily seeds)	Soy flour	0.1	5	98	4
M1.5 Giyphosate High water content Apple 0.02 S 98 8 Giyphosate High water content + acidic Grape 0.02 5 102 3 Giyphosate Dry (pulses) Lentils 0.1 5 102 8 HEPA High water content Apple 0.2 5 102 8 HEPA High water content Apple 0.2 5 100 6 HEPA Dry (pulses) Lentils 0.1 5 96 4 HEPA Dry (pulses) Lentils 0.1 5 97 4 MPPA Dry (pulses) Lentils 0.1 5 100 3 MPPA Dry (pulses) Lentils 0.1 5 103 1 MPPA Dry (pulses) Soy flour 0.1 5 103 3 N-Acetyl-Giufosinate High water content Apple 0.01 5 102 1		Glufosinate	Dry (pulses)	Lentils	0.1	5	101	5
Mill Glyphosate High water content + acidic Grape 0.02 S 102 3 Glyphosate Dry (olly seds) Lentlis 0.1 S 102 3 Glyphosate Dry (olly seds) Lentlis 0.1 S 102 8 HEPA High water content + acidic Grape 0.02 S 100 6 HEPA Dry (olly seds) Soy flour 0.1 S 96 4 HEPA Dry (olly seds) Soy flour 0.1 S 98 2 MPA High water content + acidic Grape 0.02 S 100 1 1 3 3 2 MPPA Pry (olly seds) Soy flour 0.1 S 103 3	N/1 E	Glyphosate	High water content	Apple	0.02	5	98	8
Givphosate Dry (oily seeds) Soy flour 0.1 5 102 3 Givphosate Dry (oily seeds) Lentils 0.1 5 102 4 HEPA High water content Apple 0.02 5 100 6 HEPA Dry (oily seeds) Soy flour 0.1 5 96 4 HEPA Dry (pluses) Soy flour 0.1 5 98 2 MPPA High water content Apple 0.02 5 97 4 MPPA High water content + acidic Grape 0.02 5 103 1 MPPA Dry (pluses) Lentils 0.1 5 103 2 3 N-Acetyl-Giufosinate High water content Apple 0.01 5 103 3 N-Acetyl-Giufosinate Pry (pluses) Lentils 0.05 5 102 1 N-Acetyl-Giufosinate Dry (pluses) Lentils 0.05 5 102	111.5	Glyphosate	High water content + acidic	Grape	0.02	5	106	5
Glyphosate Dry (pulses) Lentils 0.1 5 102 4 HEPA High water content Apple 0.02 5 100 6 HEPA High water content + acidic Grape 0.02 5 96 4 HEPA Dry (oily seeds) Soy flour 0.1 5 96 4 HEPA Dry (oily seeds) Soy flour 0.1 5 97 4 MPA High water content Apple 0.02 5 103 3 MPA High water content + acidic Grape 0.01 5 103 3 N-Acetyl-Glufosinate High water content Apple 0.01 5 100 3 N-Acetyl-Glufosinate Dry (oily seeds) Soy flour 0.05 5 102 1 N-Acetyl-Glufosinate Dry (oily seeds) Soy flour 0.05 5 102 1 N-Acetyl-Glufosinate Dry (oily seeds) Soy flour 0.02 5 95 <td></td> <td>Glyphosate</td> <td>Dry (oily seeds)</td> <td>Soy flour</td> <td>0.1</td> <td>5</td> <td>102</td> <td>3</td>		Glyphosate	Dry (oily seeds)	Soy flour	0.1	5	102	3
HEPAHigh water contentApple0.0251028HEPAHigh water content + acidicGrape0.025964HEPADry (pily seeds)Soy flour0.15964HEPADry (pily seeds)Lentils0.15974MPPAHigh water contentApple0.025974MPPAHigh water content + acidicGrape0.0251031MPPADry (pily seeds)Soy flour0.151031MPPADry (pily seeds)Lentils0.151033N-Acetyl-GlufosinateHigh water content + acidicGrape0.015993N-Acetyl-GlufosinateDry (pily seeds)Soy flour0.055993N-Acetyl-GlufosinateDry (pily seeds)Soy flour0.0551021N-Acetyl-GlufosinateDry (pily seeds)Soy flour0.055993N-Acetyl-GlufosinateDry (pily seeds)Soy flour0.055993N-Acetyl-GlufosinateDry (pily seeds)Soy flour0.055993N-Acetyl-GlufosinateDry (pily seeds)Soy flour0.055993N-Acetyl-GlufosinateDry (pily seeds)Soy flour0.025993N-Acetyl-GlufosinateDry (pily seeds)Cucumber0.025993InsteinHigh		Glyphosate	Dry (pulses)	Lentils	0.1	5	102	4
HEPA High water content + acidic Grape 0.02 5 100 6 HEPA Dry (pulses) Soy flour 0.1 5 96 4 HEPA Dry (pulses) Lentils 0.1 5 97 4 MPPA High water content Apple 0.02 5 103 3 MPPA High water content + acidic Grape 0.02 5 103 3 MPPA Dry (pulses) Lentils 0.1 5 103 3 N-Acetyl-Glufosinate High water content + acidic Grape 0.01 5 103 3 N-Acetyl-Glufosinate High water content + acidic Grape 0.01 5 103 3 N-Acetyl-Glufosinate Dry (pulses) Lentils 0.05 5 102 1 N-Acetyl-Glufosinate Dry (pulses) Lentils 0.05 5 102 1 N-Acetyl-Glufosinate Dry (pulses)* Lentils 0.1 5 95		HEPA	High water content	Apple	0.02	5	102	8
HEPA Dry (oily seeds) Sory flour 0.1 5 96 4 HEPA Dry (pulses) Lentils 0.1 5 98 2 MPPA High water content Apple 0.02 5 106 3 MPPA High water content + acidic Grape 0.02 5 103 1 MPPA Dry (oily seeds) Sory flour 0.1 5 103 3 N-Acetyl-Glufosinate Dry (pulses) Lentils 0.1 5 103 3 N-Acetyl-Glufosinate Dry (pulses) Centrol Grape 0.01 5 103 3 N-Acetyl-Glufosinate Dry (pulses) Centrol Grape 0.01 5 103 3 N-Acetyl-Glufosinate Dry (pulses) Lentils 0.05 5 102 10 N-Acetyl-Glufosinate Dry (pulses) Lentils 0.1 5 107 10 N-Acetyl-Glufosinate Dry (pulses)* Lentil 0.1		HEPA	High water content + acidic	Grape	0.02	5	100	6
HEPA Dry (pulses) Lentis 0.1 5 98 2 MPPA High water content Apple 0.02 5 97 4 MPPA High water content + acidic Grape 0.02 5 106 3 MPPA Dry (pulses) Lentils 0.1 5 103 1 MPPA Dry (pulses) Lentils 0.1 5 103 3 N-Acetyl-Glufosinate High water content Apple 0.01 5 103 3 N-Acetyl-Glufosinate Dry (pulses) Lentils 0.05 5 99 3 N-Acetyl-Glufosinate Dry (pulses) Lentils 0.05 5 99 3 N-Acetyl-Glufosinate Dry (pulses) Lentils 0.05 5 99 3 N-Acetyl-Glyphosate Dry (pulses) Lentils 0.05 5 99 3 MDPA High water content Cucumber 0.02 5 95 5	Mathod M1.5 M1.6a: To- rus DEA	НЕРА	Dry (oily seeds)	Soy flour	0.1	5	96	4
MPPA High water content Apple 0.02 5 97 4 MPPA High water content + acidic Grape 0.02 5 106 3 MPPA Dry (oily seeds) Soy flour 0.1 5 103 1 MPPA Dry (oily seeds) Lentils 0.1 5 103 3 N-Acetyl-Glufosinate High water content Apple 0.01 5 103 3 N-Acetyl-Glufosinate Dry (oily seeds) Soy flour 0.05 5 102 1 N-Acetyl-Glufosinate Dry (oily seeds) Soy flour 0.05 5 102 1 N-Acetyl-Glyphosate Dry (oily seeds) Soy flour 0.05 5 102 1 N-Acetyl-Glyphosate Dry (pulses) Lentils 0.05 5 107 10 N-Acetyl-Glyphosate Dry (pulses)* Lentil 0.1 5 107 10 Ethephon Dry (pulses)* Lentil 0.1 5		НЕРА	Dry (pulses)	Lentils	0.1	5	98	2
MPPAHigh water content + acidicGrape0.0251063MPPADry (pily seeds)Soy flour0.151031MPPADry (pilses)Lentils0.151003N-Acetyl-GlufosinateHigh water contentApple0.0151003N-Acetyl-GlufosinateDry (pilses)Soy flour0.055993N-Acetyl-GlufosinateDry (pilses)Lentils0.0551021N-Acetyl-GlufosinateDry (pilses)Soy flour0.0551021N-Acetyl-GluphosateDry (pilses)Soy flour0.0559912N-Acetyl-GluphosateDry (pilses)Lentils0.0259912AMPAHigh water contentCucumber0.0259910EthephonHigh water contentCucumber0.025983FosetylHigh water contentCucumber0.025983GlufosinatHigh water contentCucumber0.025954GlufosinatHigh water contentCucumber0.0251043GlufosinatHigh water contentCucumber0.025954GlufosinatHigh water contentCucumber0.0251033GlufosinatHigh water contentCucumber0.0251059HEPAHigh water contentCucumber		MPPA	High water content	Apple	0.02	5	97	4
MPPA Dry (pilsy seeds) Soy flour 0.1 5 103 1 MPPA Dry (pilses) Lettils 0.1 5 103 2 N-Acetyl-Glufosinate High water content Apple 0.01 5 103 3 N-Acetyl-Glufosinate High water content + acidic Grape 0.01 5 102 1 N-Acetyl-Glufosinate Dry (pilses) Soy flour 0.05 5 102 1 N-Acetyl-Glufosinate Dry (pilses) Lentils 0.05 5 102 1 N-Acetyl-Glyphosate Dry (pulses) Lentils 0.05 5 99 12 AMPA High water content Cucumber 0.02 5 95 5 Ethephon High water content Cucumber 0.02 5 98 12 Fosetyl High water content Cucumber 0.02 5 98 12 Glufosinat High water content Cucumber 0.02 5		MPPA	High water content + acidic	Grape	0.02	5	106	3
MPPA Dry (pulses) Lentils 0.1 5 103 2 N-Acctyl-Glufosinate High water content Apple 0.01 5 100 3 N-Acctyl-Glufosinate High water content + acidic Grape 0.01 5 103 3 N-Acctyl-Glufosinate Dry (pulses) Soy flour 0.05 5 102 1 N-Acctyl-Glufosinate Dry (pulses) Lentils 0.05 5 102 1 N-Acctyl-Glufosinate Dry (pulses) Lentils 0.05 5 99 12 N-Acctyl-Glufosinate Dry (pulses) Lentils 0.05 5 99 12 MAPA High water content Cucumber 0.02 5 99 7 Ethephon High water content Cucumber 0.02 5 95 5 Fosetyl High water content Cucumber 0.02 5 95 4 Glufosinat Dry (pulses)* Lentil 0.1 5		MPPA	Dry (oily seeds)	Soy flour	0.1	5	103	1
M-Acetyl-Glufosinate High water content Apple 0.01 5 100 3 N-Acetyl-Glufosinate High water content + acidic Grape 0.01 5 103 3 N-Acetyl-Glufosinate Dry (oily seeds) Soy flour 0.05 5 102 1 N-Acetyl-Gluphosate Dry (oily seeds) Soy flour 0.05 5 102 1 N-Acetyl-Gluphosate Dry (oily seeds) Soy flour 0.05 5 102 1 N-Acetyl-Gluphosate Dry (oily seeds) Soy flour 0.05 5 105 10 N-Acetyl-Gluphosate Dry (oily seeds) Lentils 0.05 5 107 10 AMPA High water content Cucumber 0.02 5 95 5 Ethephon Dry (pulses)* Lentil 0.1 5 104 3 Glufosinat High water content Cucumber 0.02 5 98 3 Glufosinat Dry (pulses)* Lentil		MPPA	Dry (pulses)	Lentils	0.1	5	103	2
M-Acetyl-Glufosinate High water content + acidic Grape 0.01 5 103 3 N-Acetyl-Glufosinate Dry (oily seeds) Soy flour 0.05 5 99 3 N-Acetyl-Glufosinate Dry (pulses) Lentils 0.05 5 102 1 N-Acetyl-Glyphosate Dry (pulses) Lentils 0.05 5 99 12 AMPA High water content Cucumber 0.02 5 99 7 AMPA High water content Cucumber 0.02 5 99 7 Ethephon High water content Cucumber 0.02 5 98 3 Fosetyl Dry (pulses)* Lentil 0.1 5 88 3 Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 Glufosinat Dry (pulses)* Lentil 0.1 5 104 <		N-Acetyl-Glufosinate	High water content	Apple	0.01	5	100	3
N-Acetyl-Glufosinate Dry (pily seeds) Soy flour 0.05 5 99 3 N-Acetyl-Glufosinate Dry (pulses) Lentils 0.05 5 102 1 N-Acetyl-Glufosinate Dry (pulses) Soy flour 0.05 5 99 12 N-Acetyl-Glyphosate Dry (pulses) Lentils 0.05 5 99 7 AMPA High water content Cucumber 0.02 5 95 5 Ethephon High water content Cucumber 0.02 5 98 3 Fosetyl High water content Cucumber 0.02 5 98 3 Glufosinat Dry (pulses)* Lentil 0.1 5 89 12 Fosetyl High water content Cucumber 0.02 5 98 3 Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 Glyphosat High water content Cucumber 0.02 5 107		N-Acetyl-Glufosinate	High water content + acidic	Grape	0.01	5	103	3
N-Acetyl-Glufosinate Dry (pulses) Lentils 0.05 5 102 1 N-Acetyl-Glyphosate Dry (oily seeds) Soy flour 0.05 5 105 10 N-Acetyl-Glyphosate Dry (pulses) Lentils 0.05 5 99 12 AMPA High water content Cucumber 0.02 5 99 7 AMPA High water content Cucumber 0.02 5 95 5 Ethephon Dry (pulses)* Lentil 0.1 5 89 12 Fosetyl High water content Cucumber 0.02 5 98 3 Glufosinat High water content Cucumber 0.02 5 95 4 Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 Glufosinat Dry (pulses)* Lentil 0.1 5 104 3 Glufosinat Dry (pulses)* Lentil 0.1 5 108 8		N-Acetyl-Glufosinate	Dry (oily seeds)	Soy flour	0.05	5	99	3
N-Acetyl-Glyphosate Dry (oily seeds) Soy flour 0.05 5 105 10 N-Acetyl-Glyphosate Dry (pulses) Lentils 0.05 5 99 12 AMPA High water content Cucumber 0.02 5 99 7 AMPA Dry (pulses)* Lentil 0.1 5 97 10 Ethephon High water content Cucumber 0.02 5 95 5 Ethephon Dry (pulses)* Lentil 0.1 5 89 12 Fosetyl High water content Cucumber 0.02 5 98 3 Glufosinat Dry (pulses)* Lentil 0.1 5 89 12 Glufosinat Dry (pulses)* Lentil 0.1 5 98 3 Glyphosat Dry (pulses)* Lentil 0.1 5 107 3 Glyphosat Dry (pulses)* Lentil 0.1 5 100 5		N-Acetyl-Glufosinate	Dry (pulses)	Lentils	0.05	5	102	1
N-Acetyl-Glyphosate Dry (pulses) Lentils 0.05 5 99 12 AMPA High water content Cucumber 0.02 5 99 7 AMPA Dry (pulses)* Lentil 0.1 5 99 7 AMPA Dry (pulses)* Lentil 0.1 5 95 5 Ethephon Dry (pulses)* Lentil 0.1 5 89 12 Fosetyl High water content Cucumber 0.02 5 95 5 Fosetyl Dry (pulses)* Lentil 0.1 5 104 3 Glufosinat High water content Cucumber 0.02 5 95 4 Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 Glyphosat Dry (pulses)* Lentil 0.1 5 107 3 Glyphosat Dry (pulses)* Lentil 0.1 5 100 5 HEPA <td< td=""><td></td><td>N-Acetyl-Glyphosate</td><td>Dry (oily seeds)</td><td>Soy flour</td><td>0.05</td><td>5</td><td>105</td><td>10</td></td<>		N-Acetyl-Glyphosate	Dry (oily seeds)	Soy flour	0.05	5	105	10
AMPA High water content Cucumber 0.02 5 99 7 AMPA Dry (pulses)* Lentil 0.1 5 107 10 Ethephon High water content Cucumber 0.02 5 95 5 Ethephon Dry (pulses)* Lentil 0.1 5 89 12 Fosetyl High water content Cucumber 0.02 5 95 4 Glufosinat Dry (pulses)* Lentil 0.1 5 104 3 Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 Glufosinat Dry (pulses)* Lentil 0.1 5 107 3 Gluphosat Dry (pulses)* Lentil 0.1 5 107 3 HEPA High water content Cucumber 0.02 5 108 8 HEPA High water content Cucumber 0.02 5 100 5 MPA		N-Acetyl-Glyphosate	Dry (pulses)	Lentils	0.05	5	99	12
AMPA Dry (pulses)* Lentil 0.1 5 107 10 Ethephon High water content Cucumber 0.02 5 95 5 Ethephon Dry (pulses)* Lentil 0.1 5 89 12 Fosetyl High water content Cucumber 0.02 5 98 3 Fosetyl Dry (pulses)* Lentil 0.1 5 104 3 Glufosinat High water content Cucumber 0.02 5 95 4 Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 Glufosinat Dry (pulses)* Lentil 0.1 5 107 3 Glufosiat Dry (pulses)* Lentil 0.1 5 108 8 HEPA High water content Cucumber 0.02 5 108 5 MPPA		AMPA	High water content	Cucumber	0.02	5	99	7
M1.6a: Tor Ethephon High water content Cucumber 0.02 5 95 5 M1.6a: Tor Ethephon Dry (pulses)* Lentil 0.1 5 89 12 Fosetyl High water content Cucumber 0.02 5 98 3 Glufosinat High water content Cucumber 0.02 5 95 4 Glufosinat High water content Cucumber 0.02 5 95 4 Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 Glyphosat High water content Cucumber 0.02 5 107 3 HEPA High water content Cucumber 0.02 5 108 8 HEPA High water content Cucumber 0.02 5 108 8 MPPA High water content Cucumber 0.02 5 103 3 MPPA High water content Cucumber 0.02 5		AMPA	Dry (pulses)*	Lentil	0.1	5	107	10
M1.6a: Tor Dry (pulses)* Lentil 0.1 5 89 12 M1.6a: Tor Fosetyl High water content Cucumber 0.02 5 98 3 Glufosinat Dry (pulses)* Lentil 0.1 5 104 3 Glufosinat High water content Cucumber 0.02 5 95 4 Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 Glyphosat High water content Cucumber 0.02 5 107 3 HEPA High water content Cucumber 0.02 5 108 8 HEPA High water content Cucumber 0.02 5 108 5 MPPA High water content Cucumber 0.02 5 103 3 MPPA High water content Cucumber 0.02 5 104 1		Ethephon	High water content	Cucumber	0.02	5	95	5
M1.6a: Tor Fosetyl High water content Cucumber 0.02 5 98 3 M1.6a: Tor Fosetyl Dry (pulses)* Lentil 0.1 5 104 3 Glufosinat High water content Cucumber 0.02 5 95 4 Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 Glyphosat High water content Cucumber 0.02 5 107 3 Glyphosat High water content Cucumber 0.02 5 107 3 HEPA High water content Cucumber 0.02 5 108 8 HEPA High water content Cucumber 0.02 5 108 5 MPPA High water content Cucumber 0.02 5 103 3 MPPA Dry (pulses)* Lentil 0.1 5 104 1 N-Acetyl-Glufosinat High water content Cucumber 0.02 5 <td></td> <td>Ethephon</td> <td>Dry (pulses)*</td> <td>Lentil</td> <td>0.1</td> <td>5</td> <td>89</td> <td>12</td>		Ethephon	Dry (pulses)*	Lentil	0.1	5	89	12
M1.6a: Tor Fosetyl Dry (pulses)* Lentil 0.1 5 104 3 Glufosinat High water content Cucumber 0.02 5 95 4 Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 Glyphosat High water content Cucumber 0.02 5 107 3 Glyphosat Dry (pulses)* Lentil 0.1 5 115 9 HEPA High water content Cucumber 0.02 5 100 5 MPA High water content Cucumber 0.02 5 103 3 MPPA High water content Cucumber 0.02 5 103 3 MPA Dry (pulses)* Lentil 0.1 5 108 5 N-Acetyl-Glufosinat High water content Cucumber 0.02 5 104 1 N-Acetyl-Glufosinat High water content Cucumber 0.02 5 98		Fosetyl	High water content	Cucumber	0.02	5	98	3
M1.6a: Tor Glutosinat High water content Cucumber 0.02 5 95 4 Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 Glyphosat High water content Cucumber 0.02 5 107 3 Glyphosat Dry (pulses)* Lentil 0.1 5 115 9 HEPA High water content Cucumber 0.02 5 108 8 HEPA High water content Cucumber 0.02 5 103 3 MPA High water content Cucumber 0.02 5 103 3 MPA High water content Cucumber 0.02 5 103 3 MPA Dry (pulses)* Lentil 0.1 5 108 5 N-Acetyl-AMPA High water content Cucumber 0.02 5 98 2 N-Acetyl-Glufosinat Dry (pulses)* Lentil 0.1 5 113 4		Fosetyl	Dry (pulses)*	Lentil	0.1	5	104	3
M1.6a: Tor Glufosinat Dry (pulses)* Lentil 0.1 5 82 8 M1.6a: Tor Glyphosat High water content Cucumber 0.02 5 107 3 Glyphosat Dry (pulses)* Lentil 0.1 5 115 9 HEPA High water content Cucumber 0.02 5 108 8 HEPA Dry (pulses)* Lentil 0.1 5 100 5 MPPA High water content Cucumber 0.02 5 103 3 MPPA High water content Cucumber 0.02 5 104 1 N-Acetyl-AMPA High water content Cucumber 0.02 5 98 2 N-Acetyl-Glufosinat High water content Cucumber 0.02 5 98 2 N-Acetyl-Glufosinat Dry (pulses)* Lentil 0.1 5 113 4 N-Acetyl-Glyphosat High water content Cucumber 0.02		Glufosinat	High water content	Cucumber	0.02	5	95	4
M1.6a: Tor rus DEAGlyphosatHigh water contentCucumber0.0251073GlyphosatDry (pulses)*Lentil0.151159HEPAHigh water contentCucumber0.0251088HEPADry (pulses)*Lentil0.151005MPPAHigh water contentCucumber0.0251033MPPADry (pulses)*Lentil0.151085N-Acetyl-AMPAHigh water contentCucumber0.0251041N-Acetyl-GlufosinatHigh water contentCucumber0.025982N-Acetyl-GlufosinatDry (pulses)*Lentil0.151134N-Acetyl-GlyphosatHigh water contentCucumber0.025982N-Acetyl-GlyphosatDry (pulses)*Lentil0.151018		Glufosinat	Dry (pulses)*	Lentil	0.1	5	82	8
Glyphosat Dry (pulses)* Lentil 0.1 5 115 9 HEPA High water content Cucumber 0.02 5 108 8 HEPA Dry (pulses)* Lentil 0.1 5 100 5 MPPA High water content Cucumber 0.02 5 103 3 MPPA Dry (pulses)* Lentil 0.1 5 108 5 N-Acetyl-AMPA High water content Cucumber 0.02 5 104 1 N-Acetyl-Glufosinat High water content Cucumber 0.02 5 98 2 N-Acetyl-Glufosinat Dry (pulses)* Lentil 0.1 5 113 4 N-Acetyl-Glufosinat Dry (pulses)* Lentil 0.1 5 98 2 N-Acetyl-Glyphosat High water content Cucumber 0.02 5 98 2 N-Acetyl-Glyphosat Dry (pulses)* Lentil 0.1 5 101 8	M1.6a: To-	Glyphosat	High water content	Cucumber	0.02	5	107	3
HEPA High water content Cucumber 0.02 5 108 8 HEPA Dry (pulses)* Lentil 0.1 5 100 5 MPPA High water content Cucumber 0.02 5 103 3 MPPA Dry (pulses)* Lentil 0.1 5 108 5 N-Acetyl-AMPA High water content Cucumber 0.02 5 104 1 N-Acetyl-Glufosinat High water content Cucumber 0.02 5 98 2 N-Acetyl-Glufosinat Dry (pulses)* Lentil 0.1 5 113 4 N-Acetyl-Glufosinat High water content Cucumber 0.02 5 98 2 N-Acetyl-Glufosinat Dry (pulses)* Lentil 0.1 5 113 4 N-Acetyl-Glyphosat High water content Cucumber 0.02 5 98 2 N-Acetyl-Glyphosat Dry (pulses)* Lentil 0.1 5 101 8	rus DEA	Glyphosat	Dry (pulses)*	Lentil	0.1	5	115	9
Interval Dry (pulses)* Lentil 0.1 5 100 5 MPPA High water content Cucumber 0.02 5 103 3 MPPA Dry (pulses)* Lentil 0.1 5 108 5 N-Acetyl-AMPA High water content Cucumber 0.02 5 104 1 N-Acetyl-Glufosinat High water content Cucumber 0.02 5 98 2 N-Acetyl-Glufosinat Dry (pulses)* Lentil 0.1 5 113 4 N-Acetyl-Gluphosat High water content Cucumber 0.02 5 98 2 N-Acetyl-Gluphosat High water content Cucumber 0.02 5 98 2 N-Acetyl-Gluphosat High water content Cucumber 0.02 5 98 2 N-Acetyl-Gluphosat Dry (pulses)* Lentil 0.1 5 101 8				Cucumber	0.02	5	108	ð
MPPAHigh water contentCucumber0.0251033MPPADry (pulses)*Lentil0.151085N-Acetyl-AMPAHigh water contentCucumber0.0251041N-Acetyl-GlufosinatHigh water contentCucumber0.025982N-Acetyl-GlufosinatDry (pulses)*Lentil0.151134N-Acetyl-GlyphosatHigh water contentCucumber0.025982N-Acetyl-GlyphosatDry (pulses)*Lentil0.151018			Dry (puises)*	Lentii	0.1	5	100	5
NACetyl-AMPAHigh water contentCucumber0.151085N-Acetyl-GlufosinatHigh water contentCucumber0.0251041N-Acetyl-GlufosinatDry (pulses)*Lentil0.151134N-Acetyl-GlyphosatHigh water contentCucumber0.025982N-Acetyl-GlyphosatHigh water contentCucumber0.025982N-Acetyl-GlyphosatHigh water contentCucumber0.025982N-Acetyl-GlyphosatDry (pulses)*Lentil0.151018					0.02	5	103	3
N-Acetyl-AlviPAHigh water contentCucumber0.0251041N-Acetyl-GlufosinatHigh water contentCucumber0.025982N-Acetyl-GlufosinatDry (pulses)*Lentil0.151134N-Acetyl-GlyphosatHigh water contentCucumber0.025982N-Acetyl-GlyphosatHigh water contentCucumber0.025982N-Acetyl-GlyphosatDry (pulses)*Lentil0.151018			Uish water content	Lentii	0.1	5	108	5
N-Acetyl-Glufosinat Dry (pulses)* Lentil 0.1 5 98 2 N-Acetyl-Glyphosat High water content Cucumber 0.02 5 98 2 N-Acetyl-Glyphosat Dry (pulses)* Lentil 0.1 5 113 4 N-Acetyl-Glyphosat High water content Cucumber 0.02 5 98 2		N-ACETYI-AIVIPA	High water content	Cucumber	0.02	5	104	
N-Acetyl-Gluphosat Dry (pulses)* Lentil 0.1 5 113 4 N-Acetyl-Glyphosat High water content Cucumber 0.02 5 98 2 N-Acetyl-Glyphosat Dry (pulses)* Lentil 0.1 5 101 8		N-Acetyl-Glufosinat		Cucumber	0.02	5	98	2
N-Acetyl-Glyphosat Dry (pulses)* Lentil 0.1 5 101 8		N-Acetyl-Gluiosinat	High water content	Cucumber	0.1	5	08	4
		N-Acetyl-Glyphosat	Dry (pulses)*	Lentil	0.02	5	101	8

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level	n	Recov.	RSD
				(mg/kg)		%	
	AMPA	High water content + acidic	Strawberry	0.05	5	106	6
	Bromide (inorg.)	High water content + acidic	Lemon	5	5	101	6
	Ethephon	High water content + acidic	Strawberry	0.01	5	105	2
	Ethephon	Dry (oily seeds)*	Soybean	0.02	5	110	10
	Fosetyl	High water content + acidic	Strawberry	0.01	5	99	1
	Fosetyl	Dry (oily seeds)*	Soybean	0.02	5	98	3
	Glufosinate	High water content + acidic	Strawberry	0.03	5	98	10
	Glufosinate	Dry (oily seeds)*	Soybean	0.06	5	96	6
	Glyphosate	High water content + acidic	Strawberry	0.05	5	104	8
M1.6b:	Glyphosate	Dry (oily seeds)*	Soybean	0.1	5	101	5
APPC	НЕРА	High water content + acidic	Strawberry	0.02	5	107	8
	НЕРА	Dry (oily seeds)*	Soybean	0.04	5	99	4
	MPPA	High water content + acidic	Strawberry	0.02	5	96	13
	MPPA	Dry (oily seeds)*	Soybean	0.04	5	92	13
	N-Acetyl-Glufosinate	High water content + acidic	Strawberry	0.02	5	100	6
	N-Acetyl-Glufosinate	Dry (oily seeds)*	Soybean	0.04	5	92	5
	N-Acetyl-Glyphosate	High water content + acidic	Strawberry	0.05	5	97	1
	N-Acetyl-Glyphosate	Dry (oily seeds)*	Soybean	0.1	5	95	5
	Phosphonic Acid	High water content + acidic	Lemon	0.05	5	99	3
	Phosphonic Acid	Dry (oily seeds)*	Sesame	0.2	5	99	7
	Bromide (inorg.)	High water content + acidic	Lemon	5	5	99	2.1
M1.7a: To-	Chlorate	High water content + acidic	Lemon	0.03	5	100	5.6
rus DEA	Perchlorate	High water content + acidic	Lemon	0.01	5	112	2.6
	Phosphonic acid	High water content + acidic	Lemon	0.05	5	100	4.6
	Bromide (inorg.)	High water content + acidic	Lemon	5	5	100	3
	Bromide (inorg.)	Dry (oily seeds)*	Sesame	20	5	81	1
M1.7b:	Chlorate	High water content + acidic	Lemon	0.03	5	115	6
ΔΡΡΟ	Chlorate	Dry (oily seeds)*	Sesame	0.12	5	91	6
	Perchlorate	High water content + acidic	Lemon	0.01	5	104	14
	Phosphonic acid	High water content + acidic	Lemon	0.05	5	100	8
	Phosphonic acid	Dry (oily seeds)*	Sesame	0.2	5	102	18
	Chlorate	High water content + acidic	Lemon	0.03	5	99	4
	Chlorate	Dry (oily seeds)*	Sesame	0.12	5	102	6
N44 0	Cyanuric Acid	High water content + acidic	Lemon	0.05	5	99	1
111.8	Cyanuric Acid	Dry (oily seeds)*	Sesame	0.2	5	/6	2
	Maleic Hydrazide	Dry (oily seeds)*	Sesame	0.2	5	107	16
	Perchlorate	High Water content + acidic	Lemon	0.01	5	103	5
	Perchiorate	Dry (oily seeds)*	Sesame	0.04	5	101	6
	AIVIPA	Dry (oily seeds)*	Soybean	0.2	5	00	5.9
	Eccetul	Dry (oily seeds)*	Soubean	0.02	5	100	2.0
	Glufosinat	Dry (oily seeds)*	Soybean	0.02	5	100	3.9
	Glunbasat	Dry (oily seeds)*	Soybean	0.00	5	102	4.0
	НЕРА	Dry (oily seeds)*	Soybean	0.1	5	105	5.3
M1.9		Dry (oily seeds)*	Soybean	0.04	5	97	6.9
	N-Acetyl-Glufosinat	Dry (oily seeds)*	Soybean	0.08	5	96	11 9
	Bromide (inorg.)	High water content + acidic	Lemon	5	5	98	4 1
	Chlorate	High water content + acidic	Lemon	0.03	5	100	13
	Perchlorate	High water content + acidic	Lemon	0.02	5	100	14.1
	Phosphonic acid	High water content + acidic	Lemon	0.05	5	95	2.2
	Fosetyl	High water content + acidic	Strawberry	0.01	5	104	3.2
	Glyphosat	High water content + acidic	Strawberry	0.1	5	101	4.3
M1.10	MPPA	High water content + acidic	Strawberry	0.04	5	97	2.7
	N-Acetyl-Glufosinat	High water content + acidic	Strawberry	0.04	5	103	4.6

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level	n	Recov.	RSD
Method A				(mg/kg)		%	
	N-Acetyl-Glyphosat	High water content + acidic	Strawberry	0.05	5	106	1.8
	Chlorate	High water content + acidic	Lemon	0.03	5	98	8.1
Method Anal N-Ac Chio Perc Phos Trifu Amit Amit Amit Amit Amit Amit Amit Amit	Perchlorate	High water content + acidic	Lemon	0.01	5	106	8.3
	Phosphonic acid***	High water content + acidic	Lemon	0.05	5	101	5.3
	Trifluoro-acetic acid	High water content + acidic	Lemon	0.025	5	102	9.3
	Amitrole	High water content + acidic	Orange	0.01	6	107	5
	Amitrole	Dry (cereals)	Barley	0.01	5	111	2
	Amitrole	High water content	Apple	0.01	7	93	11
	Amitrole	High water content	Cucumber	0.01	6	92	4
	Chloridazon, Desphenyl-	High water content + acidic	Currant	0.02	5	99	4
	Chloridazon, Desphenyl-	Other	Swine meat	0.02	5	94	4
	Chloridazon, Desphenyl-	High water content	Lettuce varieties	0.02	5	97	3
	Chlormequat	High water content + acidic	Grapes	0.01	6	93	10
	Chlormequat	High water content + acidic	Grapes	0.2	5	102	1
	Chlormequat	Dry (cereals)	Barley	0.01	5	97	5
	Chlormequat	Dry (cereals)	Wheat flour	0.1	5	97	5
	Chlormequat	High oil content, wet (oily fruits)	Avocado	0.01	7	103	8
	Chlormeguat	High water content	Apple	0.01	6	102	6
	Chlormequat	High water content	Cucumber	0.01	6	103	4
	Chlormequat	High water content	Potato	0.01	6	99	4
	Cyromazine	High water content + acidic	Grapes	0.01	6	101	4
Method 4	Cyromazine	Dry (cereals)	Barley	0.01	5	109	6
	Cyromazine	High oil content, wet (oily fruits)	Avocado	0.01	7	107	2
	Cyromazine	High water content	Apple	0.01	6	102	8
	Cyromazine	High water content	Potato	0.01	6	103	8
	Daminozide	High water content + acidic	Orange	0.01	3	113	1
	Daminozide	Dry (cereals)	Barley	0.01	5	113	6
	Daminozide	High oil content wet (oily fruits)	Avocado	0.01	6	112	10
	Daminozide	High water content	Annle	0.01	6	100	9
M4 1	Daminozide	High water content	Cucumber	0.01	6	93	12
	Diethanolamine	High water content + acidic	Mandarine	0.01	5	103	1
	Diethanolamine	High water content	Annle	0.1	5	103	3
	Diethanolamine	High water content	Mango	0.1	6	101	14
	Difenzoquat	Dry (cereals)	Barley	0.01	5	99	8
	Difenzoquat	High water content	Apple	0.01	6	99	11
	Diquat	Dry (cereals)	Barley	0.01	10	103	7
	Diquat	High water content	Apple	0.01	5	107	4
	FTU	Dry (cereals)	Barley	0.01	5	96	10
	FTU	High water content	Apple	0.01	7	102	9
	Melamine	High water content + acidic	Granes	0.01	6	87	13
	Melamine	High oil content, dry (oily seeds, puts)	Bean Sova	0.02	3	109	5
	Melamine	High oil content, wet (oily fruits)	Avocado	0.02	7	103	6
	Meniquat	High water content + acidic	Granes	0.01	6	95	5
	Meniquat	High water content + acidic	Orange	0.01	6	101	9
	Moniquat		Barlov	0.01	5	101	2
	Moniquat	Dry (cereals)	Wheat flour	0.01	5	108	5
	Meniquat	High oil content wet (oily fruits)	Avocado	0.01	6	102	5
	Meniquat	High water content	Annie	0.01	6	08	7
	Meniquat	High water content	Cucumbor	0.01	6	107	6
	Moniquat	High water content	Potato	0.01	6	107	2
	Morpholine	High water content Locidia	Mandarina	0.01	0	99	3
	Morpholine	High water content	Applo	0.1	5	95	/
	Morpholine	High water content	Mango	0.1	5	94	2
	Norpholine		Cranac	0.1	5	32	2
	Nereistoxín	nigh water content + acidic	Grapes	0.01	6	93	9

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level	n	Recov.	RSD
				(mg/kg)		%	
	Nereistoxin	Dry (cereals)	Barley	0.01	5	104	13
	Nereistoxin	High oil content, wet (oily fruits)	Avocado	0.01	5	103	6
	Nereistoxin	High water content	Apple	0.01	6	118	2
	Nereistoxin	High water content	Potato	0.01	6	113	9
	Paraquat	Dry (cereals)	Barley	0.01	10	106	15
	Paraquat	High oil content, wet (oily fruits)	Avocado	0.05	5	83	10
	Paraquat	High water content	Apple	0.01	5	106	5
	Paraquat	High water content	Potato	0.01	10	103	13
	PTU	Dry (cereals)	Barley	0.01	5	113	3
	Triethanolamine	High water content + acidic	Mandarine	0.1	5	112	4
	Triethanolamine	High water content	Apple	0.1	5	108	6
	Triethanolamine	High water content	Mango	0.1	5	120	5
	Triethanolamine	High water content	Pear	0.1	3	107	11
	Trimesium	High water content + acidic	Grapes	0.01	6	93	7
	Trimesium	Dry (cereals)	Barley	0.01	5	118	3
	Trimesium	Dry (cereals)	Wheat flour	0.1	5	105	2
	Trimesium	High oil content, wet (oily fruits)	Avocado	0.01	7	93	14
	Trimesium	High water content	Potato	0.01	6	84	5
	Aminocyclopyrachlor	High water content	Apple	0.01	5	110	5
	Aminocyclopyrachlor	Dry (cereals)	Oat	0.02	5	106	7
	Aminocyclopyrachlor	High water content	Cucumber	0.01	5	101	6
Method	Aminocyclopyrachlor	High water content + acidic	Lemon	0.01	5	112	9
	Aminocyclopyrachlor	High water content	Mint	0.01	5	108	7
	Aminocyclopyrachlor	High sugar and low water content	Honey	0.01	5	97	7
	Amitole	High water content	Annle	0.03	5	99	, 6
	Amitole		Oat	0.01	5	117	1
	Amitole	High water content + acidic	Baspherny	0.02	5	120	-
	Amitole	High water content	Cucumber	0.01	5	104	6
	Amitole	High water content + acidic	Lemon	0.01	5	96	4
	Amitrole	High sugar and low water content	Honey	0.01	5	30 112	Q
	Chlormequat	High water content	Cucumber	0.02	5	106	2
	Chlormequat	High water content + acidic	Lemon	0.01	5	103	2
	Chlormequat	High water content	Mint	0.01	5	103	1
	Chlormequat	High water content	Apple	0.01	5	102	2
	Chlormequat		Oat	0.01	5	110	2
	Chlormequat	High sugar and low water content	Honey	0.02	5	10 <u>4</u>	2
M4.2	Chloridazon-desphenyl	High water content	Cucumber	0.02	5	104	4
	Chloridazon-desphenyl	High water content + acidic	Lemon	0.01	5	104	2
	Chloridazon dosphonyl	High water content	Mint	0.01	5	100	10
	Chloridazon dosphonyl	High water content	Applo	0.01	5	07	5
	Chloridazon dosphonyl			0.01	5	112	0
	Circomazina	High water content	Cucumbor	0.02	5	101	5
	Cyromazine		Laman	0.01	5	101	2
	Cyromazine	High water content + acidic	Lemon	0.01	э г	95	5
	Cyromazine		IVIIIIL	0.01	э г	100	2
	Cyromazine	High water content	Арріе	0.01	5	98	3
	Cyromazine	Lick super and law sets a start	Udl	0.02	5	114	4
	Deminerid		Apple	0.02	D F	107	3
	Daminozide		Apple	0.01	5	101	2
	Daminozide		Daanharr	0.02	5	110	2
	Daminozide	night water content + acidic	Raspberry	0.01	5	119	3
	Daminozide	High water content	Cucumber	0.01	5	103	0
	Daminozide	High water content + acidic	Lemon	0.01	5	102	1
	Daminozide	High water content		0.01	5	104	3
M4.2	Daminozide	High sugar and low water content	Honey	0.02	5	105	3

				Spiking		Mean	
/lethod	Analyte	Commodity Group	Matrix	Level	n	Recov.	RSD
				(mg/kg)		%	
	Diethanolamin	Dry (cereals)	Oat	0.02	5	106	14
	Difenzoquat	High water content	Cucumber	0.01	5	105	1
	Difenzoquat	High water content + acidic	Lemon	0.01	5	105	3
	Difenzoquat	High water content	Apple	0.01	5	105	4
	Difenzoquat	Dry (cereals)	Oat	0.02	5	97	6
	Difenzoquat	High sugar and low water content	Honey	<mark>0.02</mark>	<mark>5</mark>	<mark>98</mark>	1
	ETU	High water content	Cucumber	0.01	5	87	10
	ETU	High water content + acidic	Lemon	0.01	5	104	11
	ETU	Dry (cereals)	Oat	0.02	5	103	14
	ETU	High water content + acidic	Raspberry	0.01	5	109	5
	<mark>ETU</mark>	High sugar and low water content	Honey	<mark>0.05</mark>	<mark>5</mark>	<mark>103</mark>	<mark>10</mark>
	Matrine	High sugar and low water content	Honey	<mark>0.02</mark>	5	<mark>101</mark>	<mark>2</mark>
	Melamine	High water content	Cucumber	0.01	5	90	13
	Melamine	High water content + acidic	Lemon	0.01	5	91	11
	Melamine	High water content	Mint	0.01	5	93	11
	Melamine	High water content	Apple	0.01	5	97	8
	Melamine	Dry (cereals)	Oat	0.02	5	117	8
	Melamine	High sugar and low water content	Honey	<mark>0.02</mark>	5	<mark>100</mark>	<mark>8</mark>
	Mepiquat	High water content	Cucumber	0.01	5	102	3
	Mepiquat	High water content + acidic	Lemon	0.01	5	104	4
	Mepiquat	High water content	Mint	0.01	5	96	3
	Mepiquat	High water content	Apple	0.01	5	104	3
	Mepiquat	Dry (cereals)	Oat	0.02	5	114	5
	Mepiquat	High sugar and low water content	Honey	<mark>0.02</mark>	5	<mark>99</mark>	<mark>3</mark>
	Mepiquat, 4-Hydroxy	High water content	Cucumber	0.01	5	108	2
	Mepiquat, 4-Hydroxy	High water content + acidic	Lemon	0.01	5	107	4
	Mepiquat, 4-Hydroxy	High water content	Mint	0.01	5	105	2
	Mepiquat, 4-Hydroxy	High water content	Apple	0.01	5	110	2
	Mepiquat, 4-Hydroxy	Dry (cereals)	Oat	0.02	5	112	3
	Mepiquat, 4-Hydroxy	High sugar and low water content	Honey	<mark>0.02</mark>	5	<mark>101</mark>	2
	Morpholine	High water content	Cucumber	0.01	5	97	10
	Morpholine	High water content + acidic	Lemon	0.01	5	92	9
	Morpholine	High water content	Apple	0.01	5	84	15
	Morpholine	High water content + acidic	Raspberry	0.01	5	84	18
	Morpholine	High sugar and low water content	Honey	<mark>0.02</mark>	5	<mark>101</mark>	4
	Nereistoxin	High water content	Cucumber	0.01	5	94	8
	Nereistoxin	High water content + acidic	Lemon	0.01	5	99	2
	Nereistoxin	High water content	Mint	0.01	5	90	3
	Nereistoxin	High water content	Apple	0.01	5	101	3
	Nereistoxin	Dry (cereals)	Oat	0.02	5	113	2
	Nereistoxin	High water content + acidic	Raspberry	0.01	5	114	2
	Nereistoxin	High sugar and low water content	Honey	<mark>0.02</mark>	5	<mark>106</mark>	2
	Nicotine	High water content	Apple	0.01	5	90	3
	Nicotine	High water content	Lamb's lettuce	0.01	5	95	8
	Nicotine	High water content + acidic	Orange	0.01	5	104	4
	Nicotine	High water content + acidic	Grape	0.01	5	99	2
	Nicotine	Dry (cereals)	Whole flour (spelt)	0.01	5	101	4
	Nicotine	High sugar and low water content	Honey	0.02	5	108	<mark>2</mark>
	Ovumatrina	High sugar and low water content	Honey	0.02	5	106	6
	Dronomeserk	High water content	Cuourshar	0.02		100	0
	Propamocarb		Lomer	0.01	5	99	2
	Propamocarb	High water content + acldic	Lemon	0.01	5	84 102	0
	Propamocarb			0.01	5	102	2
	Propamocarb	High water content	Apple	0.01	5	102	2

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level	n	Recov.	RSD
				(mg/kg)		%	
	Propamocarb	Dry (cereals)	Oat	0.02	5	113	3
	Propamocarb	High sugar and low water content	Honey	<mark>0.02</mark>	<mark>5</mark>	<mark>102</mark>	<mark>3</mark>
	Propamocarb-N-Desmethyl	High water content	Apple	0.01	5	113	3
	Propamocarb-N-Desmethyl	Dry (cereals)	Oat	0.02	5	94	3
	Propamocarb-N-Desmethyl	High water content	Cucumber	0.01	5	106	2
	Propamocarb-N-Desmethyl	High sugar and low water content	Honey	<mark>0.02</mark>	5	<mark>105</mark>	<mark>3</mark>
	Propamocarb-N-Oxide	High water content	Cucumber	0.01	5	102	2
	Propamocarb-N-Oxide	High water content + acidic	Lemon	0.01	5	109	4
	Propamocarb-N-Oxide	High water content	Mint	0.01	5	111	3
	Propamocarb-N-Oxide	High water content	Apple	0.01	5	110	4
	Propamocarb-N-Oxide	High sugar and low water content	Honey	<mark>0.02</mark>	<mark>5</mark>	<mark>101</mark>	<mark>3</mark>
	PTU	High water content	Cucumber	0.01	5	97	4
	PTU	High water content + acidic	Lemon	0.01	5	100	5
	PTU	Dry (cereals)	Oat	0.02	5	113	6
	PTU	High water content + acidic	Raspberry	0.01	5	115	6
	PTU	High sugar and low water content	Honey	<mark>0.02</mark>	5	<mark>116</mark>	<mark>3</mark>
	Triethanolamine	High water content	Apple	0.01	5	73	15
	Triethanolamine	High water content + acidic	Raspberry	0.01	5	106	4
	Trimethylsulfonium	High water content	Cucumber	0.01	5	119	3
	Trimethylsulfonium	High water content + acidic	Lemon	0.01	5	110	2
	Trimethylsulfonium	High water content	Mint	0.01	5	116	3
	Trimethylsulfonium	High water content	Apple	0.01	5	119	2
	Trimethylsulfonium	High sugar and low water content	Honey	<mark>0.02</mark>	<mark>5</mark>	<mark>103</mark>	<mark>4</mark>
	Diquat**	Dry (oily seeds)**	Sesame	0.05	5	105	7
	Paraquat**	Dry (oily seeds)**	Sesame	0.02	5	100	10
M5	See un der http://www.crl-p	esticides.eu/library/docs/srm/meth Chlorm	equatMepiquat CrlSrm	.pdf		-	
	Kasugamycin	High water content	Apple	0.01	5	98	4
IVI6	Streptomycin	High water content	Apple	0.01	10	106	9
	Morpholine	High water content	Apple	0.1	5	94	3
	Morpholine	High water content	Mango	0.1	5	95	2
	Morpholine	High water content + acidic	Mandarin	0.1	5	95	7
	Diethanolamine	High water content	Apple	0.1	5	103	3
M7	Diethanolamine	High water content	Mango	0.1	5	107	1
	Diethanolamine	High water content + acidic	Mandarin	0.1	5	103	1
	Triethanolamine	High water content	Apple	0.1	5	108	6
	Triethanolamine	High water content	Mango	0.1	5	118	3
	Triethanolamine	High water content + acidic	Mandarin	0.1	5	112	4
	1,2,4-Triazole	High water content	Cucumber	0.1	5	85	12
	1,2,4-Triazole	High water content	Potatoes	0.01	5	100	8
	1,2,4-Triazole	High acid content	Orange	0.1	5	94	20
	1,2,4-Triazole	High acid content	Grapes	0.01	5	90	10
	1,2,4-Triazole	Dry (cereals)	Rice	0.2	5	86	3
	1,2,4-Triazole	Dry (cereals)	Barley	0.1	5	104	6
	1,2,4-Triazole	Fatty, wet	Avocado	0.01	5	94	10
MQ	Triazole-acetic acid	High water content	Cucumber	0.01	5	100	2
1410	Triazole-acetic acid	High water content	Potatoes	0.01	5	96	6
	Triazole-acetic acid	High acid content	Orange	0.01	5	104	9
	Triazole-acetic acid	High acid content	Grapes	0.01	5	95	4
	Triazole-acetic acid	Dry (cereals)	Rice	0.02	5	74	5
	Triazole-acetic acid	Dry (cereals)	Barley	0.01	5	109	5
	Triazole-acetic acid	Fatty, wet	Avocado	0.01	5	97	2
	Triazole-alanine	High water content	Cucumber	0.01	5	100	19
	Triazole-alanine	High water content	Potatoes	0.01	5	102	18

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level	n	Recov.	RSD
				(mg/kg)		%	
	Triazole-alanine	High acid content	Orange	0.01	5	98	5
	Triazole-alanine	High acid content	Grapes	0.01	5	95	11
	Triazole-alanine	Dry (cereals)	Rice	0.02	5	88	4
	Triazole-alanine	Dry (cereals)	Barley	0.02	5	119	9
	Triazole-alanine	Fatty, wet	Avocado	0.01	5	91	13
	Triazole-lactic acid	High water content	Cucumber	0.01	5	107	3
	Triazole-lactic acid	High water content	Potatoes	0.01	5	102	6
	Triazole-lactic acid	High acid content	Orange	0.01	5	111	12
	Triazole-lactic acid	High acid content	Grapes	0.01	5	100	5
	Triazole-lactic acid	Dry (cereals)	Rice	0.02	5	71	4
	Triazole-lactic acid	Dry (cereals)	Barley	0.02	5	99	4
	Triazole-lactic acid	Fatty, wet	Avocado	0.01	5	97	4
	See also: http://www.eurl-p	esticides.eu/userfiles/file/EurlSRM/EurlSrm	_meth_TriazoleDeriva	tiveMetabo	lites.	.pdf	
	Difluoroacetic acid	High water content	Apple	0.01	5	94	7
	Difluoroacetic acid	Fatty, wet (oily fruits)	Avocado	0.02	5	103	8
	Difluoroacetic acid	High water content	Cucumber	0.01	5	70	2
	Difluoroacetic acid	Dry (cereals)	Flour	0.02	5	77	9
M9	Difluoroacetic acid	High acid content	Grapes	0.01	5	80	5
	Difluoroacetic acid	High acid content	Grapes	0.01	5	106	15
	Difluoroacetic acid	High acid content	Orange	0.01	5	109	11
	Difluoroacetic acid	Dry (cereals)	Rice	0.02	5	80	3
1013	Trifluoroacetic acid	High water content	Apple	0.01	5	93	6
	Trifluoroacetic acid	Fatty, wet (oily fruits)	Avocado	0.04	5	77	4
	Trifluoroacetic acid	Dry (cereals)	Flour	0.04	5	84	6
	Trifluoroacetic acid	High acid content	Gooseberry	0.02	5	128	11
	Trifluoroacetic acid	High acid content	Grapes	0.01	5	87	14
	Trifluoroacetic acid	High acid content	Orange	0.01	5	107	3
	Trifluoroacetic acid	Dry (cereals)	Rice	0.04	5	72	4
	Trifluoroacetic acid	High water content	Tomato	0.02	5	76	15
M10							
	AMPA	High water content	Cucumber	0.02	5	97	5.9
	Ethephon	High water content	Cucumber	0.02	5	90	5.2
	Fosetyl	High water content	Cucumber	0.02	5	101	3.1
	Glufosinat	High water content	Cucumber	0.02	5	99	4.6
	Glyphosat	High water content	Cucumber	0.02	5	96	2.3
	HEPA	High water content	Cucumber	0.02	5	101	14.5
	MPPA	High water content	Cucumber	0.02	5	103	4.0
M11	N-Acetyl-Glufosinat	High water content	Cucumber	0.02	5	103	3.0
	N-Acetyl-Glyphosat	High water content	Cucumber	0.02	5	104	2.7
	Bromide (inorg.)	High water content + acidic	Lemon	10	5	110	11.3
	Chlorate	High water content + acidic	Lemon	0.06	5	96	2.7
	Perchlorate	High water content + acidic	Lemon	0.02	5	97	2.0
	Phosphonic acid	High water content + acidic	Lemon	0.1	5	100	4.1
				1			

*The extract was prepared according to QuPPe PO V10 or newer versions, so <u>EDTA solution was used during extraction</u> (for oily seeds, nuts pulses and cereals). All other data was generated <u>without</u> using EDTA solution during extraction.

**analysed with Waters Xevo TQ-Sµ

*** spiked separately from co-eluting Fosetyl to avoid interference that affects quantification

EURL-SRM 🚺

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Table 41: Validation	on data de	riving from two C	QuPPe in	iterlabora	tory validation stu	dies orga	anized L	oy the EURL-SRM,	Round	1.
		Solvent + IL-	IS Calibra	ation	Matrix Matche	d Calibrat	ion	Matrix + IL-IS C	alibrati	on
	Level	Mean Recovery	RSD		Mean Recovery	RSD	No.	Mean Recovery	RSD	No.
Matrix	(mg/kg)	(%)	(± %)	No. Labs	(%)	(± %)	Labs	(%)	(± %)	Labs
				Cyror	mazine					
	0.01	102	4	7	89	5	9	100	5	9
Potatoes	0.05	115	4	8	91	4	9	102	3	9
	0.2	100	3	9	92	2	9	102	3	9
	0.01	101	4	8	96	6	10	103	4	10
Grapes	0.05	99	3	8	96	3	9	103	3	10
	0.2	97	2	8	96	3	10	102	2	10
	0.01	119	7	6	85	13	7	102	9	7
Rve flour	0.05	104	6	8	85	5	9	100	7	9
Nye nour	0.05	97	1	8	86	1	9	98	2	9
	0.01	100	4	6	92	4	8	104	1	7
Avocados	0.01	102	7	9	03	-	10	107	- 7	, 0
Avocauos	0.05	102	2	0	95	1	11	102	2	10
	0.2	55	2	o Dami	obizon	4	11	102	Z	10
	0.01	107	2	Dann	100	C	0	80	4	0
Detetees	0.01	107	2	3	100	0	0	89	4	0
Potatoes	0.05	99	3	/	97	4	10	97	4	9
	0.2	93	4	/	99	3	10	94	4	10
-	0.01	102	6	4	97	5	10	97	/	8
Grapes	0.05	97	2	8	97	3	11	97	4	11
	0.2	97	2	8	97	3	- 11	97	4	- 11
Due (leur	0.01	107		5	105	6	5	97	5	5
Rye flour	0.05	90	5	/	113	5	/	106	4	8
	0.2	89	4	/	109	3	/	101	4	8
•	0.01	110	2	5	100	/	/	95	6	6
Avocados	0.05	99	4	8	104	4	10	99	Rsound Rsp Rsp (± %) 5 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 4 4 4 3 2 4 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 4 3 3 4 3 3 4 <	9
	0.2	95	2	8	99	3	10	99	2	9
				Chlori	mequat					
	0.01	99	3	9	98	4	10	101	3	10
Potatoes	0.05	99	3	9	98	3	10	102	3	10
	0.2	105	4	10	101	3	10	102	4	10
	0.01	97	3	10	99	4	10	104	3	10
Grapes	0.05	99	3	10	95	2	10	101	2	11
	0.2	101	2	10	97	2	11	103	2	11
	0.01	109	5	9	105	7	10	102	4	10
Rye flour	0.05	103	5	9	101	4	10	106	5	10
	0.2	102	3	9	103	3	10	104	3	10
	0.01	97	3	10	97	4	10	103	3	10
Avocados	0.05	99	3	9	96	3	10	102	3	10
	0.2	101	2	10	91	3	11	103	2	10
				Trim	esium					
	0.01	87	5	9	98	4	10	104	4	10
Potatoes	0.05	92	3	7	97	4	10	104	4	10
	0.2	93	2	8	97	3	10	101	3	10
	0.01	93	3	10	95	3	11	101	2	11
Grapes	0.05	96	2	9	95	2	10	100	2	11
	0.2	97	2	9	95	3	11	102	2	11
	0.01	126	6	9	102	7	10	107	5	10
Rye flour	0.05	122	5	9	100	4	10	106	4	10
	0.2	120	4	9	101	3	10	101	4	10
	0.01	93	4	9	89	4	10	98	4	10
Avocados	0.05	92	3	9	91	4	10	101	3	10
	0.2	93	3	10	88	4	10	99	3	9
				Nere	istoxin					
Potatoes	0.01	128	6	5	91	8	6	105	9	6

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

		Solvent + IL-	IS Calibra	ition	Matrix Matche	d Calibrat	ion	Matrix + IL-IS C	alibrati	on
	Level	Mean Recovery	RSD		Mean Recovery	RSD	No.	Mean Recovery	RSD	No.
Matrix	(mg/kg)	(%)	(± %)	No. Labs	(%)	(± %)	Labs	(%)	(± %)	Labs
	0.05	110	7	5	91	5	8	98	5	7
	0.2	111	3	8	94	3	9	100	3	9
	0.01	109	7	4	94	7	9	97	6	9
Grapes	0.05	107	5	8	96	5	10	100	6	11
	0.2	115	3	9	94	4	11	100	4	11
	0.01	184	8	6	93	9	7	99	7	7
Rye flour	0.05	137	6	8	89	7	9	104	6	9
	0.2	131	4	8	90	4	9	102	5	9
	0.01	100	6	3	84	8	5	102	7	5
Avocados	0.05	108	2	7	84	4	7	102	3	8
	0.2	108	3	7	80	4	9	106	5	9
				Mel	amine					
	0.01	121	4	4	78	6	7	103	7	7
Potatoes	0.05	105	4	6	73	5	9	101	5	9
	0.2	97	3	7	81	4	9	104	5	9
	0.01	102	6	5	91	7	7	102	7	8
Grapes	0.05	95	5	8	94	3	9	101	4	10
	0.2	99	3	9	96	4	10	102	2	10
	0.01	196	5	5	71	7	6	148	13	7
Rye flour	0.05	109	5	7	63	14	8	115	8	8
	0.2	106	5	8	60	7	9	105	5	9
	0.01	120	3	4	88	6	5	109	4	4
Avocados	0.05	102	6	7	90	4	8	101	3	9
	0.2	96	5	9	82	4	10	Matrix + IL-IS Calibration Mean Recovery RSD No. (%) (±%) Labs 8 98 5 7 9 100 3 9 9 977 6 9 100 4 11 100 4 11 7 99 7 7 9 102 5 9 5 102 7 5 7 103 7 7 9 101 5 9 7 103 7 7 9 101 4 10 0 102 7 8 9 104 5 9 7 103 7 8 9 104 5 9 101 4 10 10 101 4 10 10 101 9 11 11		
	0.2	114	14	6	104	/	6			
	1			Perci	nlorate	1 1				_
	0.01							99	9.3	11
Carrot	0.02							99	11.4	11
	0.2							96	10.5	10
	0.01							105	6.4	11
Lemon	0.02							104	7.4	11
	0.2							102	5.4	12
	0.01							100	8.6	11
Rye flour	0.02							102	8.7	12
	0.2							101	9.8	14
	0.01							104	11.5	10
Avocado	0.02							105	10.2	11
	0.2							102	8.1	11
				Chl	orate			1		
	0.01							105	11.6	12
Carrot	0.02							103	8.5	11
	0.2							100	4.9	10
	0.01							99	13.4	12
Lemon	0.02							104	18.1	11
	0.2							100	5.2	12
	0.01							108	13.3	12
Rye flour	0.02							105	15.9	14
	0.2							101	6.5	13
	0.01							99	4.1	8
Avocado	0.02							102	5.5	8
	0.2							106	8.7	11
				Phosph	onic acid					
Connat	0.01							100	18.8	6
Carrot	0.02							106	7.2	7

		Solvent + IL-	IS Calibra	ation	Matrix Matched Calibration			Matrix + IL-IS C	alibratio	on
	Level	Mean Recovery	RSD		Mean Recovery	RSD	No.	Mean Recovery	RSD	No.
Matrix	(mg/kg)	(%)	(± %)	No. Labs	(%)	(± %)	Labs	(%)	(± %)	Labs
	0.2							108	14.3	6
	0.01							104	8.0	5
Lemon	0.02							101	10.1	5
	0.2							98	8.7	10
	0.01							104	20.3	5
Rye flour	0.02							103	18.1	7
	0.2							105	14.1	11
	0.01							99	10.2	7
Avocado	0.02							105	12.1	8
	0.2							102	7.9	9
				Bro	mide					
	0.01				103	11.2	7			
Carrot	0.02				106	8.7	8			
	0.2				115	17.0	7			
	0.01				99	10.5	10			
Lemon	0.02				94	18.9	10			
	0.2				100	10.6	10			
	0.01				82	10.9	9			
Rye flour	0.02				83	10.3	10			
	0.2				85	34.8	11			
	0.01				102	15.9	10			
Avocado	0.02				102	10.5	11			
	0.2				106	9.6	11			

8. References

Anastassiades, M and Mack, D (2008); New Developments in the Analysis of Pesticides Typically not Covered by Multiresidue Methods; European Pesticide Residue Workshop, EPRW 2008, Berlin, oral presentation O1, Book of Abstracts

Kolberg DI, Mack D, Anastassiades M, Hetmanski MT, Fussell RJ, Meijer T, Mol HG. Anal Bioanal Chem. 404(8):2465-74 (2012); Development and independent laboratory validation of a simple method for the determination of paraquat and diquat in potato, cereals and pulses

Alder L. and Startin J. R. (2005); Determination of Chlormequat and Mepiquat in Foods by Liquid Chromatography/Mass Spectrometry or Liquid Chromatography/Tandem Mass Spectrometry: Interlaboratory Study; Journal of AOAC International Vol. 88, No. 6: 1762-1776

Vahl, M. et al. (1998); Analysis of Chlormequat residues in grain using liquid chromatography-mass spectrometry (LC-MS/MS); Fresenius J Anal Chem 361:817-820

9. ANNEX

 Table 42: Conversion factors between typical purchased standards and target analytes (3.18).

Compound	MW [g/mol]	Compound as sold	MW [g/mol]	Conv. Factor (CF)	Inverse CF
Bialaphos	323.3	Bialaphos-sodium	345.3	0.94	1.07
Bromate (anion)	127.9	Potassium bromate	167.0	0.77	1.31
Bromide (anion)	79.9	Potassium bromide	119.0	0.67	1.49
Chlorate (anion)	83.5	Chlorate-sodium	106.4	0.78	1.27
Chlormequat (cation)*	122.6	Chlormequat-chloride*	158.1	0.78	1.29
Chlormequat-D ₄ (cation)	126.6	Chlormequat-D ₄ -chloride	162.1	0.78	1.28
Difenzoquat (cation)	249.3	Difenzoquat-methylsulfate	360.4	0.69	1.45
Difluoroacetic acid- ¹³ C ₂	96.0	Sodium difluoroacetate-13C2	120.0	0.80	1.25
Dihydrostreptomycin	583.6	Dihydrostreptomycin-sesquisulfate	730.7	0.80	1.25
Diquat (dication)	184.2	Diquat-dibromide-monohydrate	362.1	0.51	1.97
Diquat-D ₄ (dication)	188.2	Diquat-D ₄ -dibromide-monohydrate	366.1	0.51	1.95
Fosetyl (neutral = protonated)	110.05x3 = 330.14**	Fosetyl-Al	354.10	0.932	1.07
Fosetyl-D_ (neutral = protonated)	115.08x3=345.23**	Fosetyl-Al D ₁₅	369.19	0.935	1.07
10setyr-25 (neutral - protonateu)	115.08	Fosetyl-D₅-sodium	137.0	0.84	1.19
Glufosinate	181.1	Glufosinate-ammonium	198.2	0.91	1.09
Glufosinate-D ₃	184.1	Glufosinate-D ₃ -hydrochloride	220.6	0.83	1.20
Kasugamycin	379.4	Kasugamycin-hydrochloride-monohydrate	433.8	0.87	1.14
Mepiquat (cation)*	114.2	Mepiquat-chloride*	149.7	0.76	1.31
Mepiquat-D₃ (cation)	117.2	Mepiquat-D ₃ -iodide	244.1	0.48	2.08
Mepiquat-4-hydroxy	130.2	Mepiquat-4-hydroxy-chloride	165.7	0.79	1.27
N,N'-Dimethylhydrazine-D ₆	66.1	Dimethylhydrazine-D ₆ -hydrochloride	102.6	0.64	1.55
N-Acetyl-Glufosinate	223.2	N-Acetyl-Glufosinate-disodium	267.2	0.84	1.20
N-Acetyl-Glufosinate-D ₃	226.2	N-Acetyl-Glufosinate-D ₃ -disodium	270.2	0.84	1.19
Nereistoxin	149.3	Nereistoxin-oxalate	239.3	0.62	1.60
Nereistoxin-D ₆	155.3	Nereistoxin-D ₆ -oxalate	245.3	0.63	1.58
Nicotine	162.2	Nicotine hemisulfate	422.5***	0.77	1.30
Paraquat (dication)	186.3	Paraquat-dichloride	257.2	0.72	1.38
Paraquat-D ₆ (dication)	192.3	Paraquat-D ₆ -diiodide	446.1	0.43	2.32
Propamocarb-N-oxide	204.3	Propamocarb-N-oxide hydrochloride	240.7	0.85	1.17
Streptomycin	581.6	Streptomycin-sesquisulfate	728.7	0.80	1.25
Trifluoroacetic acid - ¹³ C ₂	114.0	Sodium trifluoroacetate-13C2	138.0	0.83	1.21
Trimethylsulfonium (cation)	77.2	Trimethylsulfonium-iodide	204.1	0.38	2.64
Trimethylsulfonium-D ₉ (cation)	86.2	Trimethylsulfonium-D ₉ -iodide	213.1	0.40	2.47

* Attention: The EU – Maximum Residue Levels are now expressed as the respective chloride salts. Thus no conversion of the chloride to the cation is needed.

** Taking into account that 1 mol fosetyl-Al (MW 354.10) contains 3 mols of fosetyl anion (MW 109.04x3=327,12) leading to 3 mols fosetyl acid (MW 110.05x3=330,14). For the ILIS the following numbers apply 1 mol fosetyl-Al D₁₅ (MW 369.19) contains 3 mols of fosetyl D₅ anion (MW 114.07x3=342.21) leading to 3 mols fosetyl D₅ acid (MW 115.08*3=345.23) *** MW refers to the following formula $C_{10}H_{14}N_{2}$) · H_2SO_4 which entails two nicotine molecules

Table 43: Exemplary concentrations of pesticide stock and working solutions (3.18 and 3.19), (solvent proposals also apply to IL-IS, see 3.21, 3.22, 3.23). Prefereably use plastic vials (e.g. PP) as many of the compounds tend to interact with glass surfaces.

	Stock Solution (exemplary)	tock Solution (exemplary)				
Compound	Solvent used to prepare	[mg/mL]	Solvent used to prepare	[µg/mL]		
Aminocyclopyrachlor	МеОН	1	MeOH	10/1/0.1		
Amitrole	МеОН	1	MeOH	10/1/0.1		
АМРА	10 % ACN in water	1	10 % ACN in water	10/1/0.1		
Bromate	Water/MeOH (50:50)	1	MeOH	10/1/0.1/0.01		
Bromide	MeOH	1	MeOH	10/1/0.1/0.01		
Chlorate	10 % ACN in water	1	MeOH	10/1/0.1/0.01		
Chloridazon-desphenyl	МеОН	1	MeOH	10/1/0.1		
Chlormequat	МеОН	1	МеОН	10/1/0.1		
Cyanuric acid	МеОН	1	10 % ACN in water	10/1/0.1		
Cyromazine	МеОН	1	МеОН	10/1/0.1		
Daminozide	МеОН	1	МеОН	10/1/0.1		
Diethanolamine	ACN	1	МеОН	10/1/0.1		
Difenzoquat	ACN	1	МеОН	10/1/0.1		
Difluoroacetic acid	ACN with 5% water	1	ACN with 5% water	10 / 1/ 0.1		
Diquat**	10 % ACN in water	1	10 % ACN in water	10/1/0.1		
Ethephon	10 % ACN in water + 0,1 % HCl	1	10 % ACN in water +0,1 % HCl	10/1/0.1		
ETU	MeOH	1	MeOH	10/1/0.1		
Fosetyl	10 % ACN in water	0.1	10 % ACN in water	10/1/0.1		
Glufosinate	10 % ACN in water	1	10 % ACN in water	10/1/0.1		
Glyphosate*	10 % ACN in water	1	10 % ACN in water	10/1/0.1		
HEPA	10 % ACN in water	1	10 % ACN in water	10/1/0.1		
Kasugamycin	МеОН	1	MeOH	10/1/0.1		
Matrine	ACN	1	ACN	10/1/0.1		
Maleic Hydrazide	МеОН	1	10 % ACN in water	10/1/0.1		
Melamine	MeOH:water (90:10)	1	MeOH	10/1/0.1		
Mepiquat	МеОН	1	MeOH	10/1/0.1		
Mepiquat-4-hydroxy	МеОН	1	MeOH	10/1/0.1		
Morpholine	МеОН	1	MeOH	10/1/0.1		
МРРА	10 % ACN in water	1	10 % ACN in water	10/1/0.1		
N,N-Dimethylhydrazine	MeOH	1	MeOH	10/1/0.1		
N-Acetyl- AMPA	10 % ACN in water	1	10 % ACN in water	10/1/0.1		
N-Acetyl-Glufosinate	10 % ACN in water	1	10 % ACN in water	10/1/0.1		
N-Acetyl-Glyphosate	10 % ACN in water	1	10 % ACN in water	10/1/0.1		
Nereistoxin	MeOH / water (3:1)	1	MeOH	10/1/0.1		
Nicotine*	ACN	1	ACN	1/0.1		
Oxymatrine	ACN	1	ACN	10/1/0.1		
Paraquat**	10 % ACN in water	1	10 % ACN in water	10/1/0.1		
Perchlorate	10 % ACN in water	1	MeOH	10/1/0.1/0.01		
Phosphonic acid*	10 % ACN in water	1	ACN***	10/1/0.1/0.01		
Propamocarb	ACN	1	MeOH	10/1/0.1		
Propamocarb-N-desmethyl	ACN:Acetone (1 mL acetone to initially dissolve)	1	MeOH	10/1/0.1		
Propamocarb-N-oxide	ACN	1	МеОН	10/1/0.1		
РТО	МеОН	1	MeOH	10/1/0.1		
Streptomycin*	Water / MeOH (1:1)	0,5	МеОН	10/1/0.1		
Triazole	МеОН	1	MeOH	10/1/0.1		
Triazole-lactic acid	MeOH	1	MeOH	10/1/0.1		
Triazole-acetic acid	MeOH	1	MeOH	10/1/0.1		
Triazole-alanine	MeOH/Water (1:3)	1	MeOH	10/1/0.1		
Triethanolamine	MeOH	1	MeOH	10/1/0.1		
Trifluoroacetic acid	ACN with 5% water	1	ACN with 5% water	10 / 1/ 0.1		

* Use plastic vessels and stoppers for compounds that tend to interact with glass surfaces

** Use plastic vials and protect solutions from light exposure

*** Pure water (¹⁸O-H₂O for the IL-IS) is also suitable for the working solution. 10% ACN will reduce growth of microorganisms MeOH: Methanol; ACN: Acetonitrile; FA: Formic acid

Table 44: Exemplary providers of isotopically labelled internal standards 3.20.

leatene lebelled compound		Source Article-No	Article No	icle-No		Prices in €-cent (see diclaimer)		
isotope labelled compo	una	Source	Article-No.	(µg/mL)	per unit	1 unit	2 μg*	0.1 μg**
	¹⁵ N	1	XA10240100ME	100	1.1 mL	165€	300 c	15 c
	¹⁵ N, ¹³ C	1	XA10240110AL	100	1.1 mL	332€	604 c	30 c
Amitrole	15	7	A633382		10 mg	1.500€	30 c	1.5 c
	$^{13}N_2$, $^{13}C_2$	14	LBS9AZ3L3293	1000	1.1 mL	1.380€	251 c	12.5 c
	¹⁵ N ₄ , ¹³ C ₂	8	C4313		10 mg			
		1	CIL-CDNLM-6786-1.2	100	1.2 mL	464€	773 с	39 c
	¹³ C, ¹⁵ N, D ₂	5	CDNLM-6786-1.2	100	1.2 mL	464 €	773 c	39 c
		10	CDNLM-6786-1.2	100	1.2 mL	465€	775 с	39 c
АМРА		7	A617342		10 mg	1.690€	34 c	1.7 c
	¹³ C, ¹⁵ N	1	XA10205100WA	100	1.1 mL	332€	604 c	30 c
		14	LBS9AZ3L1603	1000	1.1 mL	1.380€	251 c	12.5 c
Bromate- ¹⁸ O ₃		1	CIL-OLM-8283-18O-1.2	100	1.2 mL	406€	677 с	34 c
el l		7	C292762	No indication	1 mL	4.300€		
Chlorate- ¹ °O ₃		12***	-	200	5 mL	250€	50 c	2.5 c
		13	8399.4-10MG		10 mg	1.380€	28 c	1.4 c
		14	LBS9G3L3294	1000	1.1 mL	1.380€	251 c	12.5 c
Chloridazon-desphenyl- ¹⁵ N ₂		3	679027		5 mg	790€	31.6 c	1.6 c
		11	sc-218161		1 mg	326€	65.2 c	3.3 c
		18	20273		- 10 mg	810€	16.2 c	0.8 c
Chloridazon-methyl-desphenyl-D3		18	20229		10 mg	695€	13.9 c	0.7 c
		1	X 11340100DO	100		286€	57 c	2.9 c
		1	XA11340100DO	100	1.1 mL	73€	133 c	6.6 c
Chlormequat-chloride		6	D3386		10 mg	756€	15 c	0.8 c
	1,1,2,2-D ₄	1	CA11340100		5 mg	389€	16 c	0.8 c
		9	00291		5 mg	485€	19 c	1.0 c
		14	CRM9G3L1612	1000	1.1 mL	320€	58 c	2.9 c
	D ₉	3	673151		5 mg	320€	13 c	0.6 c
		7	C987717		5 mg	164€	6.6 c	0.3 c
	¹³ C ₃	9	32679		10 mg	470€	9.4 c	0.5 c
Cvanuric acid		14	LBS9G3L1609	1000	1.1 mL	200€	36 c	1.8 c
-,	¹⁸ O ₃	3	673141		10 mg	299€	6.0 c	0.3 c
	¹³ C ₃ , ¹⁵ N ₃	15	S-O-C695-A-1.2ML	100	1.2 mL	378€	630 c	31.4 c
		1	DRE-C11920010		10 mg	366€	7.3 c	0.4 c
		1	XA11920010EA	100	1.1 mL	118€	215 c	11 c
Cyromazine-D₄		7	C989302		10 mg	1.255€	25.1 c	1.3 c
		9	93101		5 mg	164€	6.6 c	0.3 c
		14	LBS9G3L1613	1000	1.1 mL	170€	31 c	1.5 c
		1	XA11960100AL	100	1.1 mL	87€	158 c	7.9 c
	D ₆	7	D416717		25 mg	647€	5.2 c	0.3 c
Daminozide		14	LBS9G3L2291	1000	1.1 mL	320€	58 c	2.9 c
	D ₄	6	D45297		50 mg	441€	1.8 c	0.09 c
		4	D-5307		100 mg	432€	0.9 c	0.04 c
	D ₄	14	LBS9B3L3152	1000	1.1 mL	180€	33 c	1.6 c
Diethanolamine		7	D441902		100 mg	1.100€	2.2 c	0.1 c
	D ₈	14	LBS9B3L3095	1000	1.1 mL	180€	33 c	1.6 c
Difluoroacetic acid -13C	(Sodium salt)	2	friendly donation		_			
	sesquisulfate-hydrate	1	C 12635300		100 mg	29€	0.1 c	0.003 c
Dihydrostreptomycin	sulfate	1	EPD1954000		25 mg	120€	1.0 c	0.048
Diquat-D ₈ Dibromide (d	ipyridine-D ₈)	4	D-7990		10 mg			
		1	DRE CA12960010		50 mg	315 €	1.3 c	0.06 c
		1	XA12960010DO	100	1.1 mL	82 €	149 c	7.5 c
Diquat D4 dibromide (e	thylene D ₄)*	4	D 3932		10 mg	144 €	2.9 c	0.1 c
*stability problems		6	D17071		50 mg	840 €	3.4 c	0.2 c
		7	D492902		5 mg	117€	4.7 c	0.2 c

Isotopo labollod compound			Autola Nia	Conc.	Amount	Prices in €-cent (see diclaimer)		
isotope labelled comp	ouna	Source	Articie-No.	(µg/mL)	per unit	1 unit	2 μg*	0.1 µg**
		9	3627		5 mg	152 €	6.1 c	0.3 с
		10	B130022-10		10 mg	1.100 €	22 c	1.1 c
		11	sc-218246		5 mg	234 €	9.4 c	0.5 c
		14	LBS9AZ3L2482	1000	1.1 mL	240 €	44-c	2.2 c
			XA13230100AC	100	1.1 mL	127€	231 c	12 c
		1	DRE-C13230100		10 mg	1.200€	24 c	1.2 c
	D ₄	6	D8328		5 mg	1.400€	56 c	2.8 c
Ethephon		7	C366177		10 mg	1.120€	22 c	1.1 c
		14	LBS9BK3L1600	1000	1.1 mL	250€	45.5 c	2.3 c
	¹³ C ₂	7	C366178		0.25 mg	210€	170 с	8 c
		1	C 13330100		50 mg	316€	1.3 c	0.06 c
		1	XA13330100AC	100	1.1 mL	127€	231 c	12 c
Ethylenethiourea-D ₄ (E	ETU-D₄)	6	D1965		100 mg	733€	1.5 c	0.07 c
		7	1367002		10 mg	98€	2.0 c	0.1 c
		14	LBS9G3L2293	1000	1.1 mL	150€	27 с	1.4 c
		1	CA13940010		10 mg	380€	7.6 c	0.4 c
Fosetyl	D ₁₅ (Aluminium salt)	14	LBS2AZ3L1607	100	1.1 mL	178€	324 c	16.2 c
	D₅ (Sodium salt)	8	C5607		10 mg	825€	17 c	0.8 c
		2	Friendly donation					
	D ₃	3	680888	100	1 mL	380€	760 c	38 c
Glufosinate		14	CRM9AZ3L1604	1000	1.1 mL	1.380€	251 c	12.5 c
	D. Chile with	3	681220	100	1 mL	380€	760 c	38 c
	D ₃ -Chioride	7	G596952		10 mg	1.900€	38 c	1.9 c
		1	XA14050100WA	100	1.1 mL	304 €	553 c	28 c
		-	CNLM-4666-1.2	100	1.2 mL	361€	602 c	30 c
		5	CNLM-4666-10X-1.2	1000	1.2 mL	1.170€	196 c	9.8 c
		1	CIL-CNLM-4666-1.2	100	1.2 mL	344 €	573 с	29 c
	13C 15N	6	CN10570		5 mg	1.990€	80 c	4.0 c
	C2, N	7	G765002		10 mg	1.048€	21 c	1.0 c
Glyphosate		11	sc-280758		1 mg	262€	52 c	2.6 c
		14	CRM17AZ3L1602	200	1.1 mL	470€	427 с	21.4 c
		15	S-FCN1104S-1.2ML	100	1.2 mL	393 €	655 c	32.7 c
		17	R009984		10 mg	2.165€	43.4 c	2.2 c
	¹³ C, ¹⁵ N	9	90479		5 mg	536€	21 c	1.1 c
	¹³ C	7	G765001		5 mg	210€	8.4 c	0.4 c
		9	606502		10 mg	785€	16 c	0.9 c
		1	CA13230200		10 mg	256€	5.1 c	0.3 c
		7	H939652		25 mg	1.125€	9.0 c	0.5 c
HEPA (Hydroxy-Etheph	וon)-D₄	2	Friendly donation					
		3	676639	100	1 mL	99€	200 c	10 c
		14	LBS9AZ3L1601	1000	1.1 mL	580 €	105.5 C	5.3 c
Iviatrine-D ₃		1	M197872		10 mg	820 ŧ	16 C	0.8 C
		1	C 14730100		10 mg	235 €	4.7 C	0.2 C
Maleic Hydrazide	D ₂	3	673799		10 mg	199€	20c (10µg)	1 C (0.5 μg)
,		7	M124502		5 mg	141€	5.6 c	0.3 c
		14	LBS9G3L1608	1000	1.1 mL	270€	49 c	2.5 c
	¹³ C ₄	9	04311-10MG		10 mg	228€	4.6 c	0.2 c
	¹³ C ₃ , ¹⁵ N ₃	1	CIL-CNLM-8150-10X-1.2	1000	1.2 mL	1.300€	260 c	13 c
		9	80038		10 mg	647€	13	0.7 c
Melamine	¹⁵ N ₃	3	673055		10 mg	289€	5.8 c	0.3 c
		14	LBS9G3L1616	1000	1.1 mL	270€	49 c	2.5 c
	¹³ C ₂	3	679703		10 mg	480€	9.6 c	0.5 c
	-5	1	B-MYC8020-1.2	100	1.2 mL	528	8.8€	440 c c

EURL-SRM 💕

Isotono lobellod compound		Source	Autola Nia	Conc.	Amount	Prices in €-cent (see diclaimer)		
isotope labelled compo	ouna	Source	Article-No.	(µg/mL)	per unit	1 unit	2 µg*	0.1 µg**
		6	D14539		50 mg	1.350€	5.4 c	0.3 c
	D ₁₆ –chloride	9	52485		5 mg	214€	8.6 c	0.4 c
		14	CRM9G3L2292	1000	1.1 mL	300€	54.5 c	2.7 с
1 1 1 1 1 1 1 1 1 1		1	X 14880100DO	100	10 mL	378€	76 c	3.8 c
wepiquat		1	XA14880100DO	100	1.1 mL	68€	124 c	6.2 c
	D ₃ (methyl-D ₃) -iodide	9	78278		10 mg	379€	7.6 c	0.4 c
		3	677008		10 mg	320€	6.4 c	0.3 c
		14	LBS9G3L1531	1000	1.1 mL	290€	53 c	2.6 c
			D 4005/0 5		500	460.6	0.94 c	0.05c
		4	D-1895/0.5		500 mg	468 ŧ	(10µg)	(0.5µg)
Morpholine	D ₈	7	M723728		25 mg	131€	1.1 c	0.05 c
		14	LBS9G3L3094	1000	1.1 mL	200€	36 c	1.8 c
	¹³ C ₄	7	M723727		1 mg	131€	26 c	1.3 c
	D ₃ (methyl-D ₃)	2	Friendly donation		-			
		7	A178237		5 mg	141€	5.6 c	0.3 c
		9	05567		5 mg	97.50€	3.9 c	0.2 c
N-Acetyl-Glufosinate		3	680264	100	1 mL	280€	560 c	28 c
	D ₃ (Acetylamino-D ₃)	14	LBS9AZ3L1606	1000	1.1 mL	180€	33 c	1.6 c
		18	20053		20 mg	240€	2.4 c	0.12 c
		11	sc-479498		5 mg	230€	9.2 c	0.46 c
	- (7	A178248		25 mg	1.153€	9.2 c	0.5 c
N-Acetyl-Glyphosate	D ₃ (methyl-D ₃)	14	LBS9AZ3L2868	1000	1.1 mL	580€	105.5 c	5.3 c
	12.0. 15.1	7	A178247		10 mg	1.326€	26.5 c	1.3 c
	¹³ C ₂ , ¹⁵ N	17	R052712		10 mg	2.982€	59.6 c	3.0 c
		1	C 15502010		10 mg	245€	5 c	0.3 c
Nereistoxin-oxalate-D ₆		14	LBS9AR3L1615	1000	1.1 mL	270€	49 c	2.5 c
		4	D-5098		100 mg	400€	0.8 c	0.04 c
Nicotine-D ₄		14	LBS9B3L3297	1000	1.1 mL	420€	76 c	3.8 c
Oxymatrine-D3		7	0876302		5 mg	600€	24 c	1.2 c
		2	Friendly donation					
		7	M326162		10 mg	1.921€	38 c	1.9 c
IVIPPA-D3		3	680891	100	1mL	380€	760 c	38 c
		14	LBS9AZ3L1605	1000	1.1 mL	1.800€	327 с	16.4 c
	D ditedide	1	C 15870200		50 mg	256€	1.0 c	0.05 c
	D ₆ -alloalae	14	CRM9AZ3L1611	1000	1.1 mL	180€	33 c	1.6 c
Paraquat	D ₆ -dichloride (dime- thyl D ₆)	1	DRE-C15870050		50 mg	390€	1.6 c	0.08 c
	D. dishlarida	1	DRE-CA15870100		50 mg	390€	1.6 c	0.08 c
	D ₈ -dichioride	7	P191902		25 mg	920€	7.3 c	0.4 c
		5	OLM-7310-1.2	100	1.2 mL	326€	272 с	14 c
Perchlorate- ¹⁸ O ₄		12***		40	5 mL	250€	125 c	6.3 c
		9	631981		10 mg	4.500€	90 c	4.5 c
Phosphonic acid- ¹⁸ O ₃		12		2000	1 mL	125	6.3 c	0.3 c
	D ₆	7	P758462		10 mg	1050€	21 c	1.1 c
Dronomoscuk		4	DER-XA16390100AC	100	1.1 mL	82€	149 c	7.5 c
Propamocarb	D ₇	9	80757		5 mg	230€	9.2 c	0.5 c
		14	LBS9G3L3296	1000	1.1 mL	320€	58 c	2.9 c
	D	6	D535 (not available)		100 mg	756€	1.5 c	0.1 c
DTU	D ₆	7	P836802****		10 mg	1.100€	22 c	1.1 c
210		9	07359		5 mg	205€	8.2 c	0.4 c
	D ₃	14	LBS9G3L3151	1000	1.1 mL	220€	40 c	2.0 c
	130 151:	2	Friendly donation					
1, 2, 4-Triazole	¹³ C ₂ , ¹³ N ₃	16	3201		5 mg	1.854 \$	74.2 c	3.7 c
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	D ₂	19	RCG-401		10 mg	350.61€	7 c	0,35 c

EURL-SRM 🚺

5: Cambridge Isotope Lab. Inc.

7: Toronto Research Chemicals

9: Sigma-Aldrich-Supelco (Merck)

10: Cerilliant (by Sigma Aldrich)

6: Medical isotopes

8: ALSACHIM

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

· · · · · · · · · · · · · · · · · · ·				Conc.		Amount	Prices in €	-cent (see dicla	aimer)
isotope labelled compo	una	Source	Article-No.		(µg/mL)	per unit	1 unit	2 µg*	0.1 µg**
1.2.4 Trianala asstia	130 150	2	Friendly dona	tion					
1, 2, 4-Iriazole-acetic	$L_{2}^{13}L_{2}^{2}$, $L_{N_{3}}^{13}$	16	15297			1 mg	420 \$	84 c	4.2 c
aciu	D ₂	19	RCG-398			10 mg	350.61€	7 c	0,35 c
1 2 4 Triazolo alanino	¹³ C ₂ , ¹⁵ N ₃	2	Friendly dona	tion					
1, 2, 4-11102010-010111110	D ₂	19	RCG-399	RCG-399		10 mg	350.61€	7 c	0,35 c
1 2 4-Triazole-lactic	13C 15No	2	Friendly dona	tion					
1, 2, 4-111a201e-1actic	C2, 1N3	16	15295			1 mg	420 \$	84 c	4.2 c
aciu	D ₂	19	RCG-400			10 mg	350.61€	7 c	0,35 c
	"D ₁₅ " (in reality D ₁₂)	1	CIL-DLM-7663	CIL-DLM-7663		1 mg	153€	31 c	1.5 c
Triethanolamine	D ₁₂	7	T775582			10 mg	141€	2.8 c	0.15 c
		14	LBS9G3L3096	i	1000	1.1 mL	180€	33 c	1.6 c
Trifluoroacetic acid -13C	2 (Sodium acetate)	7	S673752			10 mg	2.670€	53 c	2.7 с
		6	D2677			100 mg	730€	0.7 c	0.04 c
Trimothylculfonium	D.	6	D2677			10 mg	270€	2.6 c	0.13 c
(iodide)	09	4	D-6093			500mg	430€	0.2 c	0.009 c
(louide)		14	LBS9G3L1614	•	1000	1.1 mL	605.71€	110 c	5.5 c
	D ₃	3	684243			10 mg	100€	2 c	0.1 c
Providers of compound	<u>ls:</u>								
1: LGC Stndards			11: Santa Cruz biotechnology. Inc.						
2: Bayer Crop Science			12: EURL-SRM (hosted at CVUA Stuttgart)						
3: HPC (High Purity Con	npounds)			13: Campr	o Scientific / (Chiron AS			
4: CDN Isotopes (distrib	outed in Germany by EQ	Laborato	ries GmbH)	14: Lab Ins	struments				

costs are not included in the pricing.

 * 2 µg IS are typically employed to samples (typically 10 g) at the beginning of the procedure

** 0.1 μg are typically added to 1 mL aliquots of sample extracts (typically corresponding to 0.5 g sample), in this case only matrix-effects are compensated

(Disclaimer: The use of trade names is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the EURL of any product to the exclusion of others. Market prices and currency exchange rates may be subject to changes. Shipping

15: Chem Service Inc.

19: ReseaChem GmbH

16: IsoSciences

17: MuseChem

18: ASCA GmbH

*** Due to manufacturing process the stock solution of ¹⁸O₃-Chlorate is accompanied by ca 20% ¹⁸O₄-Perchlorate.. As perchlorate typically exhibits a ca. 5-fold higher LC-MS/MS-sensitivity compared to chlorate the signal intensities of the two are end up within the same range.

**** The PTU-D₆ offered by (7) used to be the non-branched 1,3 propylene variant. This product did not exactly co-elute with the target analyte and thus not compensating mtrix effects. It now seems to be the right product N,N'-(1,2-Propylene)thiourea-D₆

Table 45: Exemplary concentrations of Internal Standard Working Solutions (IS-WS) (3.22)

	IS –Addition to samples ((5.2.3)	IS-Addition to calil	bration standard(s) (5.5)			
Internal Standard (IS)*	Suggested concentration of IS-WSIn1 (3.22) ug/mL	Absolute mass of IS spiked to sample (100 μL IS-WSIn1) (m _{IS} ^{sample}) μg	Suggested con- centration of IS- WSIn2 (3.23) ** ug/mL	Absolute mass of IS spiked to calibration standard (100 μL IS-WSIn2) (m _{IS} ^{cal mix}) μg	Expected approx IS- concentration in sample ex- tracts (~20 mL) and calibra- tion standards (~1 mL)		
Amitrole-(¹⁵ N)/ (¹⁵ N ₂ , ¹³ C ₂)	20	2	1	0.1	0.1		
AMPA- ¹³ C. ¹⁵ N	20	2	1	0.1	0.1		
Bromate- ¹⁸ O ₃	200	20	10	1	1		
Chlorate-18O ₃	20	2	1	0.1	0.1		
Chloridazon-desphenyl-15N2 (IL-IS)	40	2	2	0.2	0.2		
Chlormequat-D ₄	10	1	0.5	0.05	0.05		
Cyromazine-D ₄	20	2	1	0.1	0.1		
Daminozid-D ₆	10	1	0.5	0.05	0.05		
Diethanolamine-D ₆	20	2	1	0.1	0.1		
Difluoroacetic acid -13C ₂	10	1	1	0.05	0.05		
Dihydrostreptomycin****	20	2	1	0.1	0.1		
Diquat-D ₄	40	4	2	0.2	0.2		
Ethephon-D ₄	20	2	1	0.1	0.1		
ETU-D ₄	20	2	1	0.1	0.1		
Fosetyl-D ₅ (from fosetyl-aluminium-D ₁₅)	20	2	1	0.1	0.1		
Glufosinate-D ₃	20	2	1	0.1	0.1		
Glyphosate-13C2.15N	20	2	1	0.1	0.1		
HEPA-D ₄	20	2	1	0.1	0.1		
Maleic Hydrazide-D ₂	20	2	1	0.1	0.1		
Melamine- ¹⁵ N ₃	20	2	1	0.1	0.1		
Mepiquat-D ₃	10	1	0.5	0.05	0.05		
Morpholine-D ₈	20	2	1	0.1	0.1		
MPPA-D ₃	20	2	1	0.1	0.1		
N-Acetyl-Glufosinate-D ₃	20	2	1	0.1	0.1		
N-Acetyl-glyphosate-13C2.15N	20	2	1	0.1	0.1		
Nereistoxin-D ₄	10	1	0.5	0.05	0.05		
Nicotine-D ₄	10	1	0.5	0.05	0.05		
Paraquat-D ₆	40	4	2	0.2	0.2		
Perchlorate-18° ₄	20	2	1	0.1	0.1		
Phosphonic acid- ¹⁸ O ₃	20	2	1	0.1	0.1		
Propamocarb-D7	2	0.2	0.1	0.01	0.01		
PTU-D ₆	10	1	0.5	0.05	0.05		
Triethanolamine-D ₁₂	10	1	0.5	0.05	0.05		
Trifluoroacetic acid - ¹³ C ₂	10	1	1	0.05	0.05		
Trimethylsulfonium-D ₁₀	10	1	0.5	0.05	0.05		

* The concentration of the IL-IS should be high enough to ensure good detection with little influence of signal noise (S/N>20 is typically fine). It should be kept in mind. However. That isotopically labeled ISs (IL-ISs) sometimes contain small amounts of the non-labeled analogues. To minimize the risk of false positives the amount of IL-IS added to the samples should thus not be higher than necessary. Quantification of the parent is typically not affected to a great extend as the cross-contamination is typically at low levels and as similar concentrations of the native pesticide originating from the IL-IS will also be present in the calibration standards and thus subtracted via the intercept. In the case of Maleic Hydrazide. Where the IL-IS is added at higher concentrations to the samples special attention is necessary (see also comments under **5.6.3**).

** a 20-fold dilution of the IS working solution used to spike samples in step 5.2.3.

*** Dihydrostreptomycin is not isotopically labeled but still suitable for compensation of matrix effects on Streptomycin, if LC conditions are adjusted to ensure exact co-elution and thus equivalent matrix-effects.

NOTE: If detections of a compound are rather seldom and the IS expensive it is advisable to add the IL-IS to the 1 mL aliquot transferred to the auto-sampler vial (see **Table 44**). Alternatively. It can be even skipped entirely in the first screening analysis and only added in a second analysis in case the first one was positive. The first approach is to be preferred especially where the retention times of a compound tends to shift. By comparing the retention time between the IS and the suspected peak as well as the peak shape the certainty of identification significantly improves.

Table 46: Water content of selected foods and water amount to be added to test portions prior to extraction (**5.2.2**) depending on the analytical approach

			Typical natural	Water to be	Water addition may be	
Commodity group	Commodity	Sample weight	water content	water to be	skipped if suitable IS is	Remarks
			g/100 g	auueu	used before aliquotation	
			Fruits			
Citrus fruit	Citrus juices	10 g	90	1	Yes	
	Grapefruit	10 g	90	1	Yes	
	Lemon/lime	10 g	85	1.5	Yes	
	Orange	10 g	85	1.5	Yes	
	Tangerine	10 g	90	1	Yes	
Pome fruit	Apple	10 g	85	1.5	Yes	
	Apple sauce	10 g	80	2	Yes	
	Apple juice	10 g	90	1	Yes	
	Pear	10 g	85	1.5	Yes	
	Quince	10 g	85	1.5	Yes	
Stone fruit	Apricot	10 g	85	1.5	Yes	
	Apricot nectar	10 g	85	1.5	Yes	
	Cherry	10 g	85	1.5	Yes	
	Mirabelle	10 g	80	2	Yes	
	Nectarine	10 g	85	1.5	Yes	
	Peach	10 g	90	1	Yes	
	Plum	10 g	85	1.5	Yes	
Soft and small fruit	Blackberry	10 g	85	1.5	Yes	
Sole and Sillar Hale	Blueberry	10 g	85	1.5	Ves	
	Currant	10 g	85	1.5	Ves	
	Elderberry	10 g	80	2	Ves	
	Gooseberry	10 g	90	1	Ves	
	Granes	10 g	80	2	Ves	
	Raspherry	10 g	85	1 5	Ves	
	Strawberry	10 g	90	1.5	Ves	
	Pineapple	10 g	85	15	Yes	
Other fruits	Banana	10 g	75	2.5	No	
other mans	Fig	10 g	80	2.5	Ves	
	Kiwi	10 g	85	1 5	Ves	
	Mango	10 g	80	2	Ves	
	Panava	10 g	90	1	Ves	
	Kaki/nersimmon	10 g	90	1	Ves	
Dried fruit		5 g	20	9	No	
Difeanat	Apricot dried	5 g	20	9	No	Woigh 14 g robydro-
	Figs dried	5 0	20	9	No	tized homogenate
	Prunes (dried nlums)	5 g	20	9	No	(500 g +900 g water)
	Raisins	5 g	15	9	No	(
	Apricot dried soft	5 g	30-35	85	No	Weigh 13 5 g rehv-
	Apricot, uncu son	56	50 55	0,5		dratized homogenate
	Figs, dried soft	5 g	30-35	8,5	No	(500 g +850 g water)
						Weigh 13 g rehydra-
	Prunes, soft	5 g	35-40	8	No	tized homogenate
						(500 g +800 g water)
		,	Vegetables			
Root and tuber vege-	Beetroot	10 g	90	1	Yes	
tables	Carrot	10 g	90	1	Yes	
	Celeriac	10 g	90	1	Yes	
	Horseradish	10 g	75	2.5	No	
	Parsley root	10 g	90	1	Yes	
	Radish	10 g	95	0.5	Yes	
	Black salsify	10 g	80	2	Yes	
	Potato	10 g	80	2	Yes	
		10 -	65	25	N-	
	Garlic	10 g	65	3.5	No	

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

EURL-SRM

			Typical natural	Water to be	Water addition may be	
Commodity group	Commodity	Sample weight	water content	addod	skipped if suitable IS is	Remarks
			g/100 g	auueu	used before aliquotation	
Leek plants	Onion	10 g	90	1	Yes	
	Leek	10 g	85	1.5	Yes	
	Shallot	10 g	80	2	Yes	
	Chives	10 g	85	1.5	Yes	
Fruiting vegetables	Aubergine	10 g	90	1	Yes	
	Cucumber	10 g	95	0.5	Yes	
	Melon	10 g	90	1	Yes	
	Pepper. Sweet	10 g	90	1	Yes	
	Pumpkin	10 g	95	0.5	Yes	
	Tomato	10 g	95	0.5	Yes	
	Zucchini	10 g	95	0.5	Yes	
	Broccoli	10 g	90	1	Yes	
Cabbage	Brussel sprouts	10 g	85	1.5	Yes	
	Cauliflower	10 g	90	1	Yes	
	Chinese cabbage	10 g	95	0.5	Yes	
	Kale	10 g	90	1	Yes	
	Kohlrabi	10 g	90	1	Yes	
	Red cabbage	10 g	90	1	Yes	
	Savoy cabbage	10 g	90	1	Yes	
	White cabbage	10 g	90	1	Yes	
	Lettuce varieties	10 g	95	0.5	Yes	
	Endive	10 g	95	0.5	Yes	
Leafy vegetables and	Cress	10 g	90	1	Yes	
herbs	Lamb's lettuce	10 g	85	1.5	Yes	
	Parsley	10 g	80	2	Yes	
	Rucola	10 g	85	1.5	Yes	
	Spinach	10 g	90	1	Yes	
Stem	Asparagus	10 g	95	0.5	Yes	
vegetables	Celery	10 g	95	0.5	Yes	
	Leek	10 g	85	1.5	Yes	
	Rhubarb	10 g	95	0.5	Yes	
	Artichokes	10 g	85	1.5	Yes	
Legumes / Pulses	Pulses (dried Beans, Peas, Lentils)	5 g	<10	9 mL water and 1 mL EDTA solution	No	Sample amount may need to be reduced if material strongly ab- sorbs water
	Fresh Peas	10 g	75	2.5	No	
	Green Beans	10 g	90	1	Yes	
Cereals	Grain. Flour etc.	5 g	10	9 mL water and 1 mL EDTA solution*	No	Sample amount may need to be reduced if material strongly ab- sorbs water
Oily seeds	Peanuts, Poppy seeds, Pumpkin seeds, Ses- ame seeds, Soyabeans, Sunflower seeds	5 g	<10	9 mL water and 1 mL EDTA solution*	No	
	Linseeds, Chiaseeds	5 g	<10	9 mL water and 1 mL EDTA solution*	No	To reduce slime for- mation, which hin- ders residue accesi- bility, change se- quence! First add acidified methanol and then EDTA/water

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Commodity group	Commodity	Sample weight	Typical natural water content g/100 g	Water to be added	Water addition may be skipped if suitable IS is used before aliquotation	Remarks	
Nuts	Almonds, Cashew nuts, Dried coconuts, Hazel- nuts, Macadamias, Pe- cans, Pistachios, Wal- nuts	5 g	<10	9 mL water and 1 mL EDTA solution*	No		
		Μ	iscellaneou	S			
Extract-rich ("diffi- cult") commodities	Coffee beans	2 g	<10	9 mL water and 1 mL EDTA solution*	No	Different sample amounts may be	
	Теа	2 g	<10	10	No	used depending on	
	Dry herbs and spices	2 g	<10	10	No	extract-ricnness	
Miscellaneous Other	Mushrooms fresh	10 g	90	1	Yes		
	Mushrooms dried	2g	<10	10	No		
	Wine	10 g	90	1	Yes		
	<mark>Honey</mark>	<mark>5 g</mark>	<mark>20</mark>	<mark>7.5</mark>	<mark>No</mark>		
	Avocado	10 g	70	3	No		
	Coconut copra	5 g	<10	0		Fat melting needed, see QuPPe-AO (ani- mal fat)	
	Olives	10 g	70	3	No		

* The addition of EDTA solution is highly recommended when targeting analytes showing poor recoveries in absence of EDTA. Affected are compounds with a tendency to form complexes with metals, such as Glyphosate and metabolites, Glufosinate and metabolites. If affected analytes are not targeted, EDTA addition may be skipped and 10 mL of water are added.

Table 47. Fyer	nlary I C-M	IS/MS nara	meters for	Sciev Otra	n 5500
TUDIE 47. EXEM	ipiui y LC-ivi	is/ivis puru	inelers jur	SLIEX QUIU	μυσου

Parameters	Methods 1.1/1.2/1.5/ 1.6/ 1.7/1.9/1.10	Method 1.3	Method 1.4	Method 2	Method 3/ 4.1/ 5	Method 4.2	Method 6	Method 7	Method 8 / 9	Method 10	Method 11
lon source (ESI. Turbo lon Spray) Mode	negative	negative	negative	negative	positive	positive	positive	positive	pos. / neg. SelexIon™	positive	negative
Curtain gas (N ₂)	30 psi (2.07 bar)	40 psi (2.76 bar)	40 psi (2.76 bar)	30 psi (2.07 bar)	30 psi (2.07 bar)	30 psi (2.07 bar)	30 psi (2.07 bar)	40 psi (2.76 bar)	20 psi (1.38 bar)	20 psi (1.38 bar)	40 psi (2.76 bar)
Collision gas	medium						high				
lon spray voltage	-4500	-4500	-4500	-4500	1500	5000	5500	1500	5500 / - 5500	5500	-4500
Gas 1 (Zero Grade Air or N ₂)	50 psi (3.45 bar)	60 psi (4.14 bar)	60 psi (4.14 bar)	50 psi (3.45 bar)	50 psi (3.45 bar)	60 psi (4.14 bar)	50 psi (3.45 bar)	60 psi (4.14 bar)	60 psi (4.14 bar)	60 psi (4.14 bar)	60 psi (4.14 bar)
Gas 2 (Zero Grade Air or N ₂)	60 psi (4.14 bar)	60 psi (4.14 bar)	70 psi (4.83 bar)	60 psi (4.14 bar)	60 psi (4.14 bar)	50 psi (3.45 bar)	60 psi (4.14 bar)	70 psi (4.83 bar)	70 psi (4.83 bar)	70 psi (4.83 bar)	60 psi (4.14 bar)
Tempera- ture of Gas 2	600°C	550°C	550°C	500°C	500°C	500°C	550°C	500°C	550°C	550°C	600°C
Resolution MS 1	unit (approx 0.7 amu FWHM*)										
Resolution MS 2	unit (approx 0.7 amu FWHM)										
Dwell time	20	20	20	50	20	10	50	20	20 / 40	20	20
*EW/HM = full width at half maximum											

*FWHM = full width at half maximum

Table 48: Exemplary LC-MS/MS parameters for Waters Xevo TQ-Sµ

Parameters	Method 1 M1.6b/M1.7b/M1.8	Method M4.2
lon source (ESI)	negative	Positive
Source Temperature	150 °C	150 °C
Desolvation Temperature	600 °C	600 °C
Cone Gas Flow	50 L/h	150 L/h
Desolvation Gas Flow	1000 L/h	1000 L/h
Capillary	0.5 kV	0.5 kV
Resolution MS	unit	unit

Table 49: Document History

Action	When?	Version
Development of Method by the CRL-SRM	2006-2008	_
Presentation of method at the EPRW in Berlin (oral presentation plus poster)	June 2008	
Drafting of V1	NovDec. 2008	\/1
Placing of V1 in CRL-Website	Jan. 2009	VI
Update of Table 1.		
Expected concentrations of Iss were calculated with a wrong dilution factor in previous version. Arithmet-	Aug 2009	V2
ical errors were corrected.	Aug. 2005	٧Z
Introduction of measurement conditions for HEPA within the "Glyphosate & Co." method		
Introduction of measurement conditions for the screening of diquat and paraquat within the "Quats & Co. method"		
Introduction of measurement conditions for Amitrole. Chlormequat. Mepiquat and daminozide "Amitrole & Co." method	Nov 2009	V3
Extensive text revisions		
Introduction of measurement conditions for Streptomycin Kasugamycin		
Introduction of measurement conditions for the screening of Perchlorate ion	May 2010	V4
Extensive text revisions		
Extensive text revisions and restructuring of document		
Introduction of measurement conditions for ETU. ETU D4. PTU. PTU D6. Cyromazine. Cyromazine D4. N- Acetyl-Glufosinate, N-Acetyl-Glufosinate D2. Glufosinate D2. MPPA D2. Morpholin, Morpholin D8	Nov 2010	V5
Introduction of an acronym for the method (QuPPe)		
Advice to use plastic vessels and stoppers for Glyphosate		
Minor modification and additional instructions in Method 1 (M1)		
Modification of mobile phase of M3 to improve analysis of FTLL and PTLL		
Introd Of massurement cond. For Amitrolo ¹⁵ N ¹³ C and Amitrolo ¹⁵ N in M2		
Introd. Of measurement cond. For Namitrole-'N-'C and Amitrole-'N in MS		
New method (M7) for the applying of Marphalin (Marphalin D.). Disther approximated (disther alapping D.). Tri	July 2011	V6
ethanolamine/Triethanolamine D_{12} (M7)	July 2011	vo
Removal of Morpholin from M4 as it does not separate from the interfering diethanolamine		
Introduction of ETU and PTU and their corresponding IL-ISs in Method 5		
Correction of dimension of stock solutions conc. In Table 12 (to mg/mL)		
Text and Table revisions		
Extensive revision of table concerning possible sources of purchase of Iss		
Some additions in "Apparatus and Consumables" chapter		
Clarifications in chapter concerning standard additions		
Overview table concerning the scope of the methods 1.1. 1.2. 1.3 and 2		
Addition of Phosphonic acid in Method 1.1 ("Glyphosate & Co.")		
New LC-method (Method 1.2) for "Glyphosate & Co." using a Dionex ionPac AS11-HC column and an Eluent		
with near to neutral pH; additionallycovering Fosetyl		
New LC-method (Method 1.3) for "Glyphosate & Co." using a Hypercarb column and an acidic Eluent cov-	Dec 2012	17
ering all analytes covered by Method 1.1. Method 1.2 and Method 2 (including perchlorate).	Dec. 2012	V /
Update of practical considerations for methods 1.1-1.3		
Update of table with performance data		
Table with exemplary recovery data was deleted (recovery figures can be obtained in the EURL-DataPool		
Update of table with LOQs		
Update of table with providers of IL-ISs		
Elimination of errors in text		
Addition of Chlorate in Method 1.3		
Update of practical considerations for methods 1.1-1.3 (Column C)	Nov. 2013	V7.1
Update of table with performance data		

Action	When?	Version
Update of table with LOQs		
Introduction of Trimethylsulfonium-D9 and N.N-Dimethylhydrazine-D6 in Method 4		
Thorough revision of text and elimination of errors		
Practical advices on the choice of filter materials		
New Table 15: Conversion factors between standard materials and analytes		
Advices as regards the use of IL-ISs		
Update of Table 5.6: LC-MS/MS measurement conditions		
New chapters "Hints on Method $1.1 - 1.4$ " and replacement of the section "Practical care and use considerations concerning the columns of methods $1.1-1.3$. This includes information on various potential sources of errors such as in-source fragmentations of Fosetyl and Ethephon to Phosphonic acid and of Perchlorate to Chlorate as well as degradation of compounds in solution.		
Introduction of Cyanuric acid and Bialaphos in M1.3		
Correction of a typing error concerning the mass-transitions of Phosphonic acid (81/79 instead of 81/81)	Mar. 2015	V8
Introduction of the IL-IS of Phosphonic acid and chlorate in M1.3 and 1.4		
New LC Method (1.4) for "PerChloPhos" using a Hypercarb column and an acidic Eluent optimized for chlo- rate. Perchlorate. Phosphonic acid compared to Method 1.3		
Change of name of former M4 to M4.1		
Introduction of Melamine and Propamocarb as well as the corresponding IL-ISs in M4.1		
New LC Method (M4.2) employing a Hilic-Type BEH Amide column allowing the simultaneous analysis of many polar pesticides		
Reduction of injection volume and increase of dwell-time in method M6		
New LC-method (M8) for the analysis of triazole derivative metabolite (TDMs) and their corresponsing IL- ISs		
Update of Table 17: Providers of isotopically labeled internal standards		
5.1 Sample preparation: note to importance of having small particle sizes		V8.1
5.2.4 notes to extraction time for dry products and the influence of particle size	May 2015	
5.6 information on the methods currently routinely used at CVUA Stuttgart		
Update Table 20: Exemplary LC-MS/MS parameters for Sciex QTRAP 5500		
Update of Chapter 5: Procedure including the extraction procedure at a glance		
Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method		
Update of Table 8: Methods mainly used by CVUA Stuttgart		
Update of Chapter 5.7.3.1.: Hints on Method 1.3		
Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bro- mide ion		
Update of Chapter 5.7.4.1.: Hints on Method 1.4		
Update of Method 4.2 : "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide	Mar 2016	2/0
Update of Method 6 : "Streptomycin and Kasugamycin". Change of gradient and new chromatograms	Widi. 2010	V9
Update of Method 8 (M8): "Triazole derivative metabolites (TDMs)" new DMS parameters		
Update of Table 40: Overview of approximate limits of quantification (LOQs)*		
Update of Table 42: Conversion factors between typical purchased standards and target analytes (3.18):		
Update of Table 43: Exemplary concentrations of pesticide stock and working solutions		
Update of		
Table 44: Providers of isotopically labeled internal standards		
Update of Table 45: Exemplary concentrations of IS working solutions		
Elimination of an error in method 1.4 (Change in dilution procedure)	May. 2016	V9.1
Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc- ument for the QuPPe method:	October 2016	V9.2

EU Reference Laboratory for pesticides requiring Single Residue Methods (EURL-SRM)

Action	When?	Version
Inclusion of N-Acetyl-Glyphosate in Table 4: Practical Information: Mainly used methods used at CVUA Stuttgart		
Addition of a further Ethephon-IL-IS mass trace and inclusion of N-Acetyl-Glyphosate in Table 7: Proposed LC-MS/MS conditions for Ethephon. HEPA (Ethephon metabolite). Glyphosat. AMPA (Glyphosate metabo- lite). N-Acetyl-Glyphosate (Glyphosate metabolite). N-Acetyl-AMPA (Glyphosate metabolite). Glufosinate.		
MPPA (Glufosinate metabolite). N-Acetyl-Glufosinate (Glufosinate metabolite). Fosetyl-Al. Maleic Hydra- zide. Cyanuric acid and Bialaphos.		
Update of Figure 4: Chromatograms of Ethephon. HEPA. Glyphosat. AMPA. Glufosinate. MPPA. N-Acetyl- AMPA. N-Acetyl-Glufosinate. Fosetyl-Al. Maleic Hydrazide. Cyanuric acid.Bialaphos and N-Acetyl-Glypho- sate at 0.1 mg/kg on almond extract.		
Inclusion of N-Acetyl-Glyphosate in Table 18: Overview of approximate limits of quantification (LOQs)		
Update of Table 19: Conversion factors between typical purchased standards and target analytes (3.15)		
Update of Table 20: Exemplary concentrations of pesticide stock and working solutions (3.15 and 3.16). solvent proposals also apply to IL-ISs (see 3.18. 3.19 and 3.20).		
Inclusion of N-Acetyl-Glyphosate in Table 21: Exemplary providers of isotopically labeled internal standards 3.17.		
Update of Table 22: Exemplary concentrations of IS working solutions (3.19)		
New Method: (Method 9 "Difluoroacetic acid and Trifluoroacetic acid"), see 5.6.20		
Proposed volume of IS-WS II changed to match with volume of IS-WS I (see Table 2)		
Update of Table 4: data on M 9 were included		
Hints on stability of standard solutions added in 0, including Table 39		
Overview of lowest successfully validated levels (Table 40)		
Update of Table 42 : DFA and TFA added	April 2017	V9.3
Update of Table 43: DFA and TFA added; solvents for Ethephon, Fosetyl and Maleic Hydrazide changed		
Update of Table 48		
Update of Table 45: DFA and TFA added		
Table 47 : data on M 9 were included		
Extensive general revision of text, tables and figures		
Addition of nuts and oily seeds to the scope of the method		
Update of centrifuge information under 2.5		
Update of syringe filters information under 2.6		
Revision of sample preparation conditions section (5.1) to include milling of oily seeds and nuts and more		
details on how to accomplish cryogenic milling using carbon dioxide and liquid nitrogen		
Revision of the chapter concerning centrifugation (5.2). Inclusion of pre-centrifugation freeze-out and cry-		
ogenic centrifugation as an option to improve the subsequent filtration behaviour		
Revision of Figure 1 QuPPe-PO-Method at a glance		
Splitting of Table 3 (Overview and scope of methods) and splitting into Table 3 and 4	Dec 2018	V10
New method M 1.5 (Glyphosate&Co. using Trinity Q1)		
New Method M 1.6 (Glyphosate&Co. using DEA Torus)		
Inclusion of Nicotine under Method 4.2		
Introduction of Chapter 6 on Analyte Stability		
Extention of Table 22 (Overview of lowest successfully validated levels per matrix)		
Addition of Table 23 (Validation data deriving from Interlab validation studies)		
Update of Table 24 (Conversion factors between typical purchased standards and target analytes)		
Update of Table 25 (Exemplary concentrations of pesticide stock and working solutions)		
Update of Table 26 (Exemplary providers of isotopically labeled internal standards)		
Change of the wording of the document title		
Update of method for pulses, oily seeds and nuts. Method now involves addition of EDTA during the ex-		
traction step for complexation metals that may interfere with analysis of certain analytes	April 2019	V10.1
Update of cleanup procedure for the removal of lipids and proteins		
Addition of Method 1.7 for phosphonate, bromide, chlorate and perchlorate		

EU Reference Laboratory for pesticides requiring Single Residue Methods (EURL-SRM)

Action	When?	Version
Maleic hydrazide added to Methode 4.2		
Introduction of a list with shortcut-links		
Update of Table 4 (Overview of scope)		
Update of Table 5 (Overview of main methods)		
Update of method for cereals. It now involves addition of EDTA during the extraction step for complexation metals that may interfere with analysis of certain analytes		
Update of Method M 4.1 (Quats & Co. Obelisc R), new IL-IS and additional MRMs for Diquat	Feb 2020	V11
Update of Table 31 (Exemplary providers of isotopically labeled internal standards)		
Update of Table 33 (Water contents of selected commodities)		
Update of Chapter 6 (information on purity of N-acetyl-glufosinate D ₃ standards)		
Inclusion of Thiocyanate (M1.3 and M1.4) and Desmethyl-Dimethoate (M1.3) to the scope		
Inclusion of Matrine and Oxymatrine (M 4.2) to the scope	March 2021	V11.1
Restructuring of document to improve clarity (e.g. Hints and comments applying to more than one method are merged)		V12
Introduction of a Chapter containing collected hints (5.6.1: Hints on analytes to avoid pitfalls)	July 2021	
Thorough revision of text and elimination of errors		
Additional differentiation in solvent grades		
Extension of Apparatus list		
Revision of text for dried fruits		
Introduction of Method M1.6b, M1.7b, M 1.8, M 1.9, M 1.10, M 10, M 11		
Update of Table 40: Additional validation data		
Update of Table 45: data on Melamine, Matrine, Oxymatrine, Triazole, Triazole-lactic acid, Triazole-acetic acid, Triazole-alanine included		
Update of Table 46: dried fruits; olives, coconut copra, dried mushrooms, kaki included; garlic updated		
New ILISs: Maleic Hydrazide ¹³ C ₄ , 1, 2, 4-Triazole-D ₂ , 1, 2, 4-Triazole-acetic acid-D ₂ , 1, 2, 4-Triazole-alanine-D ₂ , 1, 2, 4-Triazole-lactic acid-D ₂		
Table 47 : data on M 1.10, M 10, M 11		
Introduction of Table 48: MS Parameters for Waters Xevo TQ-Sµ		
Revision of procedure for honey including water adjustment for honey, hints on how to use syringe / par- ticle filters. New figure showing the procedure at a glance for honey, and validation data	March 2023	V12.1