Selective analysis of Bromide via LC-MS/MS and comparison with a traditional GC-based method

H₃C—Br

DANGER

THIS UNIT IS UNDER FUMIGATION WITH (fumigant name) APPLIED ON

(date) (Time and Description where applicable)

DO NOT ENTER

http://www.forstercontainer.ch/

http://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_03_08_00.html

Eric Eichhorn
Anne Benkenstein
Cristin Wildgrube
Andrea Karst
Diana Kolberg
Ellen Scherbaum
Michelangelo Anastassiades

11th European Pesticide Residue Workshop
24th-27th May 2016, Limassol, Cyprus
1. Why putting the analytical focus on Bromide?

1. Why putting the analytical focus on Bromide?

- Bromide is the main metabolite of **Methyl bromide** [1, 2]

1. Why putting the analytical focus on Bromide?

- Bromide is the main metabolite of **Methyl bromide** [1, 2]
 - formerly used as soil & post-harvest fumigant
 nowadays: sterilizing agent in container shipment

1. Why putting the analytical focus on Bromide?

- Bromide is the main metabolite of Methyl bromide [1, 2]
 - formerly used as soil & post-harvest fumigant
 nowadays: sterilizing agent in container shipment
 - high toxicity towards a wide-range of organisms (nervous system)

1. Why putting the analytical focus on Bromide?

- Bromide is the main metabolite of **Methyl bromide** [1, 2]
 - formerly used as soil & post-harvest fumigant
 nowadays: sterilizing agent in container shipment
 - high toxicity towards a wide-range of organisms (nervous system)
 - damages ozone layer & enhances the Greenhouse Effect

1. Why putting the analytical focus on Bromide?

- Bromide is the main metabolite of **Methyl bromide** [1, 2]
 - formerly used as soil & post-harvest fumigant
 nowadays: sterilizing agent in container shipment
 - high toxicity towards a wide-range of organisms (nervous system)
 - damages ozone layer & enhances the Greenhouse Effect
 - 2008/753/EC: non-approval of Methyl bromide

1. Why putting the analytical focus on Bromide?

- Bromide is the main metabolite of **Methyl bromide**[1, 2]
 - formerly used as soil & post-harvest fumigant
 nowadays: sterilizing agent in container shipment
 - high toxicity towards a wide-range of organisms (nervous system)
 - damages ozone layer & enhances the Greenhouse Effect
 - 2008/753/EC: non-approval of Methyl bromide
 - Maximum Residue Levels (MRL‘s) as **Bromide**, Reg. (EC) No. 149/2008
 and Reg. (EC) No. 839/2008:
 5 ppm (berries) – **400 ppm** (spices)

2. Extraction of Bromide: QuPPe method

Weigh sample homogenate in 50 mL centrifuge tube

- Fresh fruits and vegetables (with high content of water): 10 g ± 0.1 g,
- Previously dehydrated dry fruit: 13.5 g ± 0.1 g (containing 5 g sample),
- Cereals and dried pulses (dried commodities): 5 g ± 0.05 g

Adjust water content of sample to 10 mL
e.g. Rye Flour: add 10 g water; Potato: add 2 g of water

Add 10 mL MeOH containing 1 % formic acid

LC-MS/MS analysis
3. Facts regarding the MS/MS analysis of Bromide
3. Facts regarding the MS/MS analysis of Bromide

- two naturally occurring stable isotopes: ^{79}Br & ^{81}Br
3. Facts regarding the MS/MS analysis of Bromide

- two naturally occurring stable isotopes: ^{79}Br & ^{81}Br
- being an element, no MS/MS fragmentation is possible
 → „parent/parent“ (= „pseudo-MRM“) analysis:
 m/z 79/79 and m/z 81/81
3. Facts regarding the MS/MS analysis of Bromide

- two naturally occurring stable isotopes: 79Br & 81Br
- being an element, no MS/MS fragmentation is possible
 \[\Rightarrow \text{“parent/parent“ (= “pseudo-MRM“) analysis:} \]
 \[m/z\ 79/79\ \text{and}\ m/z\ 81/81 \]
- non-selective MS/MS analysis results in interference of both mass traces:
3. Facts regarding the MS/MS analysis of Bromide

- two naturally occurring stable isotopes: ^{79}Br & ^{81}Br
- being an element, no MS/MS fragmentation is possible
 \rightarrow „parent/parent“ (= „pseudo-MRM“) analysis:

 m/z 79/79 and m/z 81/81
- non-selective MS/MS analysis results in interference of both mass traces:

in-source fragmentation

S. Walse, W. Hall, M. Bruggeman, B. Beckham, J. Muhareb & T. Jones; Quantifying residues of phosphonic acid for tree nut export to European Union; submitted as reporting requirement for USDA-Foreign Agricultural Service Technical Assistance for Specialty Crops grant; 2015
3. Facts regarding the MS/MS analysis of Bromide

- two naturally occurring stable isotopes: ^{79}Br & ^{81}Br
- being an element, no MS/MS fragmentation is possible
 → „parent/parent“ (= „pseudo-MRM“) analysis:
 m/z 79/79 and m/z 81/81
- non-selective MS/MS analysis results in interference of both mass traces:

S. Walse, W. Hall, M. Bruggeman, B. Beckham, J. Muhareb & T. Jones; Quantifying residues of phosphonic acid for tree nut export to European Union; submitted as reporting requirement for USDA-Foreign Agricultural Service Technical Assistance for Specialty Crops grant; 2015
3. Facts regarding the MS/MS analysis of Bromide

- two naturally occurring stable isotopes: 79Br & 81Br
- being an element, no MS/MS fragmentation is possible
 → „parent/parent“ (= „pseudo-MRM“) analysis:
 \[
 \text{m/z } 79/79 \text{ and m/z } 81/81
 \]
- non-selective MS/MS analysis results in interference of both mass traces
- strategies to decrease these interferences:
 - improve chromatographic separation
 - reduce matrix effects
 - more selective measurement (e.g. Differential Mobility Mass Spectrometry)
4. Improving the selectivity of the MS/MS measurement by modifying the Collision Energy (CE)

<table>
<thead>
<tr>
<th>QuPPe extract of</th>
<th>m/z 81/81</th>
<th>m/z 79/79</th>
</tr>
</thead>
<tbody>
<tr>
<td>cucumber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containing 1.7 ppm Bromide, approx. 300 ppm Phosphoric acid & 2.0 ppm Phosphonic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mint leaves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containing 1.1 ppm Bromide, approx. 370 ppm Phosphoric acid; Phosphonic acid n. d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fennel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containing 2.2 ppm Bromide, approx. 400 ppm Phosphoric acid & 5.4 ppm Phosphonic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sweet corn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containing 1.1 ppm Bromide, approx. 350 ppm Phosphoric acid; Phosphonic acid n. d.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Improving the selectivity of the MS/MS measurement by modifying the Collision Energy (CE)

<table>
<thead>
<tr>
<th>QuPPe extract of</th>
<th>m/z 81/81</th>
<th>m/z 79/79</th>
</tr>
</thead>
<tbody>
<tr>
<td>cucumber</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE -5 V</td>
<td>CE -60 V</td>
</tr>
<tr>
<td></td>
<td>approx. 10-fold loss of sensitivity</td>
<td>Phosphoric acid interference</td>
</tr>
<tr>
<td></td>
<td>CE -5 V</td>
<td>CE -70 V</td>
</tr>
<tr>
<td></td>
<td>approx. 100-fold loss of sensitivity</td>
<td>Phosphoric acid interference</td>
</tr>
<tr>
<td>mint leaves</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE -5 V</td>
<td>CE -60 V</td>
</tr>
<tr>
<td></td>
<td>Phosphoric acid interference</td>
<td>Phosphoric acid interference</td>
</tr>
<tr>
<td></td>
<td>CE -5 V</td>
<td>CE -70 V</td>
</tr>
<tr>
<td></td>
<td>Phosphoric acid interference</td>
<td>Phosphoric acid interference</td>
</tr>
<tr>
<td>fennel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE -5 V</td>
<td>CE -60 V</td>
</tr>
<tr>
<td></td>
<td>Phosphoric acid interference</td>
<td>Phosphoric acid interference</td>
</tr>
<tr>
<td></td>
<td>CE -5 V</td>
<td>CE -70 V</td>
</tr>
<tr>
<td></td>
<td>Phosphoric acid interference</td>
<td>Phosphoric acid interference</td>
</tr>
<tr>
<td>sweet corn</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE -5 V</td>
<td>CE -60 V</td>
</tr>
<tr>
<td></td>
<td>Phosphoric acid interference</td>
<td>Phosphoric acid interference</td>
</tr>
<tr>
<td></td>
<td>CE -5 V</td>
<td>CE -70 V</td>
</tr>
<tr>
<td></td>
<td>Phosphoric acid interference</td>
<td>Phosphoric acid interference</td>
</tr>
</tbody>
</table>

* cucumber containing 1.7 ppm Bromide, approx. 300 ppm Phosphoric acid & 2.0 ppm Phosphonic acid
* mint leaves containing 1.1 ppm Bromide, approx. 370 ppm Phosphoric acid; Phosphonic acid n. d.
* fennel containing 2.2 ppm Bromide, approx. 400 ppm Phosphoric acid & 5.4 ppm Phosphonic acid
* sweet corn containing 1.1 ppm Bromide, approx. 350 ppm Phosphoric acid; Phosphonic acid n. d.
5. Comparison with a traditional GC-based method

Weigh sample homogenate in 100 mL Erlenmeyer flask

- Fresh fruits and vegetables (with high content of water): 5 g ± 0.05 g
- Cereals and dried pulses (dried commoditites): 5 g ± 0.05 g

Add 5 mL Propylene oxide solution (4 % in water, w/v) and 1 mL Sulphuric acid (3 mol/L) solution

Add 50 mL Ethyl acetate and 4 g Ammonium sulfate

GC-ECD analysis
5. Comparison with a traditional GC-based method

- **High fat content**
 - avocado
 - almond

- **High acid content**
 - grapefruit
 - lime

- **High sugar content**
 - rice
 - rye

- **Low water content**
 - apricot (dried)
 - raisin

- **High water content**
 - tomato
 - melon

*GC-ECD, n = 6
LC-MS/MS, n = 5*
6. Final Conclusion
6. Final Conclusion

- interferences could be largely decreased using optimized collision energies
6. Final Conclusion

- **interferences** could be **largely decreased** using optimized collision energies
- **quick and simple determination of Bromide** compared to the traditional GC-method
6. Final Conclusion

• **interferences** could be **largely decreased** using optimized collision energies

• **quick and simple determination of Bromide** compared to the traditional GC-method

• **determination can be included in the QuPPe routine analysis** (M.1.4 PerChloPhos)
6. Final Conclusion

• **interferences** could be **largely decreased** using optimized collision energies

• **quick and simple determination of Bromide** compared to the traditional GC-method

• determination can be **included in the QuPPe routine analysis** (M.1.4 PerChloPhos)

Thank you for your attention!

Questions to EURL-SRM@CVUAS.BWL.de