CRL-EUROPEAN PROFICIENCY TEST FV-11, 2009

Incurred Residues of Pesticides in Cauliflower Homogenate

Final Report

Organiser:

Dr. Amadeo R. Fernández-Alba

Co-Head of CRL-FV
University of Almería, Edificio Químicas CITE I
Ctra. Sacramento s/n
04120 Almería, SPAIN
Phone: +34 950015034; Fax: +34 950015483
E-mail: amadeo@ual.es
http://www.crl-pesticides.eu

Organising team at the University of Almería:

Ms. Paula Medina, Chemist.

Mr. Octavio Malato, Chemist.

Ms. Noelia Belmonte Valles, Chemist.

University of Almería
University of Almería
Dr. Milagros Mezcua, Senior Chemist.

University of Almería

Scientific Committee:

Mr. Arne Andersson, Head of Division (QCG).	National	Food	Administration,
	Uppsala, Sv	weden.	

Dr. Antonio Valverde, Senior Chemist (QCG).

University of Almería, Spain.

University of Almería, Spain.

University of Almería, Spain.

Dr. Miguel Gamón, Senior Chemist (AG).

Co-Head of CRL-FV. Pesticide Residue
Laboratory (Agro-Food Analysis
Service) of the Generalitat

Valenciana, Spain.

Dr. André de Kok, Senior Chemist (AG). VWA - Food and Consumer Product

Safety Authority, Amsterdam, The

Netherlands.

Dr. Tuija Pihlström, Senior Chemist (AG). National Food Administration,

Uppsala, Sweden.

Mr. Stewart Reynolds, Senior Chemist (AG).

The Food and Environment Research

Agency, York, United Kingdom.

Dr. Sonja Masselter, Senior Chemist (AG).

AGES Competence Center for

Residues of Plant Protection Products,

Innsbruck, Austria.

Dr. Michelangelo Anastassiades, Senior Chemist (AG). CVUA Stuttgart, Fellbach, Germany.

Dr. Mette Erecius Poulsen, Senior Chemist (AG).

National Food Institute, Soeborg,

Denmark.

Mr. Ralf Lippold, Senior Chemist (AG). CVUA Freiburg, Germany.

QCG: Quality Control Group AG: Advisory Group

CONTENTS

1. INTRODUCTION.	3
2. TEST MATERIALS.	5
2.1 Analytical methods.	
2.2 Preparation of the treated test material.	
2.3 Preparation of 'blank' test material.	
2.4 Homogeneity test.	
2.5 Stability test.	
2.6 Distribution of test material and protocol to participants.	
3. STATISTICAL METHODS.	10
3.1 False positives and negatives.	
3.2 Estimation of the assigned values.	
3.3 Fixed target standard deviations.	
3.4 z-Scores.	
3.5 Combined z-scores.	
4. RESULTS.	13
4.1 Summary of reported results.	
4.2 Assigned values and target standard deviations.	
4.3 Assessment of laboratory performance.	
5. CONCLUSIONS.	25
6. SUGGESTIONS FOR FUTURE WORK.	28
7. REFERENCES.	29
8. ACKNOWLEDGEMENTS.	30
APPENDIX 1. Homogeneity data.	31
APPENDIX 2. Histograms of residue data for each pesticide from all the laboratories.	33
APPENDIX 3. Results (mg/Kg) and z-scores for FFP RSD (25%).	35
APPENDIX 4. Graphical representation of z-scores for FFP RSD (25%).	55
APPENDIX 5. 'Sum of Weighted z-Scores' (SWZ) for laboratories in Category A.	76
APPENDIX 6. EUPT 11 - Graphical representation for laboratories in Category A.	79
APPENDIX 7. Methods used by participants for determining pesticides.	81
ANNEX 1. Protocol and Instructions. List of pesticides to be sought.	129
ANNEX 2. List of laboratories that agreed to participate in PT11.	145
ANNEX 3. Standards solution Ring Test. Results and Participants.	151

CRL-EUROPEAN COMMISSION PROFICIENCY TEST 11 FOR THE DETERMININATION OF PESTICIDES IN FRUIT AND VEGETABLES USING MULTIRESIDUE METHODS

2009

According to Article 28 of Regulation 396/2005/EC of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin¹, all laboratories analysing samples for the official controls on pesticide residues shall participate in the European Community Proficiency Tests (EUPTs) for pesticide residues organised by the Commission. These proficiency tests are carried out on an annual basis in order to ensure the quality, accuracy and comparability of the residue data reported by EU Member States to the European Commission as well as other Member States within the framework of co-ordinated and national monitoring and surveillance programs.

Regulation (EC) No 882/2004² lays down the general tasks, duties and requirements for Community Reference Laboratories (CRLs) for Food, Feed and Animal Health. Among these tasks is the provision of independently-organised comparative tests. The European Proficiency Test 11 has been organised by the CRL in Fruit and Vegetables at the University of Almería, Spain³.

Now that Regulation 396/2005 has fully come into force, participation in this European Proficiency Test 11 was mandatory for all National Reference Laboratories, as well as all other EU official laboratories involved in the determination of pesticide residues in fruit and vegetables for the EU-coordinated monitoring programme or for their own national programme. Additionally, laboratories from Iceland, Norway, Switzerland, Egypt, and Uruguay, who had been invited to take part in the previous test, again participated. Turkey participated in this test for the first time.

This report will be presented to the European Commission Standing Committee for Animal Health and the Food Chain. Furthermore, DG-SANCO has full access to all data of EUPTs including the lab-code/lab-name key.

 $^{^{1}}$ Regulation (EC) No 396/2005, published at OJ of the EU L70 of 16.03.2005, as last amended by Regulation 839/2008 published at OJ of the EU L234 of 30.08.2008.

 $^{^2}$ Regulation (EC) No 882/2004 of the European Parliament and of the Council on official controls performed to ensure compliance verification with feed and food law, animal health and animal welfare rules. Published at OJ of the EU L191 of 28.05.2004

³ Commission Regulation (EC) No 776/2006 of 23 May 2006 - amending Annex VII to Regulation (EC) No 882/2004 of the European Parliament and of the Council as regards Community Reference Laboratories.

1. INTRODUCTION

One hundred and fifty one laboratories agreed to participate in the European Commission Proficiency Test 11.

The proficiency test was performed in 2009 using cauliflower homogenate. The cauliflowers were grown in Almería, in the south of Spain, and were treated post-harvest, using commercial formulations and analytical standards - both were applied using a microspray technique. Twenty-four pesticides were used for the treatments (nine as diluted commercial formulations and fifteen as standards dissolved in solvent). Twenty-one pesticides were to be assessed in total as three of those used were part of the same residue definition: aldicarb and aldicarb sulfoxide, carbofuran and 3-hidroxy-carbofuran and parathion-methyl and paraoxon-methyl. These were therefore expressed as one single residue, aldicarb sum, carbofuran sum and parathion sum, respectively. Participating laboratories were also provided with a 'blank' cauliflower homogenate as well as the treated test material.

The test materials, 300 g of cauliflower homogenate containing pesticide residues, together with 300 g of 'blank' cauliflower homogenate, were shipped to participants on 4th May 2009. The deadline for result submission to the Organiser was 9th June 2009. The participants were provided with a list of one hundred and four target pesticide residue definitions (Annex 1) and informed that any of these pesticides (and components within the residue definitions) might be present in the test material. They were asked to determine the residue levels of all the components and report the concentrations for each of the pesticides that they detected. This list of target pesticides also contained the Minimum Required Reporting Level (MRRL) for each pesticide fixed at 0.01 mg/Kg.

Participants were asked to analyse the blank test material and report residues of any of the pesticides they found which were included in the list. This 'blank' material was intended to be used for recovery experiments for the pesticides found in the test material and, if necessary, for the preparation of matrix-matched calibration standard solutions.

The median values of the analytical data submitted were used to obtain the assigned (true) values for each of the twenty-one pesticide residues present. A fit-for-purpose relative target standard deviation (FFP RSD) of 25% was chosen to calculate the target standard deviations (σ) as well as the z-scores for each pesticide.

For the assessment of the overall laboratory performance, the Sum of Weighted z-Scores (SWZ) was used as in the last Proficiency Test with the same criteria. Only laboratories that detected at least 90% of the pesticides present in the test material, reported no false positives and sought all the pesticides marked with an asterisk on the test material, have been considered to have demonstrated 'sufficient scope' and have therefore been classified into Category A. Within this category, the laboratories have also been sub-classified as 'good', 'satisfactory' or

'unsatisfactory'. All the other laboratories have been classified into Category B, because they have demonstrated 'insufficient scope'. For laboratories in Category B, individual z-scores have been calculated, but their overall performance has not been assessed. They have been listed in order of the number of pesticides sought and the number of acceptable z-scores achieved.

Laboratories that did not report results have not been classified into any category and are indicated in Annex 2.

Only RSZ was employed as classical procedures for summing z-scores using the individual z-scores of the participating laboratories.

As was the case last year, a ring test was organised in order to estimate the contribution of participants' calibration solutions to the overall accuracy of their reported test results.

Laboratories that requested to participate when applying for the proficiency test, received a vial containing a solution of the pesticides that were present in the treated cauliflower test material after the deadline for submitting the PT results had passed. One hundred and twenty-three laboratories agreed to participate in this additional standard solution ring test, and ninety-four reported results. Participants and their results are presented in Annex 3.

2. TEST MATERIALS

2.1 Analytical methods

The two analytical methods, described briefly below, were used by the Organiser for the homogeneity and stability tests performed by the University of Almeria. These were:

- GC method [1, 2]: liquid-liquid partitioning with buffered acetonitrile and MgSO₄ anh.
 followed by dispersive solid-phase extraction with PSA and MgSO₄ anh. Evaporation and re-dissolution with cylclohexane and determination by GC-MS/MS.
- LC method [3]: liquid-liquid partitioning with buffered acetonitrile and MgSO₄ anh. followed by dispersive solid-phase extraction with PSA and MgSO₄ anh. Evaporation and re-dissolution in acetonitrile/water (1:9) and determination by LC-MS/MS.

Aldicarb, aldicarb sulfoxide, aldicarb sulfone, carbofuran, 3-hydroxy-carbofuran, metalaxyl and metalaxyl-M, methamidophos, methidathion, methomyl, thiodicarb, monocrotophos, oxamyl, and thiacloprid were determined using the LC method described above. All other pesticides (azinphos-methyl, boscalid, buprofezin, cadusafos, deltamethrin, diazinon, isofenphos-methyl, lambda-cyhalothrin, parathion-methyl, paraoxon-methyl, phosalone, procymidone and triazophos), were analysed using the GC method described above. For confirmation purposes, MS/MS spectra were used.

2.2 Preparation of the treated test material

Before preparation of the test material, the pesticides and target residue levels were selected, following recommendations made by the Quality Control Group, which had been appointed specifically for Proficiency Test 11. One hundred and fifty kilograms of cauliflower were treated; some with post-harvest commercial pesticide formulations dissolved in water (buprofezin, deltamethrin, diazinon, lambda-cyhalothrin, methidathion, methomyl, oxamyl, procymidone and thiacloprid), and others with analytical standards dissolved in solvent (aldicarb, aldicarb sulfoxide, azinphos-methyl, boscalid, cadusafos, carbofuran, 3-hydroxy-carbofuran, isofenphosmethyl, metalaxyl, methamidophos, monocrotophos, phosalone, parathion methyl, paraoxon methyl and triazophos). Both the formulations and the standard solutions were applied to the cauliflowers using a microspray. After all the pesticides had been applied, a portion of the treated cauliflower was taken and analysed to check if the residue levels present were close to the target levels or whether any additional spraying was necessary. When the residue levels in the cauliflowers were close to those recommended by the Quality Control Group the entire sample was frozen and chopped using liquid nitrogen and a mincer. The frozen minced cauliflowers were mixed in a constantly-spinning container until a homogeneous material was obtained. 300g portions of the well-mixed homogenate were weighed out into screw-capped polyethylene plastic bottles; sealed and stored in a freezer at about - 20 °C prior to distribution to participants.

Traces of endosulfan a and β (0.006 mg/Kg) were detected by the Organiser after the treatment with the commercial pesticide formulations. Nevertheless, the test material was sent to participants, as this level was below the MRRL fixed by the Organiser. Traces of Sulfotep were also detected but this pesticide was not in the target pesticide list and therefore was not considered.

2.3 Preparation of 'blank' test material

The cauliflower used for the production of the blank test material were organically-grown in the same field as the test material. A homogenate was prepared in the same way as the treated test material described above.

2.4 Homogeneity test

Ten bottles of treated test material were randomly chosen from those stored in the freezer and analyses were performed on duplicate portions taken from each bottle. The sequence of analyses was determined using a table of randomly-generated numbers. The injection sequence of the 20 extracts analysed by GC and LC was also randomly chosen. The quantification by GC and LC was performed using a 3-point calibration curve constructed from matrix-matched standards prepared from the 'blank' cauliflower test material.

The statistical evaluation was performed according to the International Harmonized Protocol published by IUPAC, ISO and AOAC [4]. The individual residue data from the homogeneity tests are given in Appendix 1. The results of the statistical analyses are given in Tables 2.1. The acceptance criteria for the test material to be sufficiently homogenous for the proficiency test were that: $Ss^2 < c$ where S_s is the between-bottle sampling standard deviation and $c = F_1\sigma^2_{all} + F_2S^2_{an}$: F_1 and F_2 being constants with values of 1.88 and 1.01, respectively, from the 10 samples taken, and $\sigma^2_{all} = 0.3 \times FFP RSD(25\%) \times FFP RSD(25\%$

Table 2.1A. Statistical evaluation of the homogeneity test data (n = 20 analyses)

	Aldicarb	Aldicarb sulfoxide	Azinphos-methyl	Boscalid	Buprofezin	Cadusafos	Carbofuran	3-hydroxy-carbofuran	Deltamethrin	Diazinon	Isofenphos-methyl	Lambda-cyhalothrin
Mean Conc. (mg/Kg)	0.352	0.306	0.342	0.405	0.656	0.651	0.239	0.048	0.154	0.949	0.560	0.255
Ss ²	0.0006	0.0003	0.0007	0.0025	0.0003	0.0004	0.0004	0.00001	0.00002	0.0003	0.0004	0.00001
С	0.001	0.001	0.001	0.004	0.005	0.005	0.001	0.00003	0.0003	0.010	0.003	0.001
Ss ² < c Pass/Fail	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass

S_s: Between-Sampling Standard Deviation

Table 2.1B. Statistical evaluation of the homogeneity test data (n = 20 analyses)

	Metalaxyl sum	Methamidophos	Methidathion	Methomyl	Monocrotophos	Oxamyl	Parathion-methyl	Paraoxon-methyl	Phosalone	Procymidone	Thiacloprid	Triazophos
Mean Conc. (mg/Kg)	0.437	0.378	0.435	0.249	0.412	0.260	0.153	0.184	0.320	0.705	0.850	0.512
Ss ²	0.0001	0.0007	0.00005	0.0008	0.0001	0.0001	0.0002	0.0001	0.0002	0.001	0	0.001
С	0.001	0.002	0.003	0.004	0.002	0.001	0.0004	0.0004	0.001	0.008	0.01	0.003
Ss ² < c Pass/Fail	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass

S_s: Between-Sampling Standard Deviation

2.5 Stability tests

The two analytical methods described briefly above (in section 2.1) were also used for the stability tests.

The tests were performed on two occasions. On each occasion, a single bottle stored in the freezer at -20°C was chosen randomly and duplicate analyses were performed.

The two occasions were:

- Day 1: coinciding with the first sample shipment, which took place on 4th May 2009.
- Day 2: shortly after the deadline for reporting results, on 9th June 2009.

The individual results are given in Tables 2.2.. In general, these tests did not show any significant decrease in the levels of the pesticides. This demonstrates that, for the duration of the proficiency test and provided that the storage conditions prescribed were followed, the time elapsed until analysis was performed by the participants would not have influenced their results. Moreover, as a result of some doubts which laboratories may have had regarding the stability of their sample if it did not arrive completely frozen, a duplicate analysis of a bottle stored at room temperature for 48 hours was performed - finding no differences greater than 10%. Laboratories could therefore be sufficiently confident accepting the sample even if not completely frozen.

Table 2.2A. Statistical test for analytical precision and to demonstrate stability

(mg/kg)	Aldicarb	Aldicarb sulfoxide	Azinphos-methyl	Boscalid	Buprofezin	Cadusafos	Carbofuran	3-hydroxy-carbofuran	Deltamethrin	Diazinon	Isofenphos-methyl	Lambda-cyhalothrin
Day 1 (1 st analysis)	0.292	0.306	0.361	0.435	0.696	0.593	0.233	0.040	0.152	0.975	0.464	0.273
Day 1 (2 nd analysis)	0.267	0.307	0.342	0.434	0.664	0.599	0.237	0.042	0.157	0.928	0.454	0.282
Mean 1	0.280	0.307	0.352	0.435	0.680	0.596	0.235	0.041	0.155	0.952	0.459	0.278
Day 2 (1 st analysis)	0.301	0.330	0.358	0.415	0.680	0.613	0.225	0.043	0.139	1.00	0.494	0.266
Day 2 (2 nd analysis)	0.304	0.350	0.360	0.440	0.613	0.649	0.227	0.047	0.147	0.999	0.504	0.248
Mean 2	0.303	0.340	0.359	0.428	0.647	0.631	0.226	0.045	0.143	1.00	0.499	0.257
(M1-M2)/M1	-0.082	-0.109	-0.021	0.016	0.049	-0.059	0.038	-0.098	0.074	-0.050	-0.087	0.074
%	-8%	-11%	-2%	2%	5%	-6%	4%	-10%	7%	-5%	-9%	7%

Table 2.2B. Statistical test for analytical precision and to demonstrate stability

(mg/Kg)	Metalaxyl sum	Methamidophos	Methidathion	Methomyl	Monocrotophos	Oxamyl	Parathion-methyl	Paraoxon-methyl	Phosalone	Procymidone	Thiacloprid	Triazophos
Day 1 (1st analysis)	0.499	0.395	0.439	0.308	0.416	0.249	0.110	0.181	0.331	0.723	0.880	0.520
Day 1 (2 nd analysis)	0.488	0.325	0.403	0.268	0.400	0.252	0.100	0.171	0.315	0.688	0.780	0.536
Mean 1	0.494	0.360	0.421	0.288	0.408	0.251	0.105	0.176	0.323	0.706	0.830	0.528
Day 2 (1 st analysis)	0.445	0.396	0.391	0.262	0.435	0.245	0.117	0.168	0.307	0.612	0.725	0.525
Day 2 (2 nd analysis)	0.457	0.376	0.459	0.260	0.380	0.232	0.109	0.180	0.317	0.749	0.841	0.517
Mean 2	0.451	0.386	0.425	0.261	0.408	0.239	0.113	0.174	0.312	0.681	0.783	0.521
(M1-M2)/M1	0.086	-0.072	-0.010	0.094	0.001	0.048	-0.076	0.011	0.034	0.035	0.057	0.013
%	9%	-7%	-1%	9%	0%	5%	-8%	1%	3%	4%	6%	1%

2.6 Distribution of test material and protocol to participants

One bottle of treated test material and one bottle of 'blank' material were shipped to each participant in boxes containing dry ice. The samples were sent on the 4th May 2009.

Before shipment of the samples, the laboratories received full instructions (Annex 1) for the receipt, storage and analysis of the test materials, although they were encouraged to use their normal sample receipt procedure and method(s) of analysis. These instructions were uploaded onto the open site of the CRL-FV web page as the Specific Protocol. Together with this, the Application Form was also available. When applying for the test, each laboratory decided on their own password, which was required in order to enter the restricted zone where the Protocol and Forms 1, 2 and 3 could be accessed on-line. This information was made accessible when laboratories received an e-mail from the Organiser confirming their acceptance to be able to participate in the test: this ensured that confidentiality was maintained throughout the duration of Proficiency Test 11. The Target Pesticide List, together with the Minimum Required Reporting Level (MRRL) established by the Organiser, was uploaded onto the CRL-FV open web site to allow laboratories sufficient time to purchase standards and validate their methods.

3. STATISTICAL METHODS

3.1 False positives and negatives

3.1.1 False positives

Results reported for pesticides that were included in the pesticide list, but which were (i) not used in the preparation of the test material and (ii) not detected by the Organiser (even after a repeated analysis with lower detection limits) were assigned as false positives - if they were reported at concentrations at, or above, the Minimum Required Reporting Level (MRRL) as stipulated by the Organiser. Results reported which were lower than 0.01 mg/Kg have been disregarded and have not therefore been considered to be false positives. No z-score values have been calculated for these results. Any laboratory reporting a false positive, even when reporting the necessary number of pesticides to obtain sufficient scope, has been classified in Category B.

3.1.2 False negatives

Results for pesticides reported by the laboratories as not detected (ND), even though they were used by the Organiser to treat the test material and were subsequently detected at, or above, the MRRL specified by the Organiser (and the majority of participating laboratories) have been considered to be false negatives. z-Scores have been calculated for all pesticides detected at levels at or above the MRRL, including false negatives.

3.2 Estimation of the assigned values

The assigned values were based on the median level of all the reported results, excluding outliers. Individual results without any absolute values reported, such as detected (D), were not considered.

3.3 Fixed target standard deviations

Based on experience from previous EU proficiency tests and recommendations by the Advisory Group, a fixed relative standard deviation (FFP RSD) of 25 % was chosen. This is in line with the internationally accepted target-measurement uncertainty of 50% for multiresidue analysis of pesticides [5] which is derived from, and linked to, the EUPTs. The same target RSD has been applied to all the pesticides, and is independent of the residue level. The target standard deviation (σ) for each individual pesticide was calculated by multiplying this FFP RSD by the assigned value.

3.4 z-Scores

A z-score for each laboratory/pesticide combination was calculated according to the following equation:

$$z = (x-X) / \sigma$$
 Eq.1

Where:

- x is the result reported by the participant, or the MRRL for those labs not having detected the presence of the pesticide in the sample
- X is the assigned value
- \bullet σ is the target standard deviation (= FFP RSD of 25% multiplied by the assigned value)

z-Score classification is as follows:

$$|z| \le 2$$
 Acceptable $2 < |z| \le 3$ Questionable $|z| > 3$ Unacceptable

- Any z-score values of |z| > 5 have been reported as '+5', or '-5'.
- No calculations of z-scores have been performed for false positive results.
- For false negative results, the MRRL has been used to calculate the z-score. These z-scores have also been included in the graphical representation, and are marked with an asterisk.

3.5 Combined z-Scores

In order to evaluate each laboratory's overall performance, and to take into account all the results reported, the 'Sum of Weighted z-Scores' - as introduced in EUPT 6 - has been used.

The re-scaled sum of z-scores (RSZ) and the sum of squared z-scores (SSZ) are not longer calculated.

The Sum of Weighted z-Scores overall assessment was only applied to labs with sufficient scope (those in Category A), i.e. those labs that have reported 90% or more of the total number of pesticides present in the test material, reported no false positives, and detected all the pesticides marked with an asterisk in the Target Pesticide List that were present in the test material. The weighting factor ω is defined as follows:

$$\omega |Z_i| = \begin{cases} 1 & \text{if} & |Z| \le 2\\ 3 & \text{if} & 2 < |Z| \le 3\\ 5 & \text{if} & |Z| > 3 \end{cases}$$

Therefore, the 'Sum of Weighted z-Scores' |z| formula is:

'Sum of Weighted z-Scores' (SWZ)
$$~|\mathbf{z}| = \frac{\sum\limits_{i=1}^{n} \lvert Z_{i} \rvert \omega(Z_{i})}{n}$$

So for each lab:

- The first term is the sum of absolute values of z-scores between zero and two, multiplied by one.
- The second term is the sum of absolute values of z-scores greater than two, but less than or equal to three, multiplied by three.
- The third term is the sum of absolute values of z-scores greater than three, multiplied by five.

The sum is then divided by the number of reported results (n) by each laboratory.

The 'Sum of Weighted z-Scores' has subsequently been used to produce an overall classification of laboratories with three sub-classifications used: 'good', 'satisfactory' and 'unsatisfactory'.

$$|SWZ| \le 2 \text{ Good}$$

 $2 < |SWZ| \le 3 \text{ Satisfactory}$
 $|SWZ| > 3 \text{ Unsatisfactory}$

In this way, a simple, single combined value is produced, that should encourage laboratories to not only improve the accuracy of their results, but also to analyse a greater number of pesticides.

This SWZ-evaluation has not been applied to those laboratories with insufficient scope, i.e. those in Category B, which is for those laboratories reporting less than 90% of the pesticides present in the test material, reporting any false positives and/or not having sought all the pesticides marked with an asterisk in the target pesticide list and present in the sample.

4. RESULTS

4.1 Summary of reported results

One hundred and fifty-one laboratories agreed to participate in this proficiency test. However, three of them did not submit results. The results reported by all the laboratories are presented in this report. However, only results reported by laboratories from EU-countries and EFTA-countries (Norway, Iceland and Switzerland) have been included in the statistical treatment. The results from laboratories in Egypt, Turkey and Uruguay have not been used. Twenty-four pesticides were used to treat the sample, although twenty-one have been used to evaluate the laboratories performance as residue definition was followed.

A summary of the reported results can be seen below in Table 4.1.

Table 4.1 Summary of Reported Results

Pesticides	No. of Reported Results	No. of Not Analysed Results	No. of False Negatives Results	% of Reported Results *	
* Aldicarb (sum)	91	55	2	62	
* Azinphos-methyl	128	15	5	86	
Boscalid	102	45	1	70	
Buprofezin	118	29	1	80	
Cadusafos	76	71	1	51	
Carbofuran (sum)	107	41	0	72	
* Deltamethrin	130	15	3	88	
Diazinon	144	4	0	97	
Isofenphos-methyl	86	61	1	58	
* Lambda-cyhalothrin	138	8	2	93	
* Metalaxyl and Metalaxyl-M	122	25	1	82	
* Methamidophos	109	32	7	74	
* Methidathion	136	9	3	92	
Methomyl (sum)	84	60	4	57	
* Monocrotophos	95	48	5	64	
* Oxamyl	89	57	2	60	
* Parathion-methyl (sum)	129	15	4	87	
* Phosalone	136	10	2	92	
* Procymidone	136	10	2	92	
* Thiacloprid	82	65	1	55	
Triazophos	132	16	0	89	

^{*} The % of Reported Results has been calculated relative to the total number of laboratories submitting results (148 including results from Egypt, Turkey and Uruguay for information purposes only).

The laboratories that agreed to participate are listed in Annex 2. All analytical results reported by the participants are given in Appendix 3, whilst the analytical methods used are given in Appendix 7. For an explanation of the symbols used in these Appendixes, see Annex 1.

4.1.1 False positives

Nine laboratories reported results for additional pesticides that had not been used to treat the test material. These pesticides and the residue levels reported are presented in Table 4.2, together with the MRRL. Where the reported residue level of the erroneously - detected pesticide was higher than the assigned MRRL value in the Target Pesticide List (Annex 1), the result has been considered to be a false positive.

Any laboratory that reported even a single false positive result has not been classified in Category A.

Table 4.2 Laboratories that reported results for pesticides that were not present in the treated test material

Laboratory Code	Pesticide	Concentration (mg/kg)	Determination Technique	RL (mg/Kg)	MRRL (mg/Kg)
Lab10	* Carbendazim	0.018	LC-MS/MS	0.01	0.01
Lab110	* Malathion	0.168	GC-ECD-NPD	0.05	0.01
Lab114	Tolclofos-methyl	0.0944	GC-ECD	0.050	0.01
Lab122	* Carbendazim	0.22	LC-MS/MS	0.1	0.01
Lab17	* Chlorpyrifos-methyl	0.059	GC-QQQ-MS/MS	0.02	0.01
LGD17	Fenpropathrin	0.248	GC-QQQ-MS/MS	0.01	0.01
Lab4	* Chlorpyrifos	0.163	GC-Q-MS	0.010	0.01
LGD4	* Chlorpyrifos-methyl	0.014	LC-MS/MS	0.010	0.01
Lab50	Phosmet	0.023	LC-MS/MS	0.010	0.01
Lab75	Methiocarb	0.032	HPLC-FL	0.004	0.01
Lab95	Tolclofos-methyl	0.0335	GC-ECD/NPD	0.025	0.01

If the residue levels reported were below the MRRLs, or if the pesticides did not appear in the pesticide list included in Annex I, then they were not considered to be false positives.

However, some laboratories should have taken more care in reporting their results as the concentrations reported were not only lower than the MRRL but, in all cases, also lower than their own reporting limits. These results can be seen in Table 4.2.2.

Table 4.2.2. Laboratories reporting residue concentration levels below the MRRL and (mostly) below their own Reporting Limit

Laboratory Code	Pesticide	Concentration (mg/kg)	Determination Technique	RL (mg/Kg)	MRRL (mg/Kg)
Lab103	* Malathion	0.0030 #	GC-FPD	0.01	0.01
LGD103	Quinoxyfen	0.0050 #	GC-ITD-MS/MS	0.01	0.01
Lab97	* Acephate	0.0182 #	GC-QQQ-MS/MS	0.02	0.01

[#] Residue levels that have been erroneously reported below the RL of the laboratory

Traces of endosulfan a and β were detected by the Organiser in the treated test material. This low residue level was assumed to have arisen from contamination of one, or more, of the commercial formulations used to treat the cauliflower. Results for this pesticide were reported by 14 laboratories, but because they were below the MRRL stipulated in the Pesticide List, the EUPT-FV-11 Committee decided not to include them in the assessment.

Traces of Sulfotep were also detected by the Oraganiser and reported by two laboratories. This pesticide was not considered as it was not in the Target Pesticide List.

4.1.2 False negatives

Pesticides that were actually present in the test material but were reported as not detected (ND), were considered to be false negatives. Table 4.3 summarises the results from laboratories that reported false negatives.

Table 4.3. Laboratories that failed to report pesticides that were present in the treated test material

Laboratory Code	Aldicarb sum	Azinphos-methyl	Boscalid	Buprofezin	Cadusafos	Deltamethrin	Isofenphos-methyl	Lambda-cyhalothrin	Metalaxyl sum	Methamidophos	Methidathion	Methomyl sum	Monocrotophos	Охатуі	Parathion-methyl sum	Phosalone	Procymidone	Thiacloprid
9		ND																
22										ND								
27											ND				ND			
30					ND								ND					
44										ND								
46									ND	ND								
55															ND			
57				ND														

Laboratory Code	Aldicarb sum	Azinphos-methyl	Boscalid	Buprofezin	Cadusafos	Deltamethrin	Isofenphos-methyl	Lambda-cyhalothrin	Metalaxyl sum	Methamidophos	Methidathion	Methomyl sum	Monocrotophos	Oxamyl	Parathion-methyl sum	Phosalone	Procymidone	Thiacloprid
60																	ND	
66								ND										
70						ND						ND	ND					
72										ND								
74		ND																
75																		ND
78		ND									ND					ND		
80	ND																	
85		ND																
89													ND					
94													ND	ND				
95						ND												
99											ND						ND	
103								ND										
104			ND															
105										ND		ND	ND					
106												ND						
109						ND												
110															ND			
112		ND								ND								
116										ND								
118	ND																	
120																ND		
122														ND				
124							ND											
129															ND			
151													ND					

4.1.3 Distribution of data

The distributions of the residue levels of the twenty-one pesticides reported by the laboratories have been plotted as histograms after removing results that were distant from the main population (values that gave in a first round calculation a z-score above 5.0).

4.2 Assigned values and target standard deviations

The assigned values were based on the median values calculated using all the reported results, but excluding those values that were distant from the median, i.e. outliers. The assigned values for all pesticides are presented in Table 4.4.

The target standard deviation was calculated using a fixed FFP RSD value of 25%. For comparison, a robust standard deviation (Qn) was also calculated for informative purposes. These RSDs can be seen in Table 4.4.

Table 4.4 Median values and %RSDs for all pesticides present in the test material

Pesticides	MRRL (mg/Kg)	Median (mg/Kg)	FFP RSD (%)	Qn RSD (%)
* Aldicarb (sum)	0.01	0.658	25	20
* Azinphos-methyl	0.01	0.355	25	28
Boscalid	0.01	0.414	25	25
Buprofezin	0.01	0.638	25	30
Cadusafos	0.01	0.611	25	24
Carbofuran (sum)	0.01	0.283	25	20
* Deltamethrin	0.01	0.157	25	25
Diazinon	0.01	1.25	25	26
Isofenphos-methyl	0.01	0.540	25	24
* Lambda-cyhalothrin	0.01	0.266	25	24
* Metalaxyl and Metalaxyl-M	0.01	0.450	25	21
* Methamidophos	0.01	0.405	25	33
* Methidathion	0.01	0.472	25	24
Methomyl (sum)	0.01	0.277	25	18
* Monocrotophos	0.01	0.438	25	21
* Oxamyl	0.01	0.249	25	17
* Parathion-methyl (sum)	0.01	0.320	25	24
* Phosalone	0.01	0.368	25	30
* Procymidone	0.01	0.780	25	20
* Thiacloprid	0.01	0.879	25	15
Triazophos	0.01	0.538	25	30

^{*} Pesticides marked with an asterisk had to be sought by laboratories in order to be considered for classification in Category A.

4.3 Assessment of laboratory performance

4.3.1 z-Scores

z-Scores were calculated using the FFP RSD of 25% for all the pesticides present. In Appendix 3, the individual z-scores are presented for each laboratory, together with the median values for each pesticide. In Table 4.5, a summary of the z-scores is presented.

Table 4.5 Classification of z-scores for the pesticides reported

Pesticides	Acceptable (%)	Questionable (%)	Unacceptable (%)
* Aldicarb (sum)	90	7	3
* Azinphos-methyl	86	5	9
Boscalid	96	1	3
Buprofezin	92	5	3
Cadusafos	95	1	4
Carbofuran (sum)	93	5	2
* Deltamethrin	87	7	6
Diazinon	92	5	3
Isofenphos-methyl	92	7	1
* Lambda-cyhalothrin	91	4	5
* Metalaxyl and Metalaxyl-M	94	2	4
* Methamidophos	78	13	9
* Methidathion	94	2	4
Methomyl (sum)	92	1	7
* Monocrotophos	87	7	6
* Oxamyl	95	1	4
* Parathion-methyl (sum)	62	26	12
* Phosalone	88	8	4
* Procymidone	92	3	5
* Thiacloprid	94	2	4
Triazophos	92	6	2

^{*} Pesticides marked with an asterisk had to be sought by laboratories in order to be considered for classification in Category A.

z-Scores for false negative results have been calculated using the MRRL value reported in the Target Pesticide List (Annex 1).

In Appendix 4, graphical representations of the z-scores are presented. No z-scores have been calculated for false positive results. z-Scores for false negative results have been included on the chart and are indicated by an asterisk. The charts have been constructed using different colour bars according to the determination technique used for each particular pesticide.

The Organiser considers it to be important to clarify the Scientific Committee decisions on three of the twenty-one pesticide evaluations performed in this test. They are as follows:

- <u>Aldicarb Sum:</u> the sample was treated with aldicarb and aldicarb sulfoxide. Some laboratories converted the concentrations found correctly to aldicarb sum, but others did not. In order to fairly assess the results for this pesticide, the scientific committee decided to calculate the aldicarb sum median from those laboratory results which: firstly reported both concentrations and, secondly, correctly converted correctly aldicarb sulfoxide to aldicarb. The z-scores for aldicarb sum have been calculated for all the laboratories reporting, whatever the concentration coming either from aldicarb alone and/or from aldicarb sulfoxide although no corrected conversion has been performed.
- <u>Carbofuran Sum:</u> the sample was treated with carbofuran and 3-hydroxy-carbofuran. Some laboratories converted the concentrations found correctly to carbofuran sum, but others did not. In order to fairly assess the results for this pesticide, the scientific committee decided to calculate the carbofuran sum median from those laboratory results which: firstly reported both concentrations and, secondly, correctly converted 3-hydroxy-carbofuran to carbofuran. The z-scores for carbofuran sum have been calculated for all the laboratories reporting, whatever the concentration coming either from carbofuran alone and/or from 3-hydroxy-carbofuran although no corrected conversion has been performed.

<u>Parathion-methyl Sum:</u> the sample was treated with parathion-methyl and paraoxon-methyl. Some laboratories converted the concentrations found correctly to parathion-methyl sum, but others did not. In order to fairly assess the results for this pesticide, the scientific committee decided to calculate the parathion-methyl sum median from those laboratory results which: firstly reported both concentrations, and, secondly, correctly converted paraoxon-methyl to parathion-methyl. The z-scores for parathion-methyl sum have been calculated for all the laboratories reporting, whatever the concentration - coming either from parathion-methyl alone and/or from paraoxon-methyl - although no corrected conversion has been performed.

4.3.2 Combined z-Scores

Appendix 5 shows a table with the values of individual z-scores for each pesticide and the combined 'Sum of Weighted z-Scores' for those laboratories in Category A. In this category are the laboratories that reported 19 or more results, including all the target pesticides marked with an asterisk present in the sample, and did not report any false positive results. A graphical representation of the results for these laboratories can also be found in Appendix 6.

Seventy-six of the one hundred and fourty-eight laboratories that submitted results have been classified into Category A (51%). Seventy-nine percent were sub-divided as 'good', nine percent as 'satisfactory' and twelve percent as 'unsatisfactory'.

Of the seventy-two laboratories in Category B, two could have been in Category A if they had not reported a false positive result.

Laboratories in Category A must have analysed all the pesticides marked with an asterisk that were present in the test material. Because of this, one laboratory, was placed in Category B for not reporting Oxamyl, marked with an asterisk.

Table 4.6.1 shows the laboratories in Category A, the number of pesticides reported, the SWZ value and the sub-classification. Laboratories that reported false negative results in Category A are marked with an asterisk and laboratories with SWZ values greater than 3.0 have been marked with an '1'.

Table 4.6.2 shows the laboratories in Category B, the number of results reported, and the number of acceptable z-scores. Laboratories reporting a false negative are marked with an asterisk, laboratories reporting a false positive are marked with a '+' and laboratories not reporting all the pesticides marked with an asterisk present in the test material are marked with a ‡ sign.

A SWZ graphical representation for laboratories classified into Category A can be seen in Appendix 6. As was the case last year, the National Reference Laboratories for Fruit and Vegetables have been plotted on the graph using a different colour.

The performance of the laboratories in the last three EUPTs has been summarised as follows:

- For EUPT-FV-11, out of 148 laboratories, 76 were in Category A with the following subdivisions: 9 'unsatisfactory', 7 'satisfactory' and 60 'good'.
- For EUPT-FV-10, out of 129 laboratories, 66 are in Category A with the following subdivisions: 8 'unsatisfactory', 6 'satisfactory' and 52 'good'.
- For EUPT-FV-9, out of 132 laboratories, 68 are in Category A with the following subdivisions: 7 'unsatisfactory', 13 'satisfactory' and 48 'good'.

Table 4.6.1 Performance and sub-classification of laboratories in Category A

Lab Code EUPT-FV11	No. of z-scores achieved	SWZ	Classification
Lab36	21	0.3	Good
Lab41	21	0.4	Good
Lab32	21	0.4	Good
Lab131	21	0.4	Good
Lab15	21	0.4	Good
Lab61	21	0.4	Good

Lab Code EUPT-FV11	No. of z-scores achieved	SWZ	Classification
Lab3	21	0.4	Good
Lab37	21	0.5	Good
Lab79	21	0.5	Good
Lab6	21	0.5	Good
Lab143	21	0.5	Good
Lab7	21	0.5	Good
Lab23	21	0.5	Good
Lab38	21	0.5	Good
Lab47	21	0.6	Good
Lab63	21	0.6	Good
Lab5	21	0.6	Good
Lab87	21	0.6	Good
Lab18	21	0.6	Good
Lab28	21	0.6	Good
Lab119	21	0.6	Good
Lab136	21	0.6	Good
Lab31	21	0.7	Good
Lab93	21	0.7	Good
Lab35	21	0.7	Good
Lab62	21	0.7	Good
Lab51	21	0.8	Good
Lab135	21	0.8	Good
Lab82	21	0.8	Good
Lab29	21	0.9	Good
Lab56	21	0.9	Good
Lab45	21	0.9	Good
Lab121	21	0.9	Good
Lab49	21	0.9	Good
Lab11	21	1.0	Good
Lab58	21	1.1	Good
Lab19	21	1.2	Good
Lab69	21	1.2	Good
Lab91	21	1.2	Good
Lab57*	21	1.2	Good
Lab71	21	1.3	Good
Lab54	21	1.3	Good

Lab Code EUPT-FV11	No. of z-scores achieved	SWZ	Classification
Lab59	21	1.4	Good
Lab141	21	1.5	Good
Lab76	21	1.5	Good
Lab109*	21	1.6	Good
Lab52	21	1.7	Good
Lab120*	21	1.7	Good
Lab9*	21	1.8	Good
Lab85*	21	1.8	Good
Lab44*	21	1.9	Good
Lab92	21	2.8	Satisfactory
Lab39	21	2.9	Satisfactory
Lab96	21	3.0	Satisfactory
Lab106*↑	21	3.3	Unsatisfactory
Lab2↑	21	3.4	Unsatisfactory
Lab66*↑	21	3.8	Unsatisfactory
Lab89*↑	21	3.8	Unsatisfactory
Lab40	20	0.5	Good
Lab24	20	0.7	Good
Lab133	20	0.7	Good
Lab30*	20	1.5	Good
Lab90	20	1.6	Good
Lab20	20	1.8	Good
Lab60*	20	2.6	Satisfactory
Lab145	20	2.8	Satisfactory
Lab148↑	20	4.2	Unsatisfactory
Lab104*↑	20	5.0	Unsatisfactory
Lab64	19	0.4	Good
Lab68	19	0.9	Good
Lab125	19	1.2	Good
Lab26	19	2.5	Satisfactory
Lab108	19	2.5	Satisfactory
Lab33↑	19	3.2	Unsatisfactory
Lab137↑	19	4.5	Unsatisfactory
Lab27*↑	19	4.7	Unsatisfactory

^{*} Laboratories reporting a false negative result.

↑ Laboratories with SWZ values of > 3

Table 4.6.2 Performance of laboratories in Category B.

Lab Code	No. of pesticides sought	No. of acceptable z-scores
Lab17+	20	17
Lab50+	20	16
Lab70*‡	19	12
Lab16	18	16
Lab124*	18	16
Lab73	18	14
Lab94*	18	14
Lab75*	18	14
Lab48	17	17
Lab25	17	16
Lab72*	17	15
Lab107	17	15
Lab95*	17	9
Lab97	16	15
Lab77	16	14
Lab105*	16	8
Lab81	16	4
Lab149	15	15
Lab150	15	15
Lab113	15	15
Lab13	15	14
Lab151*	15	12
Lab144	15	12
Lab21	15	11
Lab4	14	14
Lab140	14	13
Lab80*	14	10
Lab34	13	12
Lab98	13	12
Lab123	13	12
Lab126	13	11
Lab65	13	9
Lab74*	13	9
Lab102	12	11
Lab14	12	8
Lab46*	12	7

Lab Code	No. of pesticides sought	No. of acceptable z-scores
Lab100	12	6
Lab67	11	10
Lab10	11	10
Lab83	11	9
Lab78*	11	7
Lab130	10	10
Lab101	10	10
Lab138	10	9
Lab142	10	9
Lab114	10	8
Lab103*	10	8
Lab22*	10	7
Lab122*	10	6
Lab86	9	9
Lab1	9	9
Lab116*	9	8
Lab117	9	8
Lab55*	9	8
Lab88	9	7
Lab43	9	7
Lab110*	9	7
Lab118*	9	7
Lab146	8	8
Lab139	8	7
Lab112*	8	6
Lab128	7	7
Lab132	7	6
Lab111	7	6
Lab129*	7	6
Lab99*	6	0
Lab53	5	4
Lab12	5	4
Lab115	3	3
Lab84	2	2
Lab134	2	2
Lab127	0	0

^{*} Laboratories reporting a false negative result.

⁺ Laboratories reporting a false positive result.

‡ Laboratories that have failed in the analysis of oxamyl and therefore have been placed in Category B.

5. CONCLUSIONS

One hundred and fifty-one laboratories agreed to participate in EUPT-FV-11, and one hundred and forty-eight of them submitted results following the analysis of the treated cauliflower homogenate test material.

The pesticide residue levels in the treated cauliflower test material were in agreement with the target levels proposed by the Quality Control Group.

For each laboratory/pesticide combination, z-scores based on the FFP RSD of 25% have been calculated. The different separation techniques used by the participant laboratories, either gas chromatography or liquid chromatography, are shown in the z-score graphs. Asterisks have been used to mark each bar of the chart to represent a false negative result reported as 'ND' by a laboratory. Sub-classification of z-score values into 'acceptable', 'questionable' and 'unacceptable' has also been undertaken.

The criterion of using the Sum of Weighted z-Score formula, first introduced in the EUPT 6 Proficiency Test Report, was applied to the laboratory results and continued to demonstrate their overall performance. Those laboratories reporting nineteen or more results (at least 90%), including all the pesticides marked with an asterisk in the Target Pesticide List and present in the sample, along with no false positive results, were considered to have sufficient scope and were therefore classified into Category A. Those laboratories that reported less than nineteen results were considered to have insufficient scope and were automatically classified into Category B. Laboratories in Category A were also sub-classified into 'good', 'satisfactory' and 'unsatisfactory'. Laboratories in Category A that reported false negatives were marked with an asterisk and those obtaining a SWZ value greater than 3 were marked with an '↑'.

The median value of each pesticide was used to obtain the assigned value or "true" concentration, which was also used to calculate the z-scores. Results were required from the laboratories not only for the pesticides as defined by the MRL definition, but also for all the individual components that are included in the MRL definition.

Low residue levels of endosulfan alpha and beta (below the MRRL) were detected in the treated cauliflower test material by fourteen laboratories. These residues were assumed to have arisen from impurities (contaminants) present in one, or more, of the commercial formulations used to treat the cauliflower. These results were not statistically assessed, because the level of 0.006mg/kg for the sum was well below the MRRL, and therefore no medians/assigned values have been calculated for this pesticide.

Traces of sulfotep were detected in the treated cauliflower test material below the MRRL but this pesticide was not in the Target Pesticide List.

The overall results, with regard to each pesticide present in the test material z-scores, were very good. Most of the pesticides had just a few unacceptable z-scores. Therefore, laboratories generally achieved very accurate results for the twenty-one pesticides - above 85%, for all except methamidophos and parathion-methyl sum.

For methamidophos, the high percentage of unacceptable z-score results comes from the seven false negative results reported. This is the same case each time this pesticide is present. A possible reason could be because of to its high polarity: making it more difficult to extract using low polarity solvents; or because of poor partitioning between aqueous and organic solvents during solvent exchange.

In the case of parathion-methyl sum, the inclusion of paraoxon-methyl in the sample, at a concentration close to the parent compound (which is not usual in real samples), made the laboratories report a high number of unacceptable z-score results because of an underestimation of the true value. Many laboratories did not have paraoxon-methyl in their scope. This is reflected in the number of non-analysed results for paraoxon-methyl compared to parathion-methyl - which is 30% higher in the case of the first one.

For the other pesticides present in the sample and the sum of different analytes such as aldicarb sum and carbofuran sum, the z-score results achieved by the laboratories were better. Underestimation is not appreciable in the z-score graphs. But this does not mean that laboratories follow the residue definition and have their pesticides in their scope. In the case of carbofuran 21% of all laboratories did not analyse 3-hidroxy-carbofuran. As this contribution was at a low concentration (0.055 mg/Kg), it did not influence the overall result. On the contrary, the number of laboratories reporting aldicarb and aldicarb sulfoxide are practically the same. In this case, a higher percentage of laboratories followed the residue definition.

Converting factors have been noticeable over the last years, and the difficulties laboratories have when using them. CRLs will work on this point, in order to have a database for laboratories to consult about them.

Ever since the introduction of the MRRL in EUPT 6, laboratories' 'reporting levels' have been continuously decreasing and their overall performances have improved. The increased use of mass spectrometry, particularly modern LC-MS/MS instrumentation, is probably one of the main reasons why the results from more participating laboratories have continued to show an overall improvement year on year. This year, the MRRL, fixed to a value of 0.01mg/Kg, remained. Laboratories lower their limits of detection and quantification and therefore, fewer false negative results have been reported. Compared to last year's results, the percentage of 'good' laboratories in Category A has not changed but the number of laboratories has. From 66 laboratories in EUPT-FV 10 to 76 laboratories in this PT. The number of new laboratories applying for this test has risen from 132 in EUPT-FV10 to 151. It seems that the extra demand imposed on laboratories to analyse all of the pesticides marked with an asterisk in the target list works well and

laboratories tend to enlarge their scope and thus achieve sufficient performance to be in Category A. Only one laboratory failed to comply with this instruction and was placed in Category B for not seeking out oxamyl. Only two laboratories were placed in Category B for reporting false positive results.

The scientific committee for this test strongly recommends that laboratories continue equipping themselves with LC-MS/MS seeing as many very important pesticides (particularly the polar compounds) can only be analysed using liquid chromatography.

The pesticides marked with an asterisk in the target list were considered of the utmost importance with regard to the monitoring of fruits and vegetables by both the Quality Control Group and the European Commission. Each year, laboratories will be encouraged to further enlarge the scope of their methods, and to ensure that the pesticides listed in the coordinated EU-monitoring programme are included.

This test will carry on treating the sample with low concentration and non-approved pesticides. This year only the 3-hydroxi-carbofuran was at a low concentration level. Isofenphos-methyl, an illegal/banned substance in Europe, had a high percentage of acceptable z-scores, which again reflects that laboratories accurately measure this type of residue, although sixty-one percent of the participating laboratories did not include this pesticide in their scope.

Participation in this year's European Proficiency Test 11 involved laboratories from 25 of the 27 EU member states (the missing ones were Malta represented by the UK and Luxembourg), plus Iceland, Norway and Switzerland, who regularly participate in the EU-monitoring programmes. Non-European laboratories in Egypt, Turkey and Uruguay also participated. These Non-EU laboratories are official laboratories in their own countries. As is laid down in Article 32 of Regulation (EC) N° 882/2004, one of the CRL's duties is to collaborate with laboratories in third countries that are responsible for analysing feed and food samples and to help them improve the quality of their analyses.

6. SUGGESTIONS FOR FUTURE WORK

The following suggestions were made by the Organiser, the Scientific Committee and DG SANCO for EUPT-FV12.

As a result of the continuing trend of improvement in performance, the stricter conditions applied to EUPT-FV-11 will be carried forward to next year. The aim is that laboratories continue to increase the scope of their methods, in order to be able to fully enforce EU legislation. Consequently, the number of pesticides that will be mandatory to analyse (marked with an asterisk in the Target Pesticide List) will further increase next year, along with the total number of pesticides in the Target Pesticide List based on the EU-coordinated Community Control Programme. The new Target Pesticide Lists will be published in January 2010. The (tentative) shipment date for EUPT-FV-12 will be around May 2010.

The harmonised MRRL will be maintained for all pesticides. The Target Pesticide List will contain individual analytes that must be sought and reported as well as the MRL residue definition. This will allow a better statistical treatment of the data to be undertaken, and easier traceability of any possible analytical error by the laboratories.

A numerical result for at least 90% of the pesticides present in the test material, including all those marked with an asterisk, must be reported in order to have sufficient scope.

These changes are aimed at ensuring that, each year, laboratories strive further to increase the scope of their methods, and to improve their performance (both in terms of correctly detecting the pesticides present in the test material, and also in accurately quantifying the residue levels present). It is recommended that laboratories should continue to evaluate and adopt new techniques/instrumentation that will help them to attain, or maintain, a Category A classification.

7. REFERENCES

- 1. Agüera A., Contreras M., Crespo J, Fernández-Alba A.R. Multiresidue method for the analysis of multiclass pesticides in agricultural products by gas chromatography-tandem mass spectrometry, Analyst, 2002, 127, 347-354.
- Mezcua, M., Ferrer, C., García-Reyes, J.F., Martínez-Bueno, M.J., Sigrist, M., Fernández-Alba, A.R., Analyses of selected non-authorized insecticides in peppers by gas chromatography/mass spectrometry and gas chromatography/tandem mass spectrometry, Food Chemistry, 2009, 112 (1), pp. 221-225.
- 3. Kmellár, B., Fodor, P., Pareja, L., Ferrer, C., Martínez-Uroz, M. A., Valverde, A. and Fernández-Alba A.R. Validation and uncertainty study of a comprehensive list of 160 pesticide residues in multi-class vegetables by liquid chromatography tandem mass spectrometry, Journal of Chromatography A, 2008, doi:10.1016/j.chroma.2008.10.121
- M. Thompson, S. L. R. Ellison, and R.Wood. The International Harmonized Protocol for the Proficiency Testing of Analytical Chemistry Laboratories. Pure Appl. Chem., Vol. 78, No. 1, pp. 145–196, 2006. doi:10.1351/pac200678010145
- Method Validation and Quality Control Procedures for Pesticide Residues Analysis in Food and Feed, European Commission, SANCO Document No. 2007/3131, 31 October 2007.
- 6. Muller C H and Uhlig S, Estimation of Variance components with high breakdown point and high efficiency, Biometrijka, 88 (2001), 353-336.
- 7. ILAC G-13:2007 Guidelines for the Requirements for the Competence of Providers of Profiency Testing Schemes.
- 8. ISO/IEC 43:1997 Proficiency Testing by Interlaboratory Comparisons. Part 1: Development and operation of proficiency testing schemes. Part 2: Selection and use of proficiency testing schemes by laboratory accreditation bodies.
- Medina-Pastor, P., Rodríguez-Torreblanca, C., Andersson, A., R. Fernandez-Alba, A., The European Commission Proficiency Tests for Pesticide Residue in Fruits and Vegetables. Trends in Analytical Chemistry – DOI 10.1016/j.trac.2009.11.001.

8. ACKNOWLEDGEMENTS

The Organiser is grateful to the European Commission for funding this European Proficiency Test FV-11.

The Organiser wishes to thank the members of the Quality Control Group and the Scientific Committee for their invaluable and knowledgeable advice. Many thanks also to the Statistical Group for their cooperation.

The Organiser wishes to give a special thank-you to Almeria University for the use of their facilities.

APPENDIX 1. Homogeneity Data

Aldicarb (mg/Kg)		Aldicarb sulfoxide (mg/Kg)			s-methyl /Kg)	Boscalid (mg/Kg)	
Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2
0.369	0.365	0.279	0.283	0.344	0.331	0.483	0.479
0.361	0.363	0.314	0.315	0.308	0.294	0.348	0.336
0.337	0.338	0.297	0.310	0.361	0.367	0.486	0.475
0.360	0.371	0.337	0.333	0.361	0.366	0.476	0.480
0.333	0.341	0.295	0.300	0.329	0.312	0.341	0.338
0.297	0.297	0.280	0.284	0.323	0.321	0.359	0.362
0.374	0.376	0.306	0.304	0.384	0.377	0.314	0.401
0.379	0.363	0.327	0.334	0.368	0.374	0.498	0.400
0.373	0.372	0.309	0.318	0.313	0.317	0.348	0.361
0.350	0.328	0.306	0.288	0.357	0.340	0.497	0.313

Buprofezin (mg/Kg)		Cadusafos (mg/Kg)			ofuran ı/Kg)	3-hydroxy-carbofuran (mg/Kg)	
Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2
0.697	0.651	0.651	0.654	0.242	0.244	0.042	0.042
0.682	0.675	0.608	0.691	0.218	0.220	0.050	0.045
0.679	0.603	0.672	0.679	0.265	0.266	0.046	0.046
0.670	0.664	0.684	0.663	0.269	0.265	0.046	0.045
0.677	0.643	0.634	0.631	0.233	0.240	0.047	0.048
0.642	0.655	0.641	0.630	0.218	0.204	0.052	0.051
0.660	0.664	0.695	0.680	0.236	0.234	0.053	0.052
0.635	0.610	0.602	0.611	0.232	0.230	0.052	0.050
0.612	0.618	0.625	0.633	0.217	0.221	0.053	0.054
0.689	0.687	0.660	0.671	0.262	0.255	0.048	0.046

Deltamethrin (mg/Kg)		Diazinon (mg/Kg)			os-methyl /Kg)	Lambda-cyhalothrin (mg/Kg)	
Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2
0.153	0.150	0.962	0.904	0.541	0.529	0.259	0.265
0.160	0.156	0.930	0.901	0.546	0.543	0.259	0.258
0.154	0.150	0.985	0.920	0.557	0.556	0.253	0.257
0.150	0.153	0.952	0.969	0.570	0.550	0.254	0.250
0.147	0.149	0.993	0.993	0.588	0.591	0.252	0.255
0.157	0.160	0.963	0.975	0.556	0.555	0.255	0.248
0.158	0.155	0.961	0.962	0.589	0.585	0.253	0.250
0.160	0.157	0.914	0.913	0.585	0.593	0.258	0.260
0.157	0.159	0.942	0.942	0.520	0.551	0.251	0.257
0.142	0.150	0.913	0.976	0.566	0.538	0.256	0.256

APPENDIX 1. Homogeneity Data

Metalaxyl sum (mg/Kg)		Methamidophos (mg/Kg)			lathion /Kg)	Methomyl (mg/Kg)	
Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2
0.382	0.397	0.330	0.326	0.448	0.437	0.277	0.272
0.455	0.449	0.395	0.399	0.438	0.441	0.224	0.229
0.393	0.423	0.375	0.387	0.472	0.399	0.296	0.271
0.424	0.427	0.392	0.371	0.464	0.400	0.222	0.221
0.442	0.447	0.409	0.383	0.449	0.450	0.254	0.251
0.418	0.442	0.390	0.400	0.452	0.451	0.221	0.227
0.460	0.462	0.409	0.398	0.399	0.414	0.325	0.336
0.458	0.460	0.383	0.380	0.400	0.400	0.027	0.272
0.504	0.503	0.387	0.380	0.440	0.479	0.267	0.257
0.391	0.417	0.323	0.339	0.422	0.449	0.285	0.253

Monocrotophos (mg/Kg)		Oxamyl (mg/Kg)		Parathion-methyl (mg/Kg)		Paraoxon-methyl (mg/Kg)	
Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2
0.441	0.443	0.244	0.246	0.156	0.152	0.186	0.182
0.397	0.383	0.255	0.256	0.154	0.152	0.184	0.182
0.423	0.408	0.248	0.249	0.150	0.153	0.170	0.153
0.385	0.394	0.251	0.251	0.151	0.156	0.171	0.166
0.407	0.440	0.267	0.262	0.160	0.157	0.180	0.177
0.423	0.438	0.268	0.268	0.160	0.159	0.200	0.189
0.392	0.435	0.272	0.272	0.196	0.193	0.196	0.193
0.405	0.394	0.266	0.258	0.145	0.147	0.205	0.207
0.398	0.422	0.274	0.267	0.150	0.109	0.190	0.189
0.378	0.431	0.271	0.250	0.150	0.106	0.190	0.166

Phosalone (mg/Kg)		Procymidone (mg/Kg)		Thiacloprid (mg/Kg)		Triazophos (mg/Kg)	
Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2
0.307	0.301	0.771	0.779	0.866	0.868	0.518	0.517
0.334	0.332	0.642	0.667	0.846	0.840	0.512	0.524
0.303	0.303	0.742	0.742	0.874	0.880	0.530	0.534
0.313	0.317	0.759	0.760	0.864	0.871	0.461	0.453
0.326	0.324	0.775	0.749	0.865	0.863	0.527	0.536
0.345	0.349	0.728	0.625	0.855	0.849	0.528	0.549
0.316	0.316	0.794	0.621	0.818	0.815	0.470	0.470
0.324	0.336	0.620	0.609	0.885	0.882	0.468	0.471
0.327	0.329	0.710	0.661	0.878	0.688	0.517	0.548
0.304	0.302	0.682	0.656	0.828	0.865	0.546	0.557

The sample numbers used for this test were: 5, 44, 69, 77, 116, 141, 182, 209, 253 and 281

Results presented as histograms.

Results presented as histograms.

Results given by the laboratories (mg/kg) and their calculated z-score value using FFP RSD 25%

Lab Code	*Aldicarb sum	z-Score (FFP RSD 25%)	* Azinphos-methyl	z-Score (FFP RSD 25%)	Boscalid	z-Score (FFP RSD 25%)	Buprofezin	z-Score (FFP RSD 25%)
MRRL	0.01	core RSE	0.01	Sore	0.01	core RSE	0.01	core RSE
Median (mg/kg)	0.658	z-Sc (FFP	0.355	z-Sc (FFP	0.414	z-Sc (FFP	0.638	z-Sc (FFP
Lab-001	NA		0.366	0.1	NA		NA	
Lab-002	0.658	0.0	0.317	-0.4	0.485	0.7	1.14	3.1
Lab-003	0.696	0.2	0.36	0.1	0.45	0.3	0.689	0.3
Lab-004	0.708	0.3	0.292	-0.7	NA		NA	
Lab-005	0.524	-0.8	0.332	-0.3	0.315	-1.0	0.663	0.2
Lab-006	0.679	0.1	0.349	-0.1	0.373	-0.4	0.453	-1.2
Lab-007	0.66	0.0	0.425	0.8	0.469	0.5	0.756	0.7
Lab-008				No results	reported			
Lab-009	0.745	0.5	ND	-3.9	0.28	-1.3	0.662	0.2
Lab-010	NA		NA		NA		0.96	2.0
Lab-011	0.525	-0.8	0.438	0.9	0.53	1.1	0.67	0.2
Lab-012	0.421	-1.4	NA		NA		NA	
Lab-013	NA		0.401	0.5	0.356	-0.6	0.411	-1.4
Lab-014	NA		0.52	1.9	NA		NA	
Lab-015	0.554	-0.6	0.384	0.3	0.43	0.2	0.608	-0.2
Lab-016	0.316	-2.1	0.227	-1.4	NA		0.634	0.0
Lab-017	0.863	1.2	0.387	0.4	0.431	0.2	0.432	-1.3
Lab-018	0.649	-0.1	0.391	0.4	0.585	1.7	0.726	0.6
Lab-019	0.663	0.0	0.465	1.2	0.492	0.8	0.432	-1.3
Lab-020	0.59	-0.4	0.27	-1.0	0.32	-0.9	0.42	-1.4
Lab-021	NA		0.314	-0.5	0.366	-0.5	0.647	0.1
Lab-022	NA		NA		NA		NA	
Lab-023	0.566	-0.6	0.316	-0.4	0.275	-1.3	0.477	-1.0
Lab-024	0.75	0.6	0.45	1.1	0.35	-0.6	0.4	-1.5
Lab-025	NA		0.415	0.7	0.45	0.3	0.66	0.1
Lab-026	0.762	0.6	NA		0.764	3.4	0.856	1.4
Lab-027	0.464	-1.2	0.183	-1.9	0.256	-1.5	0.404	-1.5
Lab-028	0.614	-0.3	0.26	-1.1	0.299	-1.1	0.474	-1.0
Lab-029	0.733	0.5	0.317	-0.4	0.358	-0.5	0.581	-0.4
Lab-030	0.759	0.6	0.389	0.4	0.504	0.9	0.475	-1.0
Lab-031	0.554	-0.6	0.236	-1.3	0.262	-1.5	0.559	-0.5
Lab-032	0.63	-0.2	0.404	0.6	0.456	0.4	0.612	-0.2
Lab-033	NA		0.209	-1.6	0.367	-0.5	0.464	-1.1
Lab-034	0.281	-2.3	0.322	-0.4	0.36	-0.5	0.592	-0.3
Lab-035	0.72	0.4	0.437	0.9	0.435	0.2	0.826	1.2
Lab-036	0.505	-0.9	0.384	0.3	0.434	0.2	0.673	0.2
Lab-037	0.781	0.7	0.33	-0.3	0.393	-0.2	0.528	-0.7
Lab-038	0.948	1.8	0.378	0.3	0.414	0.0	0.754	0.7
Lab-039	0.721	0.4	0.322	-0.4	0.598	1.8	0.678	0.3
Lab-040	0.642	-0.1	0.214	-1.6	0.346	-0.7	0.607	-0.2
Lab-041	0.743	0.5	0.388	0.4	0.454	0.4	0.789	0.9
Lab-042				•	reported			
Lab-043	NA		0.45	1.1	NA		NA	
Lab-044	0.322	-2.0	0.447	1.0	0.37	-0.4	0.503	-0.8
Lab-045	0.56	-0.6	0.225	-1.5	0.253	-1.6	0.516	-0.8
Lab-046	NA		0.754	4.5	NA		NA	

APPENDIX 3. Results (mg/Kg) and z-scores for FFP RSD (25%).

Lab Code	*Aldicarb sum	z-Score (FFP RSD 25%)	* Azinphos-methyl	z-Score (FFP RSD 25%)	Boscalid	z-Score (FFP RSD 25%)	Buprofezin	z-Score (FFP RSD 25%)
MRRL	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD
Median (mg/kg)	0.658	z-Sc (FFP	0.355	z-Sc (FFP	0.414	z-Sc (FFP	0.638	z-Sc (FFP
Lab-047	0.76	0.6	0.382	0.3	0.566	1.5	0.771	0.8
Lab-048	0.389	-1.6	0.461	1.2	0.402	-0.1	0.94	1.9
Lab-049	0.36	-1.8	0.348	-0.1	0.398	-0.2	0.762	0.8
Lab-050	0.662	0.0	0.054	-3.4	0.44	0.3	0.708	0.4
Lab-051	0.427	-1.4	0.516	1.8	0.53	1.1	0.828	1.2
Lab-052	0.52	-0.8	0.199	-1.8	0.411	0.0	0.84	1.3
Lab-053 Lab-054	NA 0.405	0.2	NA 0.47	1.0	NA 0.527	1.0	NA 0.053	1.0
Lab-055	0.605 NA	-0.3	0.46 0.244	1.2 -1.3	0.537 NA	1.2	0.853 NA	1.3
Lab-056	0.495	-1.0	0.244	-1.0	0.328	-0.8	0.674	0.2
Lab-057	0.638	-0.1	0.343	-0.1	0.348	-0.6	ND	-3.9
Lab-058	0.314	-2.1	0.252	-1.2	0.284	-1.3	0.438	-1.3
Lab-059	0.323	-2.0	0.45	1.1	0.423	0.1	0.767	0.8
Lab-060	0.689	0.2	0.595	2.7	0.512	0.9	0.997	2.3
Lab-061	0.569	-0.5	0.326	-0.3	0.295	-1.1	0.684	0.3
Lab-062	0.585	-0.4	0.313	-0.5	0.265	-1.4	0.547	-0.6
Lab-063	0.76	0.6	0.381	0.3	0.461	0.5	0.812	1.1
Lab-064	0.584	-0.4	0.318	-0.4	0.383	-0.3	0.708	0.4
Lab-065	NA		0.207	-1.7	NA		0.316	-2.0
Lab-066	0.41	-1.5	0.149	-2.3	0.216	-1.9	0.37	-1.7
Lab-067	NA		0.55	2.2	NA		0.75	0.7
Lab-068	NA		0.3	-0.6	0.503	0.9	0.72	0.5
Lab-069	0.57	-0.5	0.275	-0.9	0.335	-0.8	0.632	0.0
Lab-070	0.418	-1.5	0.386	0.3	0.496	0.8	0.771	0.8
Lab-071	0.34	-1.9	0.41	0.6	0.42	0.1	0.92	1.8
Lab-072	NA		0.385	0.3	0.373	-0.4	0.541	-0.6
Lab-073	0.251	-2.5	0.33	-0.3	0.402	-0.1	0.317	-2.0
Lab-074	NA		ND	-3.9	0.307	-1.0	0.906	1.7
Lab-075	0.857	1.2	0.21	-1.6	0.285	-1.2	0.555	-0.5
Lab-076	0.745	0.5	0.44	1.0	0.36	-0.5	0.91	1.7
Lab-077	NA		0.29	-0.7	0.29	-1.2	0.44	-1.2
Lab-078	0.32	-2.1	ND 0.421	-3.9	NA 0.501	0.0	0.76	0.8
Lab-079 Lab-080	0.711	0.3	0.431	0.9	0.501	0.8	0.659	0.1
Lab-080	ND 0.559	-3.9 -0.6	0.491	1.5 5.4	0.596 0.883	1.8 4.5	0.417 0.871	-1.4
Lab-081	0.523	-0.8	0.835 0.367	0.1	0.663	0.2	0.615	1.5 -0.1
Lab-083	0.323 NA	-0.0	0.652	3.3	0.432	-1.1	0.613 NA	-0.1
Lab-084	NA NA		NA	0.0	NA	1.1	NA NA	
Lab-085	0.589	-0.4	ND	-3.9	0.572	1.5	0.672	0.2
Lab-086	NA		NA		0.343	-0.7	0.574	-0.4
Lab-087	0.695	0.2	0.4	0.5	0.54	1.2	0.72	0.5
Lab-088	NA		0.353	0.0	NA		NA	
Lab-089	0.778	0.7	0.5	1.6	0.305	-1.1	0.273	-2.3
Lab-090	0.635	-0.1	0.325	-0.3	0.417	0.0	0.495	-0.9
Lab-091	0.687	0.2	0.35	-0.1	0.421	0.1	0.648	0.1
Lab-092	0.731	0.4	0.428	0.8	0.481	0.6	0.96	2.0
Lab-093	0.595	-0.4	0.365	0.1	0.428	0.1	0.616	-0.1

Lab Code	*Aldicarb sum	z-Score (FFP RSD 25%)	* Azinphos-methyl	z-Score (FFP RSD 25%)	Boscalid	z-Score (FFP RSD 25%)	Buprofezin	z-Score (FFP RSD 25%)
MRRL	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD
Median (mg/kg)	0.658	z-Score (FFP RSD	0.355	z-Score (FFP RSD	0.414	z-Score (FFP RSD	0.638	z-Sc (FFP
Lab-094	NA		0.332	-0.3	0.262	-1.5	0.378	-1.6
Lab-095	0.538	-0.7	0.712	4.0	0.312	-1.0	0.6545	0.1
Lab-096	0.994	2.0	0.376	0.2	0.437	0.2	0.786	0.9
Lab-097	0.561	-0.6	0.328	-0.3	NA		NA	
Lab-098	NA		0.327	-0.3	0.498	0.8	0.638	0.0
Lab-099	NA NA		NA NA	0.0	NA		1.142	3.2
Lab-100	NA NA		0.109	-2.8	NA		NA 0.407	0.0
Lab-101 Lab-102	NA NA		0.287	-0.8	NA 0.50	1.0	0.487	-0.9
Lab-103	NA NA		NA 0.298	-0.6	0.52 NA	1.0	0.73 0.528	0.6 -0.7
Lab-103	0.675	0.1	0.639	3.2	ND ND	-3.9	0.328	-0.7
Lab-105	0.675	0.1	0.61	2.9	0.52	1.0	0.307	0.4
Lab-106	0.2	-2.8	0.482	1.4	0.487	0.7	0.518	-0.8
Lab-107	0.575	-0.5	0.198	-1.8	NA	0.7	0.366	-1.7
Lab-108	0.609	-0.3	0.191	-1.8	0.392	-0.2	0.311	-2.1
Lab-109	0.883	1.4	0.239	-1.3	0.321	-0.9	0.441	-1.2
Lab-110	NA		0.368	0.1	NA	0.7	NA	1.2
Lab-111	NA		NA		NA		0.28	-2.2
Lab-112	NA		ND	-3.9	NA		0.45	-1.2
Lab-113	NA		0.256	-1.1	0.362	-0.5	0.422	-1.4
Lab-114	NA		0.319	-0.4	NA		NA	
Lab-115	NA		0.387	0.4	NA		NA	
Lab-116	NA		0.349	-0.1	NA		NA	
Lab-117	NA		0.31	-0.5	NA		NA	
Lab-118	ND	-3.9	0.348	-0.1	NA		NA	
Lab-119	0.51	-0.9	0.45	1.1	0.43	0.2	0.6	-0.2
Lab-120	0.536	-0.7	0.355	0.0	0.367	-0.5	0.614	-0.2
Lab-121	0.754	0.6	0.416	0.7	0.427	0.1	0.704	0.4
Lab-122	NA		NA		NA		0.888	1.6
Lab-123	NA		0.605	2.8	0.266	-1.4	0.511	-0.8
Lab-124	0.747	0.5	0.215	-1.6	0.582	1.6	0.762	0.8
Lab-125	0.584	-0.4	0.388	0.4	0.649	2.3	0.693	0.3
Lab-126	NA NA		0.32	-0.4	NA		0.49	-0.9
Lab-127	NA NA		NA 0.304	0.1	NA		NA NA	
Lab-128	NA NA		0.304	-0.6	NA NA		NA NA	
Lab-129 Lab-130	NA NA		0.227	-1.4	NA NA		NA NA	
Lab-131	NA 0.827	1.0	0.341	-0.2 0.2	NA 0.43	0.2	0.727	0.6
Lab-131	NA	1.0	0.336	-0.2	0.43 NA	0.2	NA	0.0
Lab-133	0.632	-0.2	0.351	0.0	0.394	-0.2	0.391	-1.5
Lab-134	NA	0.2	NA	0.0	NA	0.2	0.58	-0.4
Lab-135	0.633	-0.2	0.38	0.3	0.35	-0.6	0.645	0.0
Lab-136	0.535	-0.7	0.345	-0.1	0.451	0.4	0.51	-0.8
Lab-137	0.664	0.0	0.307	-0.5	NA		1.158	3.3
Lab-138	NA		0.381	0.3	NA		0.771	0.8
Lab-139	NA		NA		NA		NA	
Lab-140	NA		0.5057	1.7	0.384	-0.3	0.7406	0.6

APPENDIX 3. Results (mg/Kg) and z-scores for FFP RSD (25%).

Lab Code	*Aldicarb sum	. 25%)	* Azinphos-methyl	. 25%)	Boscalid	. 25%)	Buprofezin	. 25%)
MRRL	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD
Median (mg/kg)	0.658	z-Score (FFP RSD	0.355	z-Score (FFP RSD	0.414	z-Score (FFP RSD	0.638	z-Score (FFP RSD
Lab-141	0.765	0.7	0.34	-0.2	0.426	0.1	0.624	-0.1
Lab-142	NA		0.27	-1.0	NA		NA	
Lab-143	0.535	-0.7	0.372	0.2	0.408	-0.1	0.706	0.4
Lab-144	0.401	-1.6	0.29	-0.7	NA		0.545	-0.6
Lab-145	1.544	5.4	0.187	-1.9	0.224	-1.8	0.309	-2.1
Lab-146	NA		NA		NA		NA	
Lab-147				No results	reported			
Lab-148	0.723	0.4	0.811	5.1	0.546	1.3	0.541	-0.6
Lab-149	NA		0.408	0.6	0.402	-0.1	0.68	0.3
Lab-150	NA		0.408	0.6	0.48	0.6	0.556	-0.5
Lab-151	NA		0.52	1.9	NA		NA	

Results given by the laboratories (mg/kg) and their calculated z-score value using FFP RSD 25%

			(119,119, 111					
Lab Code	Cadusafos	z-Score (FFP RSD 25%)	Carbofuran sum	z-Score (FFP RSD 25%)	* Deltamethrin	z-Score (FFP RSD 25%)	Diazinon	z-Score (FFP RSD 25%)
MRRL	0.01	ore RSE	0.01	ore RSE	0.01	ore RSE	0.01	ore RSE
Median (mg/kg)	0.611	z-Sc (FFP	0.283	z-Sc (FFP	0.157	z-Sc (FFP	1.25	z-Sc (FFP
Lab-001	NA		NA		0.166	0.2	0.921	-1.1
Lab-002	0.892	1.8	0.329	0.7	0.247	2.3	2.88	5.2
Lab-003	0.696	0.6	0.287	0.1	0.182	0.6	1.54	0.9
Lab-004	NA		NA		0.187	0.8	1.336	0.3
Lab-005	0.612	0.0	0.214	-1.0	0.197	1.0	1.52	0.9
Lab-006	0.81	1.3	0.245	-0.5	0.138	-0.5	1.14	-0.4
Lab-007	0.803	1.3	0.289	0.1	0.152	-0.1	1.49	0.8
Lab-008				No results	reported			
Lab-009	0.861	1.6	0.329	0.7	0.141	-0.4	1.25	0.0
Lab-010	NA		NA		0.127	-0.8	1.682	1.4
Lab-011	0.54	-0.5	0.143	-2.0	0.18	0.6	1.35	0.3
Lab-012	NA		0.393	1.6	NA		1.068	-0.6
Lab-013	0.371	-1.6	NA		0.131	-0.7	0.777	-1.5
Lab-014	NA		0.3	0.2	0.2	1.1	1.13	-0.4
Lab-015	0.562	-0.3	0.326	0.6	0.167	0.3	1.08	-0.5
Lab-016	NA		0.215	-1.0	0.139	-0.5	0.813	-1.4
Lab-017	0.83	1.4	0.387	1.5	0.157	0.0	1.037	-0.7
Lab-018	0.692	0.5	0.303	0.3	0.189	0.8	1.56	1.0
Lab-019	0.444	-1.1	0.2	-1.2	0.049	-2.8	1.331	0.3
Lab-020	NA		0.24	-0.6	0.12	-0.9	1.02	-0.7
Lab-021	0.465	-1.0	0.103	-2.5	NA		0.879	-1.2
Lab-022	NA		NA		0.139	-0.5	0.469	-2.5
Lab-023	0.598	-0.1	0.275	-0.1	0.144	-0.3	1.119	-0.4
Lab-024	NA		0.32	0.5	0.16	0.1	0.9	-1.1
Lab-025	0.611	0.0	0.24	-0.6	0.19	0.8	0.905	-1.1
Lab-026	0.725	0.7	0.262	-0.3	0.217	1.5	1.42	0.5
Lab-027	0.144	-3.1	0.143	-2.0	0.102	-1.4	1.28	0.1
Lab-028	0.494	-0.8	0.286	0.0	0.155	-0.1	1.045	-0.7
Lab-029	0.38	-1.5	0.27	-0.2	0.25	2.4	1.27	0.1
Lab-030	ND		0.337	0.8	0.123	-0.9	1.27	0.1
Lab-031	0.434	-1.2	0.279	-0.1	0.173	0.4	1.002	-0.8
Lab-032	0.538	-0.5	0.222	-0.9	0.161	0.1	1.31	0.2
Lab-033	0.462	-1.0	0.227	-0.8	0.133	-0.6	1.18	-0.2
Lab-034	NA		0.181	-1.4	NA		0.882	-1.2
Lab-035	0.708	0.6	0.307	0.3	0.19	0.8	1.74	1.6
Lab-036	0.6	-0.1	0.271	-0.2	0.147	-0.3	1.4	0.5
Lab-037	0.536	-0.5	0.308	0.4	0.123	-0.9	1.44	0.6
Lab-038	0.632	0.1	0.336	0.7	0.158	0.0	1.434	0.6
Lab-039	0.755	0.9	0.433	2.1	0.273	3.0	2.51	4.0
Lab-040	NA		0.217	-0.9	0.151	-0.2	1.3	0.2
Lab-041	0.658	0.3	0.293	0.1	0.123	-0.9	1.280	0.1
Lab-042				No results	reported			
Lab-043	NA		NA		NA		0.71	-1.7
Lab-044	0.633	0.1	0.217	-0.9	0.22	1.6	1.21	-0.1
Lab-045	0.372	-1.6	0.222	-0.9	0.156	0.0	0.894	-1.1
Lab-046	NA		0.144	-2.0	0.137	-0.5	0.611	-2.0

Lab Code	Cadusafos	z-Score (FFP RSD 25%)	Carbofuran sum	z-Score (FFP RSD 25%)	* Deltamethrin	z-Score (FFP RSD 25%)	Diazinon	z-Score (FFP RSD 25%)
MRRL	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD
Median (mg/kg)	0.611	z-Sc (FFP	0.283	z-Sc (FFP	0.157	z-Sc (FFP	1.25	z-Sc (FFP
Lab-047	0.786	1.1	0.254	-0.4	0.186	0.7	1.375	0.4
Lab-048	NA		0.293	0.1	0.169	0.3	1.288	0.1
Lab-049	0.313	-2.0	0.245	-0.5	0.182	0.6	1.09	-0.5
Lab-050	0.666	0.4	0.178	-1.5	0.025	-3.4	1.31	0.2
Lab-051	0.901	1.9	0.297	0.2	0.156	0.0	1.52	0.9
Lab-052	0.64	0.2	0.273	-0.1	0.18	0.6	1.56	1.0
Lab-053	NA	0.0	NA 0.001	0.7	0.1	-1.5	0.79	-1.5
Lab-054	0.616	0.0	0.231	-0.7	0.153	-0.1	1.773	1.7
Lab-055	NA 0.572	0.0	NA 0.005	0.7	0.154	-0.1	1.74	1.6
Lab-056	0.573	-0.2	0.235	-0.7	0.111	-1.2	1.251	0.0
Lab-057 Lab-058	0.53 0.467	-0.5 -0.9	0.317	0.5	0.192	0.9	1.32 0.979	0.2
Lab-059	 		0.219	-0.9	0.116	-1.0		-0.9
Lab-060	0.693 NA	0.5	0.237 0.32	-0.7 0.5	0.21 0.176	0.5	1.345 1.6	0.3
Lab-061	0.624	0.1	0.263	-0.3	0.178	0.0	1.658	1.3
Lab-061	0.564	-0.3	0.263	-0.6		-1.2	1.34	0.3
Lab-063	0.734	0.8	0.338	0.8	0.111	0.8	1.52	0.9
Lab-064	NA	0.0	0.338	-1.2	0.167	0.0	1.4	0.7
Lab-065	NA NA		NA	-1.2	0.138	-1.8	0.703	-1.8
Lab-066	0.14	-3.1	0.19	-1.3	0.137	-0.5	0.425	-2.6
Lab-067	NA	0.1	NA	1.0	0.2	1.1	1.45	0.6
Lab-068	0.611	0.0	0.223	-0.8	0.17	0.3	1.342	0.3
Lab-069	0.525	-0.6	0.286	0.0	0.163	0.2	1.56	1.0
Lab-070	0.665	0.4	0.245	-0.5	ND	-3.7	2.12	2.8
Lab-071	0.66	0.3	0.27	-0.2	0.11	-1.2	1.66	1.3
Lab-072	0.696	0.6	0.235	-0.7	0.128	-0.7	1.2	-0.2
Lab-073	0.275	-2.2	0.207	-1.1	0.31	3.9	0.707	-1.7
Lab-074	NA		0.664	5.4	0.111	-1.2	1.37	0.4
Lab-075	NA		0.314	0.4	0.062	-2.4	1.183	-0.2
Lab-076	0.57	-0.3	0.31	0.4	0.09	-1.7	1.58	1.1
Lab-077	NA		0.24	-0.6	0.27	2.9	0.93	-1.0
Lab-078	NA		NA		NA		1.51	0.8
Lab-079	0.669	0.4	0.316	0.5	0.191	0.9	1.35	0.3
Lab-080	0.377	-1.5	0.335	0.7	0.174	0.4	1.2	-0.2
Lab-081	NA		0.523	3.4	NA		2.36	3.6
Lab-082	0.455	-1.0	0.295	0.2	0.211	1.4	1.19	-0.2
Lab-083	NA		NA		0.161	0.1	1.52	0.9
Lab-084	NA		NA		0.174	0.4	NA	
Lab-085	0.753	0.9	0.225	-0.8	0.106	-1.3	1.69	1.4
Lab-086	NA -		NA		NA		1.44	0.6
Lab-087	0.7	0.6	0.331	0.7	0.15	-0.2	1.4	0.5
Lab-088	NA 0.5		NA 2.225		0.054	-2.6	1.256	0.0
Lab-089	0.5	-0.7	0.235	-0.7	0.178	0.5	1.39	0.4
Lab-090	0.556	-0.4	0.22	-0.9	0.195	1.0	1.173	-0.2
Lab-091	0.811	1.3	0.251	-0.5	0.143	-0.4	1.36	0.4
Lab-092	0.611	0.0	0.351	1.0	0.23	1.9	2.04	2.5
Lab-093	0.491	-0.8	0.251	-0.5	0.174	0.4	1.12	-0.4

			E		c			
Lab Code	Cadusafos	z-Score (FFP RSD 25%)	Carbofuran sum	z-Score (FFP RSD 25%)	* Deltamethrin	z-Score (FFP RSD 25%)	Diazinon	z-Score (FFP RSD 25%)
MRRL	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD
Median (mg/kg)	0.611	z-Score (FFP RSD	0.283	z-Score (FFP RSD	0.157	z-Sc (FFP	1.25	z-Sc (FFP
Lab-094	0.642	0.2	0.294	0.2	0.076	-2.1	1.097	-0.5
Lab-095	NA		0.475	2.7	ND	-3.7	1.2504	0.0
Lab-096	0.732	0.8	0.359	1.1	0.3	3.6	1.77	1.7
Lab-097	0.484	-0.8	NA		0.103	-1.4	1.32	0.2
Lab-098	NA		0.316	0.5	0.167	0.3	1.302	0.2
Lab-099	NA		NA		NA		0.198	-3.4
Lab-100	NA		NA		0.109	-1.2	1.37	0.4
Lab-101	NA		NA NA	1.0	0.142	-0.4	0.79	-1.5
Lab-102	NA	0.7	0.2	-1.2	0.19	0.8	1.1	-0.5
Lab-103	0.507	-0.7	NA 0.071	0.2	NA 0.101	0.0	1.15	-0.3
Lab-104 Lab-105	NA		0.261	-0.3	0.121	-0.9	0.582	-2.1
Lab-103	NA 0.749	0.9	0.13	-2.2 -0.7	0.24	2.1	1.35 1.82	0.3
Lab-107	0.749 NA	0.9	0.234	-0.7	0.223 0.118	-1.0	0.855	1.8 -1.3
Lab-108	NA NA		0.28	0.0	0.118	1.1	0.868	-1.2
Lab-109	0.543	-0.4	0.252	-0.4	ND	-3.7	1.01	-0.8
Lab-110	NA	-0.4	NA	-0.4	0.141	-0.4	1.228	-0.0
Lab-111	NA		NA		0.15	-0.2	1.220	-0.8
Lab-112	NA		NA NA		NA	0.2	1.519	0.9
Lab-113	NA		0.238	-0.6	0.199	1.1	1.126	-0.4
Lab-114	NA		NA		0.142	-0.4	0.518	-2.3
Lab-115	NA		NA		NA		1.47	0.7
Lab-116	NA		NA		0.15	-0.2	1.095	-0.5
Lab-117	NA		NA		0.153	-0.1	1.48	0.7
Lab-118	NA		NA		0.22	1.6	1.358	0.3
Lab-119	0.5	-0.7	0.25	-0.5	0.15	-0.2	1.06	-0.6
Lab-120	0.425	-1.2	0.307	0.3	0.156	0.0	1.04	-0.7
Lab-121	0.849	1.6	0.216	-0.9	0.121	-0.9	1.38	0.4
Lab-122	NA		NA		0.334	4.5	0.92	-1.1
Lab-123	NA		NA		0.14	-0.4	1.183	-0.2
Lab-124	NA		0.295	0.2	0.151	-0.2	1.15	-0.3
Lab-125	NA		0.255	-0.4	0.193	0.9	1.523	0.9
Lab-126	NA		0.27	-0.2	0.13	-0.7	1.13	-0.4
Lab-127	NA		NA		NA		NA	
Lab-128	NA		NA		0.151	-0.2	0.955	-0.9
Lab-129	NA		NA		NA 0.150	0.5	NA 0.07	2.5
Lab-130	NA 0.450	0.0	NA 0.000	0.0	0.153	-0.1	0.96	-0.9
Lab-131	0.658	0.3	0.298	0.2	0.143	-0.4	1.46	0.7
Lab-132 Lab-133	NA 0.535	-0.5	NA 0.241	0.7	0.108	-1.2	1.17	-0.3
Lab-134	0.535	-0.5	0.241 NA	-0.6	0.164	0.2	0.932	-1.0
Lab-135	NA 0.504	0.7		0.7	NA 0.191	0.9	NA 1.1	O F
Lab-136	0.506 0.481	-0.7 -0.9	0.241	-0.6 -0.5	0.191 0.168	0.9	1.1	-0.5 -0.8
Lab-137	0.461 NA	-0.7	0.246	-0.5	0.166	6.1	1.08	-0.6
Lab-138	NA NA		0.173	-1.3	0.373 NA	0.1	1.14	-0.3
Lab-139	NA NA		NA	1.3	0.13	-0.7	1.14	-0.4
	1 1/ \		1 1/ \		0.10	J./		V.Z

APPENDIX 3. Results (mg/Kg) and z-scores for FFP RSD (25%).

Lab Code	Cadusafos	25%)	Carbofuran sum	25%)	* Deltamethrin	25%)	Diazinon	25%)
MRRL	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD
Median (mg/kg)	0.611	z-Score (FFP RSD	0.283	z-Score (FFP RSD	0.157	z-Score (FFP RSD	1.25	z-Score (FFP RSD
Lab-141	0.668	0.4	0.311	0.4	0.171	0.4	1.47	0.7
Lab-142	NA		NA		0.2	1.1	0.66	-1.9
Lab-143	0.655	0.3	0.229	-0.8	0.161	0.1	1.32	0.2
Lab-144	NA		NA		0.125	-0.8	1.14	-0.4
Lab-145	NA		0.283	0.0	0.081	-1.9	0.508	-2.4
Lab-146	NA		NA		0.179	0.6	0.868	-1.2
Lab-147				No results	reported			
Lab-148	NA		0.467	2.6	0.152	-0.1	1.425	0.6
Lab-149	NA		0.261	-0.3	0.19	0.8	1	-0.8
Lab-150	NA		0.281	0.0	0.159	0.1	1.287	0.1
Lab-151	NA		NA		0.19	0.8	1.8	1.8

Results given by the laboratories (mg/kg) and their calculated z-score value using FFP RSD 25%

	II by lile lab							
Code Code	lsofenphos-methyl	z-Score (FFP RSD 25%)	* Lambda-cyhalothrin	z-Score (FFP RSD 25%)	* Metalaxyl and Metalaxyl-M	ore RSD 25%)	* Wethamidophos	z-Score (FFP RSD 25%)
Median (mg/kg)	0.540	z-Sc (FFP	0.266	z-Sc (FFP	0.450	z-Score (FFP RSD	0.405	z-Score (FFP RSD
	N14		0.007				0.017	
Lab-001	NA 0.001	0.4	0.237	-0.4	NA 0.500	1.0	0.316	-0.9
Lab-002	0.891	2.6	0.38	1.7	0.599	1.3	0.299	-1.0
Lab-003	0.591	0.4	0.319	0.8	0.49	0.4	0.482	0.8
Lab-004	NA 0.510	0.0	0.358	1.4	0.234	-1.9	0.548	1.4
Lab-005	0.518	-0.2	0.262	-0.1	0.403	-0.4	0.329	-0.7
Lab-006	0.498	-0.3	0.211	-0.8	0.445	0.0	0.341	-0.6
Lab-007	0.715	1.3	0.241	-0.4	0.481	0.3	0.407	0.0
Lab-008	0.401	0.4	0.100	No results		0.5	0.040	0.4
Lab-009	0.481	-0.4	0.192	-1.1	0.393	-0.5	0.343	-0.6
Lab-010	0.555	0.1	0.263	0.0	0.324	-1.1	NA	
Lab-011	0.65	0.8	0.34	1.1	0.58	1.2	0.45	0.4
Lab-012	NA		NA		NA		NA	
Lab-013	NA		0.303	0.6	0.46	0.1	0.17	-2.3
Lab-014	NA		0.29	0.4	0.52	0.6	0.15	-2.5
Lab-015	0.532	-0.1	0.321	0.8	0.402	-0.4	0.401	0.0
Lab-016	0.415	-0.9	0.233	-0.5	0.316	-1.2	0.278	-1.3
Lab-017	0.883	2.5	0.269	0.0	0.572	1.1	0.325	-0.8
Lab-018	0.641	0.7	0.247	-0.3	0.54	0.8	0.463	0.6
Lab-019	0.377	-1.2	0.173	-1.4	0.593	1.3	0.49	0.8
Lab-020	0.38	-1.2	0.21	-0.8	0.52	0.6	0.32	-0.8
Lab-021	0.551	0.1	0.207	-0.9	0.131	-2.8	0.441	0.4
Lab-022	NA		0.207	-0.9	0.479	0.3	ND	-3.9
Lab-023	0.411	-1.0	0.213	-0.8	0.519	0.6	0.416	0.1
Lab-024	0.52	-0.1	0.25	-0.2	0.55	0.9	0.35	-0.5
Lab-025	0.54	0.0	0.305	0.6	0.43	-0.2	0.13	-2.7
Lab-026	0.712	1.3	0.328	0.9	0.614	1.5	0.5	0.9
Lab-027	NA		0.187	-1.2	0.25	-1.8	0.25	-1.5
Lab-028	0.361	-1.3	0.278	0.2	0.488	0.3	0.312	-0.9
Lab-029	0.3	-1.8	0.267	0.0	0.44	-0.1	0.391	-0.1
Lab-030	0.607	0.5	0.253	-0.2	0.514	0.6	0.455	0.5
Lab-031	0.367	-1.3	0.239	-0.4	0.425	-0.2	0.424	0.2
Lab-032	0.676	1.0	0.269	0.0	0.445	0.0	0.422	0.2
Lab-033	0.414	-0.9	0.134	-2.0	0.388	-0.6	0.186	-2.2
Lab-034	0.461	-0.6	NA		0.442	-0.1	NA	
Lab-035	0.654	0.8	0.312	0.7	0.508	0.5	0.539	1.3
Lab-036	0.578	0.3	0.282	0.2	0.416	-0.3	0.452	0.5
Lab-037	0.386	-1.1	0.248	-0.3	0.451	0.0	0.582	1.8
Lab-038	0.607	0.5	0.262	-0.1	0.506	0.5	0.566	1.6
Lab-039	0.755	1.6	0.29	0.4	0.685	2.1	0.505	1.0
Lab-040	0.51	-0.2	0.241	-0.4	0.416	-0.3	0.399	-0.1
Lab-041	0.455	-0.6	0.302	0.5	0.5	0.4	0.442	0.4
Lab-042				No results	reported			

Lab Code	lsofenphos-methyl	z-Score (FFP RSD 25%)	* Lambda-cyhalothrin	z-Score (FFP RSD 25%)	* Metalaxyl and Metalaxyl-M	ore RSD 25%)	* Wethamidophos	z-Score (FFP RSD 25%)
Median (mg/kg)	0.540	Z-SCO (FFP R	0.266	Z-SCO (FFP R	0.450	z-Score (FFP RSD	0.405	Z-SCO (FFP R
Lab-043	NA		NA		0.5	0.4	0.18	-2.2
Lab-044	0.607	0.5	0.298	0.5	0.31	-1.2	ND	-3.9
Lab-045	0.333	-1.5	0.206	-0.9	0.363	-0.8	0.349	-0.5
Lab-046	NA	1.0	NA	0.7	ND	-3.9	ND	-3.9
Lab-047	0.535	0.0	0.277	0.2	0.571	1.1	0.433	0.3
Lab-048	NA	0.0	0.289	0.3	NA		0.45	0.4
Lab-049	0.521	-0.1	0.222	-0.7	0.472	0.2	0.221	-1.8
Lab-050	NA	0.1	0.052	-3.2	0.422	-0.2	0.324	-0.8
Lab-051	0.61	0.5	0.032	-0.8	0.555	0.9	0.446	0.4
Lab-052	0.478	-0.5	0.653	5.8	0.514	0.6	0.493	0.9
Lab-053	NA	0.0	0.17	-1.4	NA	0.0	NA	0.7
Lab-054	0.557	0.1	0.17	0.3	0.472	0.2	0.119	-2.8
Lab-055	NA	0.1	0.285	0.3	0.472	0.2	NA	-2.0
Lab-056	0.24	-2.2	0.273	-0.6	0.416	-0.3	0.439	0.3
Lab-057	0.507	-0.2	0.266	0.0	0.418	0.1	0.437	-0.7
Lab-058	0.307	-1.5	0.288	-1.3	0.437	-0.7	0.327	-0.7
Lab-059	0.647	0.8	0.182	1.1	0.366		0.37	
						0.0		-0.7
Lab-060	0.716	1.3	0.317	0.8	0.487	0.3	0.521	1.2
Lab-061	0.556	0.1	0.274	0.1	0.44	-0.1	0.462	0.6
Lab-062	0.397	-1.1	0.245	-0.3	0.345	-0.9	0.486	0.8
Lab-063	0.619	0.6	0.298	0.5	0.566	1.0	0.421	0.2
Lab-064	NA		0.295	0.4	0.408	-0.4	0.265	-1.4
Lab-065	NA		0.12	-2.2	0.339	-1.0	0.126	-2.8
Lab-066	0.261	-2.1	ND	-3.8	0.348	-0.9	0.309	-0.9
Lab-067	0.6	0.4	0.4	2.0	NA		NA	
Lab-068	0.493	-0.3	0.335	1.0	0.566	1.0	0.465	0.6
Lab-069	0.467	-0.5	0.287	0.3	0.522	0.6	0.26	-1.4
Lab-070	NA		0.321	0.8	0.521	0.6	0.773	3.6
Lab-071	0.57	0.2	0.22	-0.7	0.44	-0.1	0.18	-2.2
Lab-072	0.596	0.4	0.376	1.7	0.489	0.3	ND	-3.9
Lab-073	NA		0.309	0.6	0.502	0.5	0.129	-2.7
Lab-074	NA		0.22	-0.7	1.31	5.0	NA	
Lab-075	NA		0.148	-1.8	0.332	-1.0	0.289	-1.1
Lab-076	0.59	0.4	0.2	-1.0	0.455	0.0	0.42	0.2
Lab-077	NA		0.26	-0.1	0.47	0.2	0.44	0.4
Lab-078	NA		0.27	0.1	NA		NA	
Lab-079	0.553	0.1	0.243	-0.3	0.495	0.4	0.581	1.7
Lab-080	0.51	-0.2	0.448	2.7	NA		NA	
Lab-081	NA		0.406	2.1	0.917	4.2	0.532	1.3
Lab-082	0.472	-0.5	0.272	0.1	0.409	-0.4	0.397	-0.1
Lab-083	NA		0.268	0.0	0.393	-0.5	NA	
Lab-084	NA		NA		NA		NA	
Lab-085	0.583	0.3	0.266	0.0	0.445	0.0	0.411	0.1

Pap Code	lsofenphos-methyl	z-Score (FFP RSD 25%)	* Lambda-cyhalothrin	z-Score (FFP RSD 25%)	* Metalaxyl and Metalaxyl-M	z-Score (FFP RSD 25%)	* Wethamidophos	z-Score (FFP RSD 25%)
Median (mg/kg)	0.540	z-Sc. (FFP	0.266	z-Sc. (FFP	0.450	z-Sc (FFP	0.405	z-Sc. (FFP
Lab-086	NA		0.248	-0.3	0.395	-0.5	NA	
Lab-087	0.6	0.4	0.24	-0.4	0.4	-0.4	0.55	1.4
Lab-088	NA		0.188	-1.2	NA		NA	
Lab-089	0.599	0.4	0.271	0.1	0.421	-0.3	0.0445	-3.6
Lab-090	NA		0.277	0.2	0.4	-0.4	0.482	0.8
Lab-091	0.575	0.3	0.23	-0.5	0.445	0.0	0.407	0.0
Lab-092	0.715	1.3	0.369	1.5	0.569	1.1	0.597	1.9
Lab-093	0.448	-0.7	0.262	-0.1	0.442	-0.1	0.407	0.0
Lab-094	0.353	-1.4	0.175	-1.4	0.43	-0.2	0.658	2.5
Lab-095	NA		0.205	-0.9	0.835	3.4	0.487	0.8
Lab-096	0.632	0.7	0.354	1.3	0.41	-0.4	0.437	0.3
Lab-097	0.388	-1.1	0.186	-1.2	0.33	-1.1	0.295	-1.1
Lab-098	NA		0.376	1.7	0.411	-0.3	NA	
Lab-099	NA		0.0247	-3.6	0.166	-2.5	NA	
Lab-100	NA		0.674	6.1	2.23	15.8	0.192	-2.1
Lab-101	NA		0.236	-0.5	NA		NA	
Lab-102	NA		0.27	0.1	0.5	0.4	NA	
Lab-103	NA		ND	-3.8	0.401	-0.4	NA	
Lab-104	0.235	-2.3	0.181	-1.3	0.3	-1.3	0.162	-2.4
Lab-105	NA		0.37	1.6	0.46	0.1	ND	-3.9
Lab-106	0.731	1.4	0.452	2.8	0.338	-1.0	0.309	-0.9
Lab-107	0.278	-1.9	0.238	-0.4	0.411	-0.3	0.202	-2.0
Lab-108	NA		0.272	0.1	0.404	-0.4	0.461	0.6
Lab-109	0.335	-1.5	0.234	-0.5	0.47	0.2	0.479	0.7
Lab-110	NA		0.155	-1.7	NA		0.316	-0.9
Lab-111	NA		0.34	1.1	0.38	-0.6	NA	
Lab-112	NA		0.237	-0.4	0.559	1.0	ND	-3.9
Lab-113	NA		0.22	-0.7	0.485	0.3	0.498	0.9
Lab-114	NA		0.23	-0.5	NA		0.215	-1.9
Lab-115	NA		0.329	0.9	NA		NA	
Lab-116	NA		0.249	-0.3	NA		ND	-3.9
Lab-117	NA		0.302	0.5	NA		NA	
Lab-118	NA		0.312	0.7	NA		NA	
Lab-119	0.43	-0.8	0.27	0.1	0.38	-0.6	0.4	0.0
Lab-120	0.355	-1.4	0.251	-0.2	0.4	-0.4	0.402	0.0
Lab-121	0.626	0.6	0.191	-1.1	0.47	0.2	0.614	2.1
Lab-122	NA		0.502	3.5	0.496	0.4	NA	
Lab-123	NA		0.188	-1.2	0.586	1.2	NA	
Lab-124	ND	-3.9	0.291	0.4	0.508	0.5	0.358	-0.5
Lab-125	0.582	0.3	0.338	1.1	0.493	0.4	0.388	-0.2
Lab-126	NA		0.28	0.2	NA		0.77	3.6
Lab-127	NA		NA		NA		NA	
Lab-128	NA		0.299	0.5	NA		NA	

APPENDIX 3. Results (mg/Kg) and z-scores for FFP RSD (25%).

Lab Code	Isofenphos-methyl	z-Score (FFP RSD 25%)	* Lambda-cyhalothrin	z-Score (FFP RSD 25%)	* Metalaxyl and Metalaxyl-M	z-Score (FFP RSD 25%)	* Methamidophos	z-Score (FFP RSD 25%)
MRRL	0.01	ore RSE	0.01	ore RSE	0.01	ore RSE	0.01	ore RSE
Median (mg/kg)	0.540	z-Score (FFP RSE	0.266	z-Sc (FFP	0.450	z-Sc (FFP	0.405	z-Score (FFP RSD
Lab-129	NA		NA		NA		0.506	1.0
Lab-130	NA		0.269	0.0	0.329	-1.1	0.262	-1.4
Lab-131	0.492	-0.4	0.251	-0.2	0.441	-0.1	0.447	0.4
Lab-132	NA		0.122	-2.2	NA		NA	
Lab-133	NA		0.285	0.3	0.461	0.1	0.189	-2.1
Lab-134	NA		0.223	-0.6	NA		NA	
Lab-135	0.426	-0.8	0.305	0.6	0.332	-1.0	0.489	0.8
Lab-136	0.366	-1.3	0.289	0.3	0.416	-0.3	0.282	-1.2
Lab-137	0.832	2.2	0.46	2.9	0.362	-0.8	0.316	-0.9
Lab-138	NA		NA		0.366	-0.7	0.334	-0.7
Lab-139	NA		0.227	-0.6	NA		NA	
Lab-140	0.5466	0.0	0.3904	1.9	0.44	-0.1	NA	
Lab-141	0.578	0.3	0.249	-0.3	0.485	0.3	0.754	3.5
Lab-142	NA		0.24	-0.4	NA		0.38	-0.2
Lab-143	0.578	0.3	0.24	-0.4	0.466	0.1	0.355	-0.5
Lab-144	NA		0.21	-0.8	0.25	-1.8	0.156	-2.5
Lab-145	0.367	-1.3	0.171	-1.4	0.596	1.3	0.356	-0.5
Lab-146	NA		0.261	-0.1	NA		0.458	0.5
Lab-147				No results	reported			
Lab-148	0.442	-0.7	0.187	-1.2	0.307	-1.3	0.554	1.5
Lab-149	0.571	0.2	0.315	0.7	0.423	-0.2	NA	
Lab-150	0.616	0.6	0.196	-1.1	0.445	0.0	0.341	-0.6
Lab-151	NA		0.31	0.7	0.57	1.1	NA	

Results given by the laboratories (mg/kg) and their calculated z-score value using FFP RSD 25%

Lab Code	* Methidathion	z-Score (FFP RSD 25%)	Methomyl Sum	z-Score (FFP RSD 25%)	* Monocrotophos	z-Score (FFP RSD 25%)	* Oxamyl	z-Score (FFP RSD 25%)
MRRL	0.01	ore RSD	0.01	Sre	0.01	Sze RSD	0.01	ore RSD
Median (mg/kg)	0.472	z-Score (FFP RSI	0.277	z-Scc (FFP	0.438	z-Scc (FFP	0.249	z-Scc (FFP
Lab-001	0.372	-0.8	NA		NA		NA	
Lab-002	0.521	0.4	0.326	0.7	0.364	-0.7	0.279	0.5
Lab-003	0.524	0.4	0.277	0.0	0.448	0.1	0.24	-0.1
Lab-004	0.464	-0.1	NA		0.454	0.2	0.237	-0.2
Lab-005	0.49	0.2	0.226	-0.7	0.376	-0.6	0.197	-0.8
Lab-006	0.453	-0.2	0.19	-1.3	0.322	-1.1	0.23	-0.3
Lab-007	0.61	1.2	0.292	0.2	0.418	-0.2	0.271	0.4
Lab-008				No results	reported			
Lab-009	0.582	0.9	0.279	0.0	0.196	-2.2	0.243	-0.1
Lab-010	0.249	-1.9	NA		NA		0.177	-1.2
Lab-011	0.59	1.0	0.3	0.3	0.35	-0.8	0.25	0.0
Lab-012	NA		NA		NA		0.356	1.7
Lab-013	0.55	0.7	NA		0.372	-0.6	NA	
Lab-014	0.73	2.2	NA		NA		NA	
Lab-015	0.527	0.5	0.256	-0.3	0.338	-0.9	0.258	0.2
Lab-016	0.409	-0.5	0.178	-1.4	0.306	-1.2	0.158	-1.5
Lab-017	0.437	-0.3	0.845	8.2	NA		0.292	0.7
Lab-018	0.541	0.6	0.277	0.0	0.422	-0.1	0.312	1.0
Lab-019	0.335	-1.2	0.289	0.2	0.391	-0.4	0.24	-0.1
Lab-020	0.2	-2.3	0.23	-0.7	0.17	-2.4	0.19	-0.9
Lab-021	0.225	-2.1	NA		NA		NA	
Lab-022	0.280	-1.6	NA		NA		NA	
Lab-023	0.446	-0.2	0.267	-0.1	0.516	0.7	0.238	-0.2
Lab-024	0.45	-0.2	0.3	0.3	0.52	0.8	0.3	0.8
Lab-025	0.58	0.9	NA		0.583	1.3	NA	
Lab-026	NA		0.279	0.0	0.46	0.2	0.297	0.8
Lab-027	ND	-3.9	NA		0.288	-1.4	0.139	-1.8
Lab-028	0.429	-0.4	0.295	0.3	0.458	0.2	0.272	0.4
Lab-029	0.46	-0.1	0.234	-0.6	0.381	-0.5	0.222	-0.4
Lab-030	0.432	-0.3	0.348	1.0	ND	-3.9	0.289	0.7
Lab-031	0.425	-0.4	0.279	0.0	0.416	-0.2	0.196	-0.8
Lab-032 Lab-033	0.534	0.5	0.234	-0.6	0.394	-0.4	0.229	-0.3
Lab-033	0.403	-0.6	NA 0.212	0.0	0.143	-2.7	0.263	0.2
Lab-035	0.471	0.0	0.212	-0.9	NA 0.455	0.2	NA 0.201	0.7
Lab-036	0.576	0.9	0.314	0.5	0.455 0.426	0.2	0.291	-0.9
Lab-036	0.467	0.0	0.282 0.293	0.1		-0.1	0.195	
Lab-037	0.47 0.547	0.0	0.293	0.2	0.472 0.525	0.3	0.256 0.274	0.1
Lab-039	0.547	0.6	0.324	0.7	0.605	1.5	0.274	0.4
Lab-039	0.362	-0.9	0.33	0.8	0.605	0.3	0.28	0.8
Lab-040	0.362	0.1	0.271	-0.1	0.441	0.0	0.238	-0.2
Lab-041 Lab-042	0.402	0.1	0.2/1	•	reported	0.0	1 0.230	-U.Z
Lab-042	0.68	1.8	NA	140 1630113	NA		NA	
Lab-044	0.565	0.8	0.218	-0.9	0.292	-1.3	0.155	-1.5
Lab-045	0.394	-0.7	0.216	-0.7	0.272	-0.8	0.133	-1.2
Lab-046	0.374	-1.4	0.233 NA	0.0	0.115	-0.8	NA	1.2
		1.7	1473		1 0.110	2.7	1 17 1	

NRRL 0.01	0.3 -0.2 2.0 -0.5 -0.5 -0.3
MRRL 0.01 Example 2 0.01 0.02 0.0249 0.0249 0.246 0.2 0.2267 0.245 0.245 0.220 0.245 0.220 0.245 0.220 0.245 0.221 0.246 0.221 0.245 0.241 0.245 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241	0.3 -0.2 2.2 -0.5 -0.5
Lab-047 0.51 0.3 0.313 0.5 0.494 0.5 0.267 Lab-048 0.658 1.6 0.291 0.2 0.456 0.2 0.235 Lab-049 0.491 0.2 0.22 -0.8 0.367 -0.6 0.388 Lab-050 0.304 -1.4 0.267 -0.1 0.397 -0.4 0.216 Lab-051 0.522 0.4 0.329 0.8 0.451 0.1 0.215 Lab-052 0.461 -0.1 0.3 0.3 0.505 0.6 0.27 Lab-053 0.51 0.3 NA NA NA NA Lab-054 0.602 1.1 0.338 0.9 0.481 0.4 0.224 Lab-055 0.535 0.5 NA NA NA NA Lab-056 0.455 -0.1 0.241 -0.5 0.363 -0.7 0.281	0.3 -0.2 2.2 -0.5 -0.5
Lab-047 0.51 0.3 0.313 0.5 0.494 0.5 0.267 Lab-048 0.658 1.6 0.291 0.2 0.456 0.2 0.235 Lab-049 0.491 0.2 0.22 -0.8 0.367 -0.6 0.388 Lab-050 0.304 -1.4 0.267 -0.1 0.397 -0.4 0.216 Lab-051 0.522 0.4 0.329 0.8 0.451 0.1 0.215 Lab-052 0.461 -0.1 0.3 0.3 0.505 0.6 0.27 Lab-053 0.51 0.3 NA NA NA NA Lab-054 0.602 1.1 0.338 0.9 0.481 0.4 0.224 Lab-055 0.535 0.5 NA NA NA NA Lab-056 0.455 -0.1 0.241 -0.5 0.363 -0.7 0.281	-0.2 2.2 -0.5 -0.5
Lab-048 0.658 1.6 0.291 0.2 0.456 0.2 0.235 Lab-049 0.491 0.2 0.22 -0.8 0.367 -0.6 0.388 Lab-050 0.304 -1.4 0.267 -0.1 0.397 -0.4 0.216 Lab-051 0.522 0.4 0.329 0.8 0.451 0.1 0.215 Lab-052 0.461 -0.1 0.3 0.3 0.505 0.6 0.27 Lab-053 0.51 0.3 NA NA NA NA Lab-054 0.602 1.1 0.338 0.9 0.481 0.4 0.224 Lab-055 0.535 0.5 NA NA NA NA Lab-056 0.455 -0.1 0.241 -0.5 0.363 -0.7 0.281	2.2 -0.5 -0.5
Lab-050 0.304 -1.4 0.267 -0.1 0.397 -0.4 0.216 Lab-051 0.522 0.4 0.329 0.8 0.451 0.1 0.215 Lab-052 0.461 -0.1 0.3 0.3 0.505 0.6 0.27 Lab-053 0.51 0.3 NA NA NA NA Lab-054 0.602 1.1 0.338 0.9 0.481 0.4 0.224 Lab-055 0.535 0.5 NA NA NA NA Lab-056 0.455 -0.1 0.241 -0.5 0.363 -0.7 0.281	-0.5 -0.5
Lab-051 0.522 0.4 0.329 0.8 0.451 0.1 0.215 Lab-052 0.461 -0.1 0.3 0.3 0.505 0.6 0.27 Lab-053 0.51 0.3 NA NA NA NA Lab-054 0.602 1.1 0.338 0.9 0.481 0.4 0.224 Lab-055 0.535 0.5 NA NA NA NA Lab-056 0.455 -0.1 0.241 -0.5 0.363 -0.7 0.281	-0.5
Lab-052 0.461 -0.1 0.3 0.3 0.505 0.6 0.27 Lab-053 0.51 0.3 NA NA NA NA Lab-054 0.602 1.1 0.338 0.9 0.481 0.4 0.224 Lab-055 0.535 0.5 NA NA NA NA Lab-056 0.455 -0.1 0.241 -0.5 0.363 -0.7 0.281	
Lab-053 0.51 0.3 NA NA NA NA Lab-054 0.602 1.1 0.338 0.9 0.481 0.4 0.224 Lab-055 0.535 0.5 NA NA NA Lab-056 0.455 -0.1 0.241 -0.5 0.363 -0.7 0.281	0.3
Lab-054 0.602 1.1 0.338 0.9 0.481 0.4 0.224 Lab-055 0.535 0.5 NA NA NA Lab-056 0.455 -0.1 0.241 -0.5 0.363 -0.7 0.281	
Lab-055 0.535 0.5 NA NA NA Lab-056 0.455 -0.1 0.241 -0.5 0.363 -0.7 0.281	
Lab-056 0.455 -0.1 0.241 -0.5 0.363 -0.7 0.281	-0.4
5.15	
Lab-057 0.478 0.1 0.262 -0.2 0.395 -0.4 0.226	0.5
00 00	-0.4
Lab-058 0.347 -1.1 0.276 0.0 0.392 -0.4 0.244	-0.1
Lab-059 0.5 0.2 0.275 0.0 0.407 -0.3 0.259	0.2
Lab-060 0.641 1.4 0.297 0.3 0.442 0.0 0.253	0.1
Lab-061 0.487 0.1 0.229 -0.7 0.438 0.0 0.203	-0.7
Lab-062 0.342 -1.1 0.252 -0.4 0.339 -0.9 0.201	-0.8
Lab-063 0.57 0.8 0.289 0.2 0.473 0.3 0.242	-0.1
Lab-064 0.48 0.1 0.234 -0.6 0.437 0.0 0.234	-0.2
Lab-065 0.283 -1.6 NA 0.218 -2.0 NA	
Lab-066 0.231 -2.0 0.248 -0.4 0.483 0.4 0.271	0.4
Lab-067 0.7 1.9 NA NA NA	
Lab-068 0.51 0.3 NA 0.541 0.9 0.259	0.2
Lab-069 0.836 3.1 0.269 -0.1 0.391 -0.4 0.237	-0.2
Lab-070 0.593 1.0 ND -3.9 ND -3.9 NA	
Lab-071 0.47 0.0 0.21 -1.0 0.14 -2.7 0.17	-1.3
Lab-072 0.485 0.1 NA 0.18 -2.4 NA	
Lab-073 0.312 -1.4 NA 0.507 0.6 0.253	0.1
Lab-074 0.365 -0.9 NA NA NA	
Lab-075 0.392 -0.7 0.324 0.7 0.961 4.8 0.336	1.4
Lab-076 0.5 0.2 ND -3.9 0.45 0.1 0.32	1.2
Lab-077 0.4 -0.6 0.4 1.8 0.47 0.3 NA	
Lab-078 ND -3.9 0.2 -1.1 NA 0.18	-1.1
Lab-079 0.526 0.5 0.274 0.0 0.525 0.8 0.29	0.7
Lab-080 0.674 1.7 NA NA NA NA	
Lab-081 1.19 6.1 0.486 3.0 0.523 0.8 NA	0.0
Lab-082 0.518 0.4 0.207 -1.0 0.358 -0.7 0.247	0.0
Lab-083 0.614 1.2 NA NA NA Lab-084 NA NA NA NA	
	1.2
	-1.3
	0.3
Lab-08/ 0.57 0.8 0.26 -0.2 0.57 1.2 0.27 Lab-088 0.473 0.0 NA NA NA NA	0.3
Lab-089 0.333 -1.2 ND -3.9 0.546 1.0 0.288	0.6
Lab-090 0.332 -0.3 0.282 0.1 0.43 -0.1 0.242	-0.1
Lab-070 0.432 -0.5 0.282 0.1 0.45 -0.1 0.242	0.1
Lab-092 0.56 0.7 0.264 -0.2 0.404 -0.3 0.223	-0.4
Lab-093 0.511 0.3 0.252 -0.4 0.374 -0.6 0.238	-0.4
Lab-073 0.311 0.3 0.232 -0.4 0.374 -0.6 0.238 Lab-094 0.439 -0.3 NA ND -3.9 ND	-0.2

Lab Code	* Methidathion	0.25%)	Methomyl Sum	0.25%)	* Monocrotophos	25%)	* Oxamyl	z-Score (FFP RSD 25%)
MRRL	0.01	ore RSE	0.01	ore RSE	0.01	ore RSE	0.01	ore RSE
Median (mg/kg)	0.472	z-Score (FFP RSD	0.277	z-Score (FFP RSD	0.438	z-Score (FFP RSD	0.249	z-Score (FFP RSD
Lab-095	0.4585	-0.1	NA		0.1789	-2.4	NA	
Lab-096	0.536	0.5	0.255	-0.3	0.369	-0.6	0.698	7.2
Lab-097	0.353	-1.0	0.227	-0.7	NA		0.274	0.4
Lab-098	0.476	0.0	NA		NA		NA	
Lab-099	ND	-3.9	NA		NA		NA	
Lab-100	0.371	-0.9	NA		0.573	1.2	NA	
Lab-101	0.316	-1.3	NA		NA		NA	
Lab-102	0.51	0.3	NA		NA		NA	
Lab-103	NA		NA		NA		NA	
Lab-104	0.29	-1.5	ND	-3.9	0.36	-0.7	0.275	0.4
Lab-105	0.62	1.3	ND	-3.9	ND	-3.9	NA	0.0
Lab-106	0.66	1.6	ND	-3.9	0.312	-1.1	0.198	-0.8
Lab-107	0.333	-1.2	0.237	-0.6	NA 0.550	1.1	0.218	-0.5
Lab-108 Lab-109	0.294	-1.5	ND 0.070	-3.9	0.558	1.1	0.235	-0.2
Lab-110	0.397	-0.6	0.279	0.0	0.418	-0.2	0.241	-0.1
Lab-111	0.472 NA	0.0	NA NA		NA NA		NA NA	
Lab-1112	0.446	0.2					NA NA	
Lab-113	0.446	-0.2 0.2	NA NA		NA 0.462	0.2	NA NA	
Lab-113	0.477	-1.2	NA NA		0.462 NA	0.2	NA NA	
Lab-115	NA	-1.2	NA NA		NA		NA NA	
Lab-116	0.36	-0.9	NA		NA		NA NA	
Lab-117	0.389	-0.7	NA		NA		NA	
Lab-118	0.429	-0.4	NA NA		NA		NA	
Lab-119	0.58	0.9	0.22	-0.8	0.49	0.5	0.22	-0.5
Lab-120	0.485	0.1	0.21	-1.0	0.355	-0.8	0.245	-0.1
Lab-121	0.492	0.2	0.318	0.6	0.483	0.4	0.279	0.5
Lab-122	0.425	-0.4	NA		NA		ND	-3.8
Lab-123	0.427	-0.4	NA		0.251	-1.7	NA	
Lab-124	0.438	-0.3	0.318	0.6	NA		NA	
Lab-125	0.344	-1.1	0.248	-0.4	0.467	0.3	0.266	0.3
Lab-126	0.55	0.7	NA		0.45	0.1	NA	
Lab-127	NA		NA		NA		NA	
Lab-128	0.404	-0.6	NA		NA		NA	
Lab-129	0.381	-0.8	NA		0.464	0.2	NA	
Lab-130	0.388	-0.7	NA		NA		NA	
Lab-131	0.492	0.2	0.326	0.7	0.487	0.5	0.253	0.1
Lab-132	0.49	0.2	NA 0.071	0.0	NA 0.510		NA 0.054	
Lab-133	0.459	-0.1	0.261	-0.2	0.512	0.7	0.254	0.1
Lab-134	NA 0.551	0.7	NA 0.28	0.0	NA 0.422	0.1	NA 0.24	0.1
Lab-135	0.551	0.7	0.28	0.0	0.423	-0.1	0.24	-0.1
Lab-136 Lab-137	0.426 0.542	-0.4 0.6	0.288 0.346	0.2	0.344 0.227	-0.9	0.236	-0.2
Lab-137	0.601	1.1	0.346 NA	1.0	0.227 NA	-1.9	0.285 NA	0.6
Lab-139	0.801	-0.8	NA NA		NA NA		NA NA	
Lab-140	0.5636	0.8	NA NA		NA NA		NA NA	
Lab-141	0.495	0.0	0.343	1.0	0.489	0.5	0.265	0.3
Lab-142	0.473	-1.3	NA	1.0	NA	0.0	0.265 NA	0.0

APPENDIX 3. Results (mg/Kg) and z-scores for FFP RSD (25%).

Lab Code	* Methidathion	. 25%)	Methomyl Sum	. 25%)	* Monocrotophos	. 25%)	* Oxamyl	25%)
MRRL	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD
Median (mg/kg)	0.472	z-Score (FFP RSD	0.277	z-Score (FFP RSD	0.438	z-Score (FFP RSD	0.249	z-Score (FFP RSD
Lab-143	0.561	0.8	0.226	-0.7	0.331	-1.0	0.194	-0.9
Lab-144	0.37	-0.9	0.171	-1.5	NA		1.56	21.1
Lab-145	0.293	-1.5	0.315	0.5	0.458	0.2	0.285	0.6
Lab-146	0.457	-0.1	NA		NA		NA	
Lab-147				No results	reported			
Lab-148	0.06	-3.5	0.542	3.8	0.493	0.5	0.179	-1.1
Lab-149	0.474	0.0	NA		0.465	0.3	NA	
Lab-150	0.46	-0.1	NA		NA		NA	
Lab-151	NA		NA		ND	-3.9	NA	

Results given by the laboratories (mg/kg) and their calculated z-score value using FFP RSD 25%

MRRI											
MRRL Median (mg/kg) 0.320 0.32b 0.01 9 2 2 2 0.5 0.01 9 2 2 2 0.5 0.879 7 1 2 2 0.538 0.01 9 2 2 2 0.5 0.879 7 1 2 2 0.538 0.01 9 2 2 2 0.5 0.523 0.879 7 1 2 2 0.538 0.04											
Median M		_									
MRRIL 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.5 0.523 0.5 0.523 0.5 0.523 1.13 1.1 0.721 1.4 0.402 0.8 1.13 1.1 0.721 1.4 Lab-004 0.17 -1.9 0.396 0.3 0.983 0.6 0.915 0.2 0.639 0.8 Lab-004 0.17 -1.9 0.396 0.3 0.983 1.0 0.846 0.2 0.40 0.60 0.27 0.60 0.00 0.46 0.02 0.961 0.4 0.612 0.6 0.00		ָ בֿבּ									
MRRIL 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.01 8 2 0.5 0.523 0.5 0.523 0.5 0.523 1.13 1.1 0.721 1.4 0.402 0.8 1.13 1.1 0.721 1.4 Lab-004 0.17 -1.9 0.396 0.3 0.983 0.6 0.915 0.2 0.639 0.8 Lab-004 0.17 -1.9 0.396 0.3 0.983 1.0 0.846 0.2 0.40 0.60 0.27 0.60 0.00 0.46 0.02 0.961 0.4 0.612 0.6 0.00		<u> </u>									
Median M		t				O					
Median M		Ę		d)		Š		0			
Median M	<u>o</u>	l ö		ŭ		nid .		ğ		OS	
Median M	Ö	£		sal		\ `		<u>5</u>		g	
Median M	0) B	8	<u>و</u>	8	ĕ	8	h id	8	azc	8
Lob-001	므	*	25	*	25	*	25	*	25	<u>'</u>	25
Lob-001	MRRL	0.01	S S S S S S S S S S S S S S S S S S S	0.01	ore RSD	0.01	sre RSD	0.01	sre RSD	0.01	ore RSD
Lob-001		0.320	-Scc FFP	0.368	-Scc FFP	0.780	-Scc	0.879	-Scc	0.538	SS- F
Lab-002			N .						× -		
Lab-003		1	- /					1			
Lab-004		i e				i 		i 	 		
Lab-005		1				1		1	i e	1	0.8
Lab-006 0.277 -0.5 0.383 0.2 0.75 -0.2 0.961 0.4 0.612 0.6 Lab-007 0.399 1.0 0.46 1.0 0.823 0.2 0.889 0.0 0.631 0.7 Lab-008									1		0.0
Lab-007						1		1	1		
Lab-008		1				1				1	
Lab-009		0.377	1.0	0.40	1.0				0.0	0.631	0.7
Lab-010		0.209	-1.4	U 301	0.3				0.2	0.326	-1.6
Lab-011		1				1			0.2		1.0
Lab-012									22		-0.1
Lab-013 0.332 0.2 0.24 -1.4 0.601 -0.9 NA 0.375 -1.2 Lab-014 0.59 3.4 0.4 0.3 0.73 -0.3 NA 0.91 2.8 Lab-015 0.264 -0.7 0.391 0.3 0.81 0.2 0.809 -0.3 0.611 0.5 Lab-016 0.104 -2.7 0.366 0.0 0.983 1.0 NA 0.568 0.2 Lab-018 0.352 0.4 0.418 0.5 0.911 0.7 0.973 0.4 0.681 1.1 Lab-019 0.265 -0.7 0.295 -0.8 0.557 -1.1 0.76 -0.5 0.461 -0.6 Lab-020 0.24 -1.0 0.2 -1.8 0.57 -1.1 0.76 -0.5 0.461 -0.6 Lab-021 0.232 -1.1 0.417 0.5 0.307 -2.4 NA 0.362 -1.3		1	0.0		1.0				2.2		0.1
Lab-014 0.59 3.4 0.4 0.3 0.73 -0.3 NA 0.91 2.8 Lab-015 0.264 -0.7 0.391 0.3 0.81 0.2 0.809 -0.3 0.611 0.5 Lab-016 0.104 -2.7 0.366 0.0 0.983 1.0 NA 0.568 0.2 Lab-017 0.144 -2.2 0.382 0.2 0.821 0.2 0.959 0.4 0.618 0.6 Lab-018 0.352 0.4 0.418 0.5 0.911 0.7 0.973 0.4 0.681 1.1 Lab-019 0.265 -0.7 0.295 -0.8 0.557 -1.1 0.76 -0.5 0.461 -0.6 Lab-020 0.24 -1.0 0.2 -1.8 0.57 -1.1 0.76 -0.5 0.44 0.23 -2.3 Lab-021 0.232 -1.1 0.417 0.5 0.307 -2.4 NA 0.362 <			0.2		-1.4	1		1			-1.2
Lab-015 0.264 -0.7 0.391 0.3 0.81 0.2 0.809 -0.3 0.611 0.5 Lab-016 0.104 -2.7 0.366 0.0 0.983 1.0 NA 0.568 0.2 Lab-017 0.144 -2.2 0.382 0.2 0.821 0.2 0.959 0.4 0.618 0.6 Lab-018 0.352 0.4 0.418 0.5 0.911 0.7 0.973 0.4 0.681 1.1 Lab-019 0.265 -0.7 0.295 -0.8 0.557 -1.1 0.76 -0.5 0.461 -0.6 Lab-020 0.24 -1.0 0.2 -1.8 0.57 -1.1 0.8 -0.4 0.23 -2.3 Lab-021 0.232 -1.1 0.417 0.5 0.307 -2.4 NA 0.360 -1.3 Lab-022 0.109 -2.6 0.285 -0.9 0.874 0.5 NA 0.360 -1.3								i –			
Lab-016 0.104 -2.7 0.366 0.0 0.983 1.0 NA 0.568 0.2 Lab-017 0.144 -2.2 0.382 0.2 0.821 0.2 0.959 0.4 0.618 0.6 Lab-018 0.352 0.4 0.418 0.5 0.911 0.7 0.973 0.4 0.681 1.1 Lab-019 0.265 -0.7 0.295 -0.8 0.557 -1.1 0.76 -0.5 0.461 -0.6 Lab-020 0.24 -1.0 0.2 -1.8 0.57 -1.1 0.8 -0.4 0.23 -2.3 Lab-021 0.232 -1.1 0.417 0.5 0.307 -2.4 NA 0.362 -1.3 Lab-022 0.109 -2.6 0.285 -0.9 0.874 0.5 NA 0.360 -1.3 Lab-023 0.358 0.5 0.285 -0.9 0.874 0.5 NA 0.360 -1.3	Lab-015					1		1	-0.3		
Lab-018 0.352 0.4 0.418 0.5 0.911 0.7 0.973 0.4 0.681 1.1 Lab-019 0.265 -0.7 0.295 -0.8 0.557 -1.1 0.76 -0.5 0.461 -0.6 Lab-020 0.24 -1.0 0.2 -1.8 0.57 -1.1 0.8 -0.4 0.23 -2.3 Lab-021 0.232 -1.1 0.417 0.5 0.307 -2.4 NA 0.362 -1.3 Lab-022 0.109 -2.6 0.285 -0.9 0.874 0.5 NA 0.360 -1.3 Lab-023 0.358 0.5 0.285 -0.9 0.676 -0.5 0.737 -0.6 0.45 -0.7 Lab-024 0.3 -0.3 0.25 -1.3 0.56 -1.1 1 0.6 0.38 -1.2 Lab-025 0.373 0.7 0.461 1.0 0.762 -0.1 NA 0.62 0.6 <td>Lab-016</td> <td>0.104</td> <td>-2.7</td> <td>0.366</td> <td></td> <td>0.983</td> <td>1.0</td> <td>NA</td> <td></td> <td>0.568</td> <td>0.2</td>	Lab-016	0.104	-2.7	0.366		0.983	1.0	NA		0.568	0.2
Lab-019 0.265 -0.7 0.295 -0.8 0.557 -1.1 0.76 -0.5 0.461 -0.6 Lab-020 0.24 -1.0 0.2 -1.8 0.57 -1.1 0.8 -0.4 0.23 -2.3 Lab-021 0.232 -1.1 0.417 0.5 0.307 -2.4 NA 0.362 -1.3 Lab-022 0.109 -2.6 0.285 -0.9 0.874 0.5 NA 0.360 -1.3 Lab-023 0.358 0.5 0.285 -0.9 0.676 -0.5 0.737 -0.6 0.45 -0.7 Lab-024 0.3 -0.3 0.25 -1.3 0.56 -1.1 1 0.6 0.38 -1.2 Lab-025 0.373 0.7 0.461 1.0 0.762 -0.1 NA 0.62 0.6 Lab-026 0.115 -2.6 0.622 2.8 0.968 1.0 0.971 0.4 0.802 2.0 <td>Lab-017</td> <td>0.144</td> <td>-2.2</td> <td>0.382</td> <td>0.2</td> <td>0.821</td> <td>0.2</td> <td>0.959</td> <td>0.4</td> <td>0.618</td> <td>0.6</td>	Lab-017	0.144	-2.2	0.382	0.2	0.821	0.2	0.959	0.4	0.618	0.6
Lab-020 0.24 -1.0 0.2 -1.8 0.57 -1.1 0.8 -0.4 0.23 -2.3 Lab-021 0.232 -1.1 0.417 0.5 0.307 -2.4 NA 0.362 -1.3 Lab-022 0.109 -2.6 0.285 -0.9 0.874 0.5 NA 0.360 -1.3 Lab-023 0.358 0.5 0.285 -0.9 0.676 -0.5 0.737 -0.6 0.45 -0.7 Lab-024 0.3 -0.3 0.25 -1.3 0.56 -1.1 1 0.6 0.45 -0.7 Lab-025 0.373 0.7 0.461 1.0 0.762 -0.1 NA 0.62 0.6 Lab-025 0.373 0.7 0.461 1.0 0.762 -0.1 NA 0.62 0.6 Lab-026 0.115 -2.6 0.622 2.8 0.968 1.0 0.971 0.4 0.802 2.0 Lab-	Lab-018	0.352	0.4	0.418	0.5	0.911	0.7	0.973	0.4	0.681	1.1
Lab-021 0.232 -1.1 0.417 0.5 0.307 -2.4 NA 0.362 -1.3 Lab-022 0.109 -2.6 0.285 -0.9 0.874 0.5 NA 0.360 -1.3 Lab-023 0.358 0.5 0.285 -0.9 0.676 -0.5 0.737 -0.6 0.45 -0.7 Lab-024 0.3 -0.3 0.25 -1.3 0.56 -1.1 1 0.6 0.45 -0.7 Lab-025 0.373 0.7 0.461 1.0 0.762 -0.1 NA 0.62 0.6 Lab-026 0.115 -2.6 0.622 2.8 0.968 1.0 0.971 0.4 0.802 2.0 Lab-026 0.115 -2.6 0.622 2.8 0.968 1.0 0.971 0.4 0.802 2.0 Lab-027 ND -3.9 0.212 -1.7 0.31 -2.4 0.3 -2.6 0.37 -1.2	Lab-019	0.265	-0.7	0.295	-0.8	0.557	-1.1	0.76	-0.5	0.461	-0.6
Lab-022 0.109 -2.6 0.285 -0.9 0.874 0.5 NA 0.360 -1.3 Lab-023 0.358 0.5 0.285 -0.9 0.676 -0.5 0.737 -0.6 0.45 -0.7 Lab-024 0.3 -0.3 0.25 -1.3 0.56 -1.1 1 0.6 0.38 -1.2 Lab-025 0.373 0.7 0.461 1.0 0.762 -0.1 NA 0.62 0.6 Lab-026 0.115 -2.6 0.622 2.8 0.968 1.0 0.971 0.4 0.802 2.0 Lab-027 ND -3.9 0.212 -1.7 0.31 -2.4 0.3 -2.6 0.37 -1.2 Lab-028 0.313 -0.1 0.242 -1.4 0.649 -0.7 0.914 0.2 0.358 -1.3 Lab-029 0.251 -0.9 0.371 0.0 0.51 -1.4 0.789 -0.4 0.41	Lab-020	0.24	-1.0	0.2	-1.8	0.57	-1.1	0.8	-0.4	0.23	-2.3
Lab-023 0.358 0.5 0.285 -0.9 0.676 -0.5 0.737 -0.6 0.45 -0.7 Lab-024 0.3 -0.3 0.25 -1.3 0.56 -1.1 1 0.6 0.38 -1.2 Lab-025 0.373 0.7 0.461 1.0 0.762 -0.1 NA 0.62 0.6 Lab-026 0.115 -2.6 0.622 2.8 0.968 1.0 0.971 0.4 0.802 2.0 Lab-027 ND -3.9 0.212 -1.7 0.31 -2.4 0.3 -2.6 0.37 -1.2 Lab-028 0.313 -0.1 0.242 -1.4 0.649 -0.7 0.914 0.2 0.358 -1.3 Lab-029 0.251 -0.9 0.371 0.0 0.51 -1.4 0.789 -0.4 0.41 -1.0 Lab-031 0.366 0.6 0.275 -1.0 0.749 -0.2 0.683 -0.9	Lab-021	0.232	-1.1	0.417	0.5	0.307	-2.4	NA		0.362	-1.3
Lab-024 0.3 -0.3 0.25 -1.3 0.56 -1.1 1 0.6 0.38 -1.2 Lab-025 0.373 0.7 0.461 1.0 0.762 -0.1 NA 0.62 0.6 Lab-026 0.115 -2.6 0.622 2.8 0.968 1.0 0.971 0.4 0.802 2.0 Lab-027 ND -3.9 0.212 -1.7 0.31 -2.4 0.3 -2.6 0.37 -1.2 Lab-028 0.313 -0.1 0.242 -1.4 0.649 -0.7 0.914 0.2 0.358 -1.3 Lab-029 0.251 -0.9 0.371 0.0 0.51 -1.4 0.789 -0.4 0.41 -1.0 Lab-030 0.257 -0.8 0.353 -0.2 0.692 -0.5 0.987 0.5 0.525 -0.1 Lab-031 0.366 0.6 0.275 -1.0 0.749 -0.2 0.683 -0.9		0.109	-2.6	0.285	-0.9		0.5	NA		0.360	-1.3
Lab-025 0.373 0.7 0.461 1.0 0.762 -0.1 NA 0.62 0.6 Lab-026 0.115 -2.6 0.622 2.8 0.968 1.0 0.971 0.4 0.802 2.0 Lab-027 ND -3.9 0.212 -1.7 0.31 -2.4 0.3 -2.6 0.37 -1.2 Lab-028 0.313 -0.1 0.242 -1.4 0.649 -0.7 0.914 0.2 0.358 -1.3 Lab-029 0.251 -0.9 0.371 0.0 0.51 -1.4 0.789 -0.4 0.41 -1.0 Lab-030 0.257 -0.8 0.353 -0.2 0.692 -0.5 0.987 0.5 0.525 -0.1 Lab-031 0.366 0.6 0.275 -1.0 0.749 -0.2 0.683 -0.9 0.391 -1.1 Lab-032 0.335 0.2 0.396 0.3 0.81 0.2 0.836 -0.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.737</td> <td>-0.6</td> <td>0.45</td> <td></td>								0.737	-0.6	0.45	
Lab-026 0.115 -2.6 0.622 2.8 0.968 1.0 0.971 0.4 0.802 2.0 Lab-027 ND -3.9 0.212 -1.7 0.31 -2.4 0.3 -2.6 0.37 -1.2 Lab-028 0.313 -0.1 0.242 -1.4 0.649 -0.7 0.914 0.2 0.358 -1.3 Lab-029 0.251 -0.9 0.371 0.0 0.51 -1.4 0.789 -0.4 0.41 -1.0 Lab-030 0.257 -0.8 0.353 -0.2 0.692 -0.5 0.987 0.5 0.525 -0.1 Lab-031 0.366 0.6 0.275 -1.0 0.749 -0.2 0.683 -0.9 0.391 -1.1 Lab-032 0.335 0.2 0.396 0.3 0.81 0.2 0.836 -0.2 0.646 0.8 Lab-033 0.093 -2.8 0.291 -0.8 1.06 1.4 1.91								i .	0.6		
Lab-027 ND -3.9 0.212 -1.7 0.31 -2.4 0.3 -2.6 0.37 -1.2 Lab-028 0.313 -0.1 0.242 -1.4 0.649 -0.7 0.914 0.2 0.358 -1.3 Lab-029 0.251 -0.9 0.371 0.0 0.51 -1.4 0.789 -0.4 0.41 -1.0 Lab-030 0.257 -0.8 0.353 -0.2 0.692 -0.5 0.987 0.5 0.525 -0.1 Lab-031 0.366 0.6 0.275 -1.0 0.749 -0.2 0.683 -0.9 0.391 -1.1 Lab-032 0.335 0.2 0.396 0.3 0.81 0.2 0.836 -0.2 0.646 0.8 Lab-033 0.093 -2.8 0.291 -0.8 1.06 1.4 1.91 4.7 0.711 1.3 Lab-034 NA 0.311 -0.6 0.761 -0.1 0.612 -1.2<		i e				1		1			
Lab-028 0.313 -0.1 0.242 -1.4 0.649 -0.7 0.914 0.2 0.358 -1.3 Lab-029 0.251 -0.9 0.371 0.0 0.51 -1.4 0.789 -0.4 0.41 -1.0 Lab-030 0.257 -0.8 0.353 -0.2 0.692 -0.5 0.987 0.5 0.525 -0.1 Lab-031 0.366 0.6 0.275 -1.0 0.749 -0.2 0.683 -0.9 0.391 -1.1 Lab-032 0.335 0.2 0.396 0.3 0.81 0.2 0.836 -0.2 0.646 0.8 Lab-033 0.093 -2.8 0.291 -0.8 1.06 1.4 1.91 4.7 0.711 1.3 Lab-034 NA 0.311 -0.6 0.761 -0.1 0.612 -1.2 NA Lab-035 0.341 0.3 0.406 0.4 0.961 0.9 0.893 0.1 0.65<		i						i –	i e	1	
Lab-029 0.251 -0.9 0.371 0.0 0.51 -1.4 0.789 -0.4 0.41 -1.0 Lab-030 0.257 -0.8 0.353 -0.2 0.692 -0.5 0.987 0.5 0.525 -0.1 Lab-031 0.366 0.6 0.275 -1.0 0.749 -0.2 0.683 -0.9 0.391 -1.1 Lab-032 0.335 0.2 0.396 0.3 0.81 0.2 0.836 -0.2 0.646 0.8 Lab-033 0.093 -2.8 0.291 -0.8 1.06 1.4 1.91 4.7 0.711 1.3 Lab-034 NA 0.311 -0.6 0.761 -0.1 0.612 -1.2 NA Lab-035 0.341 0.3 0.406 0.4 0.961 0.9 0.893 0.1 0.65 0.8 Lab-036 0.252 -0.9 0.427 0.6 0.788 0.0 0.894 0.1 0.591 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>						1					
Lab-030 0.257 -0.8 0.353 -0.2 0.692 -0.5 0.987 0.5 0.525 -0.1 Lab-031 0.366 0.6 0.275 -1.0 0.749 -0.2 0.683 -0.9 0.391 -1.1 Lab-032 0.335 0.2 0.396 0.3 0.81 0.2 0.836 -0.2 0.646 0.8 Lab-033 0.093 -2.8 0.291 -0.8 1.06 1.4 1.91 4.7 0.711 1.3 Lab-034 NA 0.311 -0.6 0.761 -0.1 0.612 -1.2 NA Lab-035 0.341 0.3 0.406 0.4 0.961 0.9 0.893 0.1 0.65 0.8 Lab-036 0.252 -0.9 0.427 0.6 0.788 0.0 0.894 0.1 0.591 0.4 Lab-037 0.386 0.8 0.371 0.0 0.683 -0.5 0.778 -0.5 0.567 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>i e</td> <td>1</td> <td></td>									i e	1	
Lab-031 0.366 0.6 0.275 -1.0 0.749 -0.2 0.683 -0.9 0.391 -1.1 Lab-032 0.335 0.2 0.396 0.3 0.81 0.2 0.836 -0.2 0.646 0.8 Lab-033 0.093 -2.8 0.291 -0.8 1.06 1.4 1.91 4.7 0.711 1.3 Lab-034 NA 0.311 -0.6 0.761 -0.1 0.612 -1.2 NA Lab-035 0.341 0.3 0.406 0.4 0.961 0.9 0.893 0.1 0.65 0.8 Lab-036 0.252 -0.9 0.427 0.6 0.788 0.0 0.894 0.1 0.591 0.4 Lab-037 0.386 0.8 0.371 0.0 0.683 -0.5 0.778 -0.5 0.567 0.2 Lab-038 0.364 0.6 0.34 -0.3 0.813 0.2 0.962 0.4 0.631						1		i	i e	1	
Lab-032 0.335 0.2 0.396 0.3 0.81 0.2 0.836 -0.2 0.646 0.8 Lab-033 0.093 -2.8 0.291 -0.8 1.06 1.4 1.91 4.7 0.711 1.3 Lab-034 NA 0.311 -0.6 0.761 -0.1 0.612 -1.2 NA Lab-035 0.341 0.3 0.406 0.4 0.961 0.9 0.893 0.1 0.65 0.8 Lab-036 0.252 -0.9 0.427 0.6 0.788 0.0 0.894 0.1 0.591 0.4 Lab-037 0.386 0.8 0.371 0.0 0.683 -0.5 0.778 -0.5 0.567 0.2 Lab-038 0.364 0.6 0.34 -0.3 0.813 0.2 0.962 0.4 0.631 0.7		1				1			1	1	
Lab-033 0.093 -2.8 0.291 -0.8 1.06 1.4 1.91 4.7 0.711 1.3 Lab-034 NA 0.311 -0.6 0.761 -0.1 0.612 -1.2 NA Lab-035 0.341 0.3 0.406 0.4 0.961 0.9 0.893 0.1 0.65 0.8 Lab-036 0.252 -0.9 0.427 0.6 0.788 0.0 0.894 0.1 0.591 0.4 Lab-037 0.386 0.8 0.371 0.0 0.683 -0.5 0.778 -0.5 0.567 0.2 Lab-038 0.364 0.6 0.34 -0.3 0.813 0.2 0.962 0.4 0.631 0.7						1			i e		
Lab-034 NA 0.311 -0.6 0.761 -0.1 0.612 -1.2 NA Lab-035 0.341 0.3 0.406 0.4 0.961 0.9 0.893 0.1 0.65 0.8 Lab-036 0.252 -0.9 0.427 0.6 0.788 0.0 0.894 0.1 0.591 0.4 Lab-037 0.386 0.8 0.371 0.0 0.683 -0.5 0.778 -0.5 0.567 0.2 Lab-038 0.364 0.6 0.34 -0.3 0.813 0.2 0.962 0.4 0.631 0.7								1	1	1	
Lab-035 0.341 0.3 0.406 0.4 0.961 0.9 0.893 0.1 0.65 0.8 Lab-036 0.252 -0.9 0.427 0.6 0.788 0.0 0.894 0.1 0.591 0.4 Lab-037 0.386 0.8 0.371 0.0 0.683 -0.5 0.778 -0.5 0.567 0.2 Lab-038 0.364 0.6 0.34 -0.3 0.813 0.2 0.962 0.4 0.631 0.7			-2.0					i –	1	t	1.3
Lab-036 0.252 -0.9 0.427 0.6 0.788 0.0 0.894 0.1 0.591 0.4 Lab-037 0.386 0.8 0.371 0.0 0.683 -0.5 0.778 -0.5 0.567 0.2 Lab-038 0.364 0.6 0.34 -0.3 0.813 0.2 0.962 0.4 0.631 0.7		1	U 3						i		0.8
Lab-037 0.386 0.8 0.371 0.0 0.683 -0.5 0.778 -0.5 0.567 0.2 Lab-038 0.364 0.6 0.34 -0.3 0.813 0.2 0.962 0.4 0.631 0.7		i				i		i	i		
Lab-038 0.364 0.6 0.34 -0.3 0.813 0.2 0.962 0.4 0.631 0.7		1				1		i –	i e	1	
						1		i –	1		
, EGD 007 0.307 Z.3 0.413 0.3 0.673 0.3 1.113 1.1 0.563 0.7	Lab-039	0.507	2.3	0.415	0.5	0.875	0.5	1.115	1.1	0.565	0.2

	Parathion-methyl sum									
	N									
	ļ ļ									
	me		_		Procymidone					
0	Ė		l e		j		oric		ν	
ď	ļ ģi		용		Ę		<u> </u>		કૂ	
ŭ	Ī	<u> </u>	OS		ပ်		<u>ig</u>		oz	
Lab Code	P _C	22%	* Phosalone	25%	4	22%	* Thiacloprid	22%	Triazophos	22%
MRRL	0.01	SD 2	0.01	SD 2	0.01	SD 2	0.01	SD 2	0.01	re SD 2
Median		z-Score (FFP RSD 25%)		z-Score (FFP RSD 25%)		z-Score (FFP RSD 25%)		z-Score (FFP RSD 25%)		z-Score (FFP RSD 25%)
(mg/kg)	0.320	, E	0.368	., E	0.780	, E	0.879	, E	0.538	z. (F)
Lab-040	0.18	-1.8	0.339	-0.3	0.759	-0.1	0.972	0.4	0.37	-1.2
Lab-041	0.283	-0.5	0.361	-0.1	0.735	-0.2	0.851	-0.1	0.644	0.8
Lab-042						reported	•		•	1
Lab-043	0.14	-2.3	0.38	0.1	0.71	-0.4	NA		0.63	0.7
Lab-044	0.351	0.4	0.423	0.6	0.702	-0.4	0.924	0.2	0.587	0.4
Lab-045	0.303	-0.2	0.245	-1.3	0.711	-0.4	0.692	-0.9	0.344	-1.4
Lab-046	0.0476	-3.4	0.349	-0.2	0.537	-1.2	NA		0.623	0.6
Lab-047	0.27	-0.6	0.38	0.1	0.927	0.8	1.044	0.8	0.568	0.2
Lab-048	0.324	0.1	0.362	-0.1	0.975	1.0	NA		0.676	1.0
Lab-049	0.288	-0.4	0.316	-0.6	0.83	0.3	0.781	-0.4	0.489	-0.4
Lab-050	0.235	-1.1	0.172	-2.1	0.757	-0.1	0.932	0.2	0.518	-0.1
Lab-051	0.392	0.9	0.451	0.9	0.962	0.9	0.966	0.4	0.628	0.7
Lab-052	0.353	0.4	0.411	0.5	0.795	0.1	0.861	-0.1	0.508	-0.2
Lab-053	0.12	-2.5	NA		NA		NA		NA	
Lab-054	0.364	0.6	0.62	2.7	0.814	0.2	0.82	-0.3	0.628	0.7
Lab-055	ND	-3.9	0.338	-0.3	1.04	1.3	NA		NA	
Lab-056	0.287	-0.4	0.285	-0.9	0.637	-0.7	0.648	-1.1	0.399	-1.0
Lab-057	0.362	0.5	0.38	0.1	0.786	0.0	0.751	-0.6	0.528	-0.1
Lab-058	0.225	-1.2	0.272	-1.0	0.482	-1.5	0.801	-0.4	0.383	-1.2
Lab-059	0.345	0.3	0.567	2.2	0.94	0.8	0.854	-0.1	0.852	2.3
Lab-060	0.403	1.0	0.582	2.3	ND	-3.9	0.926	0.2	0.697	1.2
Lab-061	0.27	-0.6	0.39	0.2	0.884	0.5	0.823	-0.3	0.514	-0.2
Lab-062	0.322	0.0	0.241	-1.4	0.715	-0.3	0.804	-0.3	0.368	-1.3
Lab-063	0.342	0.3	0.426	0.6	0.888	0.6	0.89	0.1	0.638	0.7
Lab-064	0.197	-1.5	0.366	0.0	0.826	0.2	0.898	0.1	0.544	0.0
Lab-065	0.048	-3.4	0.168	-2.2	0.517	-1.3	NA		0.271	-2.0
Lab-066	0.232	-1.1	0.19	-1.9	0.525	-1.3	0.65	-1.0	0.316	-1.7
Lab-067	0.16	-2.0	0.5	1.4	0.84	0.3	NA 0.001	0.4	0.6	0.5
Lab-068	0.125	-2.4	0.479	1.2	0.792	0.1	0.801	-0.4	0.616	0.6
Lab-069	0.321	0.0	0.28	-1.0	0.777	0.0	1	0.6	0.449	-0.7
Lab-070	0.125	-2.4	0.477	1.2	0.888	0.6	0.996	0.5	1.03	3.7
Lab-071	0.35	0.4	0.38	0.1	0.93	0.8	0.78	-0.5	0.59	0.4
Lab-072	0.353	0.4	0.443	0.8	0.73	-0.3	NA NA		0.626	0.7
Lab-073	0.304	-0.2	0.432	0.7	0.571	-1.1	NA NA		0.317	-1.6
Lab-074	0.121	-2.5	0.397	0.3	0.511	-1.4	NA	4.0	0.413	-0.9
Lab-075	0.103	-2.7	0.33	-0.4	0.75	-0.2	ND	-4.0	NA 0.53	0.1
Lab-076	0.194	-1.6	0.378	0.1	0.78	0.0	0.93	0.2	0.53	-0.1
Lab-077	0.61	3.6	0.27	-1.1	0.54	-1.2	NA NA		0.36	-1.3
Lab-078 Lab-079	0.35	0.4	ND 0.42	-3.9	0.86	0.4	NA 0.012	0.2	NA	0.7
Lab-079 Lab-080	0.34	0.3	0.42	0.6	0.788	0.0	0.912	0.2	0.616	0.6
Lab-080	0.647	4.1	0.288	-0.9	NA 1.42	4.2	NA NA		1.29	5.6 9.2
Lab-081	0.553	2.9	0.788	4.6 0.9	1.62	4.3	NA 0.834	0.0	1.77	
LUD-00Z	0.105	-2.7	0.455	0.7	0.819	0.2	0.836	-0.2	0.644	0.8

	_									
	Parathion-methyl sum									
	×									
	t i				4					
	Ě) and		70			
Φ	Ö) a		ğ		pri		So	
8	i		٥		γπ		응		ď	
Lab Code	arc	\ \&	* Phosalone	№	Procymidone	№	* Thiacloprid	№	Triazophos	2
ᅙ	*	259	*	259	*	259	*	259	Ĕ	259
MRRL	0.01	z-Score (FFP RSD 25%)	0.01	z-Score (FFP RSD 25%)	0.01	z-Score (FFP RSD 25%)	0.01	z-Score (FFP RSD 25%)	0.01	z-Score (FFP RSD 25%)
Median	0.000	Sco FP F	0.040	Z-Score (FFP RSD	0.700	z-Score (FFP RSD	0.070	z-Score (FFP RSD	0.500	Sco FP F
(mg/kg)	0.320	. Z	0.368	ż Ē	0.780	ż Ē	0.879	ż Ē	0.538	.ż.
Lab-083	0.151	-2.1	0.298	-0.8	0.741	-0.2	NA		0.668	1.0
Lab-084	NA		NA		0.662	-0.6	NA		NA	
Lab-085	0.256	-0.8	0.524	1.7	0.79	0.1	0.794	-0.4	0.585	0.3
Lab-086	NA		0.392	0.3	0.799	0.1	NA		0.372	-1.2
Lab-087	0.323	0.0	0.45	0.9	0.76	-0.1	0.85	-0.1	0.71	1.3
Lab-088	0.112	-2.6	0.343	-0.3	0.651	-0.7	NA		0.495	-0.3
Lab-089	0.0297	-3.6	0.178	-2.1	0.79	0.1	0.618	-1.2	0.439	-0.7
Lab-090	0.263	-0.7	0.972	6.6	0.844	0.3	0.892	0.1	0.506	-0.2
Lab-091	0.415	1.2	0.377	0.1	0.814	0.2	0.775	-0.5	0.633	0.7
Lab-092	0.47	1.9	0.744	4.1	0.934	0.8	1.12	1.1	0.888	2.6
Lab-093	0.123	-2.5	0.409	0.4	0.8	0.1	0.844	-0.2	0.642	0.8
Lab-094	0.412	1.2	0.184	-2.0	0.569	-1.1	NA 0.1	0.5	0.309	-1.7
Lab-095 Lab-096	0.308	-0.2	0.5665	2.2	1.825	5.4	0.1	-3.5	0.538	0.0
Lab-078	0.276	-0.6 -3.0	0.49 0.255	1.3	1.1 0.799	1.6 0.1	0.854	-0.1	0.663	0.9
Lab-077	0.117	-3.0 -2.5	0.255	0.5	0.799	-0.4	NA NA		0.372	1.7
Lab-099	NA	-2.5	NA	0.5	0.708 ND	-3.9	NA NA		NA	1.7
Lab-100	0.398	1.0	0.714	3.8	3.19	12.4	NA NA		0.539	0.0
Lab-101	0.259	-0.8	0.255	-1.2	0.606	-0.9	NA		0.571	0.0
Lab-102	0.15	-2.1	0.45	0.9	0.000	-0.4	NA NA		0.62	0.6
Lab-103	0.075	-3.1	0.371	0.0	0.889	0.6	NA		0.501	-0.3
Lab-104	0.055	-3.3	0.183	-2.0	0.348	-2.2	0.835	-0.2	0.272	-2.0
Lab-105	0.14	-2.3	0.57	2.2	0.71	-0.4	NA	0.2	0.71	1.3
Lab-106	0.383	0.8	0.62	2.7	0.923	0.7	0.879	0.0	0.927	2.9
Lab-107	0.07	-3.1	0.193	-1.9	0.522	-1.3	NA		0.237	-2.2
Lab-108	0.212	-1.4	0.221	-1.6	1.34	2.9	1.01	0.6	0.364	-1.3
Lab-109	0.231	-1.1	0.198	-1.8	0.677	-0.5	0.798	-0.4	0.377	-1.2
Lab-110	ND	-3.9	0.118	-2.7	NA		NA		0.724	1.4
Lab-111	NA		0.22	-1.6	NA		NA		0.56	0.2
Lab-112	NA		NA		0.773	0.0	NA		NA	
Lab-113	0.283	-0.5	0.243	-1.4	0.739	-0.2	NA		0.455	-0.6
Lab-114	0.0735	-3.1	0.279	-1.0	1.02	1.2	NA		0.286	-1.9
Lab-115	NA		NA		NA		NA		NA	
Lab-116	NA		0.3	-0.7	0.6	-0.9	NA		0.399	-1.0
Lab-117	0.091	-2.9	0.368	0.0	0.788	0.0	NA		0.458	-0.6
Lab-118	0.091	-2.9	NA		0.47	-1.6	NA		0.477	-0.5
Lab-119	0.16	-2.0	0.47	1.1	0.78	0.0	0.9	0.1	0.69	1.1
Lab-120	0.125	-2.4	ND	-3.9	0.746	-0.2	0.775	-0.5	0.475	-0.5
Lab-121	0.236	-1.1	0.442	0.8	0.826	0.2	1.17	1.3	0.494	-0.3
Lab-122	0.099	-2.8	0.314	-0.6	0.735	-0.2	NA		NA	
Lab-123	0.329	0.1	0.342	-0.3	0.669	-0.6	NA		0.549	0.1
Lab-124	0.092	-2.9	0.29	-0.8	0.932	0.8	0.992	0.5	0.461	-0.6
Lab-125	0.097	-2.8	0.364	0.0	0.878	0.5	NA		0.623	0.6

APPENDIX 3. Results (mg/Kg) and z-scores for FFP RSD (25%).

Lab Code	* Parathion-methyl sum	z-Score (FFP RSD 25%)	* Phosalone	z-Score (FFP RSD 25%)	* Procymidone	z-Score (FFP RSD 25%)	* Thiacloprid	z-Score (FFP RSD 25%)	Triazophos	z-Score (FFP RSD 25%)
MRRL	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD
Median (mg/kg)	0.320	z-Sco (FFP	0.368	z-Score (FFP RSE	0.780	z-Score (FFP RSE	0.879	z-Score (FFP RSE	0.538	z-Score (FFP RSE
Lab-126	0.07	-3.1	0.22	-1.6	1.13	1.8	NA		0.51	-0.2
Lab-127	NA		NA		NA		NA		NA	
Lab-128	NA		0.308	-0.7	NA		NA		0.389	-1.1
Lab-129	ND	-3.9	0.222	-1.6	NA		NA		0.355	-1.4
Lab-130	0.283	-0.5	NA		0.634	-0.7	NA		0.408	-1.0
Lab-131	0.288	-0.4	0.368	0.0	0.793	0.1	1.02	0.6	0.667	1.0
Lab-132	NA		0.219	-1.6	NA		NA		0.572	0.3
Lab-133	0.419	1.2	0.366	0.0	0.785	0.0	0.928	0.2	0.39	-1.1
Lab-134	NA		NA		NA		NA		NA	
Lab-135	0.128	-2.4	0.519	1.6	0.781	0.0	0.831	-0.2	0.58	0.3
Lab-136	0.234	-1.1	0.205	-1.8	0.649	-0.7	0.903	0.1	0.494	-0.3
Lab-137	0.244	-1.0	0.502	1.5	1.4	3.2	0.755	-0.6	0.754	1.6
Lab-138	0.128	-2.4	0.328	-0.4	0.688	-0.5	NA		NA	
Lab-139	0.094	-2.8	0.321	-0.5	0.607	-0.9	NA		0.429	-0.8
Lab-140	0.1213	-2.5	0.5046	1.5	0.815	0.2	NA		0.5356	0.0
Lab-141	0.346	0.3	0.359	-0.1	0.762	-0.1	0.965	0.4	0.232	-2.3
Lab-142	0.09	-2.9	0.39	0.2	0.54	-1.2	NA		0.29	-1.8
Lab-143	0.24	-1.0	0.394	0.3	0.78	0.0	0.662	-1.0	0.715	1.3
Lab-144	0.092	-2.9	0.3	-0.7	0.59	-1.0	NA		0.438	-0.7
Lab-145	0.186	-1.7	0.225	-1.6	0.651	-0.7	0.915	0.2	0.343	-1.4
Lab-146	NA		0.265	-1.1	0.627	-0.8	NA		0.398	-1.0
Lab-147					No results	reported				
Lab-148	0.198	-1.5	0.46	1.0	0.819	0.2	0.612	-1.2	0.529	-0.1
Lab-149	0.326	0.1	0.35	-0.2	0.806	0.1	NA		0.461	-0.6
Lab-150	0.32	0.0	0.311	-0.6	1	1.1	NA		0.627	0.7
Lab-151	0.15	-2.1	0.51	1.5	1	1.1	NA		0.88	2.5

z-Scores Results

z-3C	OIE	:2 L	C 2(JII2																			
Lab Code	* Aldicarb (sum)	* Azinphos-methyl	Boscalid	Buprofezin	Cadusafos	Carbofuran (sum)	* Deltamethrin	Diazinon	Isofenphos-methyl	* Lambda-Cyhalothrin	* Metalaxyl & Metalaxyl-M	* Methamidophos	* Methidathion	Methomyl (sum)	* Monocrotophos	* Oxamyl	* Parathion-methyl (sum)	* Phosalone	* Procymidone	* Thiacloprid	Triazophos	No. of Pesticides	SWZ
2	0.0	-0.4	0.7	3.1	1.8	0.7	2.3	5.0	2.6	1.7	1.3	-1.0	0.4	0.7	-0.7	0.5	1.4	1.8	8.0	1.1	1.4	21	3.4
3	0.2	0.1	0.3	0.3	0.6	0.1	0.6	0.9	0.4	8.0	0.4	0.8	0.4	0.0	0.1	-0.1	0.5	0.6	0.6	0.2	0.8	21	0.4
5	-0.8	-0.3	-1.0	0.2		-1.0	1.0	0.9	-0.2	-0.1	-0.4	-0.7	0.2	-0.7	-0.6	-0.8	-1.2	0.0	-0.2	-1.9	0.0	21	0.6
6	0.1	-0.1	-0.4	-1.2	1.3	-0.5	-0.5	-0.4	-0.3	-0.8	0.0	-0.6	-0.2	-1.3	-1.1	-0.3	-0.5	0.2	-0.2	0.4	0.6	21	0.5
7	0.0	0.8	0.5	0.7	1.3	0.1	-0.1	0.8	1.3	-0.4	0.3	0.0	1.2	0.2	-0.2	0.4	1.0	1.0	0.2	0.0	0.7	21	0.5
9	0.5	-3.9	-1.3	0.2	1.6	0.7	-0.4	0.0	-0.4	-1.1	-0.5	-0.6	0.9	0.0	-2.2	-0.1	-1.4	0.3	-0.5	0.2	-1.6	21	1.8
11	-0.8	0.9	1.1	0.2	-0.5	-2.0	0.6	0.3	0.8	1.1	1.2	0.4	1.0	0.3	-0.8	0.0	0.0	1.0	0.6	2.2	-0.1	21	1.0
15	-0.6	0.3	0.2	-0.2	-0.3	0.6	0.3	-0.5	-0.1	0.8	-0.4	0.0	0.5	-0.3	-0.9	0.2	-0.7	0.3	0.2	-0.3	0.5	21	0.4
18	-0.1	0.4	1.7	0.6	0.5	0.3	0.8	1.0	0.7	-0.3	0.8	0.6	0.6	0.0	-0.1	1.0	0.4	0.5	0.7	0.4	1.1	21	0.6
19	0.0	1.2	0.8	-1.3		-1.2	-2.8	0.3	-1.2	-1.4	1.3	0.8	-1.2	0.2	-0.4	-0.1	-0.7	-0.8	-1.1	-0.5	-0.6	21	1.2
20	-0.4	-1.0	-0.9	-1.4		-0.6	-0.9	-0.7	-1.2	-0.8	0.6	-0.8	-2.3	-0.7	-2.4	-0.9	-1.0	-1.8	-1.1	-0.4	-2.3	20	1.8
23	-0.6	-0.4	-1.3	-1.0	-0.1	-0.1	-0.3	-0.4	-1.0	-0.8	0.6	0.1	-0.2	-0.1	0.7	-0.2	0.5	-0.9	-0.5	-0.6	-0.7	21	0.5
24	0.6	1.1	-0.6	-1.5		0.5	0.1	-1.1	-0.1	-0.2	0.9	-0.5	-0.2	0.3	0.8	0.8	-0.3	-1.3	-1.1	0.6	-1.2	20	0.7
26	0.6		3.4	1.4	0.7	-0.3	1.5	0.5	1.3	0.9	1.5	0.9		0.0	0.2	0.8	-2.6	2.8	1.0	0.4	2.0	19	2.5
27	-1.2	-1.9	-1.5	-1.5	-3.1	-2.0	-1.4	0.1		-1.2		-1.5	-3.9	0.0	-1.4	-1.8	-3.9	-1.7	-2.4	-2.6	-1.2	19	4.7
28	-0.3	-1.1	-1.1	-1.0	-0.8	0.0	-0.1	_	-1.3	0.2	0.3	-0.9	-0.4	0.3	0.2	0.4	-0.1	-1.4	-0.7	0.2	-1.3	21	0.6
29	0.5	-0.4	-0.5	-0.4	-1.5	-0.2	2.4	0.1	-1.8	0.0	-0.1	-0.1	-0.1	-0.6	-0.5	-0.4	-0.9	0.0	-1.4	-0.4	-1.0	21	0.9
30	0.6	0.4	0.9	-1.0	1.0	0.8	-0.9	0.1	0.5	-0.2	0.6	0.5	-0.3	1.0	-3.9	0.7	-0.8	-0.2	-0.5	0.5	-0.1	20	1.5
31	-0.6	-1.3	-1.5	-0.5	-1.2	_	0.4	-0.8	-1.3	-0.4	-0.2	0.2	-0.4	0.0	-0.2	-0.8	0.6	-1.0	-0.2	-0.9	-1.1	21	0.7
32	-0.2	0.6	0.4	-0.2	-0.5	-0.9	0.1	0.2	1.0	0.0	0.0	0.2	0.5	-0.6	-0.4	-0.3	0.2	0.3	0.2	-0.2	0.8	21	0.4
33	0.2	-1.6	-0.5	-1.1	-1.0	-0.8	-0.6	-0.2	-0.9	-2.0	-0.6	-2.2	-0.6	0.0	-2.7	0.2	-2.8	-0.8	1.4	4.7	1.3	19	3.2
35	0.4	0.9	0.2	1.2	0.6	0.3	0.8	1.6	0.8	0.7	0.5	1.3	0.9	0.5	0.2	0.7	0.3	0.4	0.9	0.1	0.8	21	0.7
36	-0.9	0.3	0.2	0.2	-0.1	-0.2	-0.3	0.5	0.3	0.2	-0.3	0.5	0.0	0.1	-0.1	-0.9	-0.9	0.6	0.0	0.1	0.4	21	0.3
37	0.7	-0.3	-0.2	-0.7	-0.5	0.4	-0.9	0.6	-1.1	-0.3	0.0	1.8	0.0	0.1	0.3	0.1	0.8	0.0	-0.5	-0.5	0.4	21	0.5
38	1.8	0.3	0.0	0.7	0.1	0.7	0.0	0.6	0.5	-0.1	0.5	1.6	0.6	0.7	0.8	0.4	0.6	-0.3	0.2	0.4	0.7	21	0.5
39	0.4	-0.4	1.8	0.3	0.9	2.1	3.0	4.0	1.6	0.4	2.1	1.0	0.6	0.8	1.5	0.5	2.3	0.5	0.5	1 1	0.2	21	2.9
40		-1.6	-0.7	-0.2	0.7	-0.9	-0.2	0.2	-0.2	-0.4			-0.9	0.3	0.3	0.8	-1.8	-0.3	-0.1	0.4	-1.2	20	0.5
					0.3	_														_	0.8		0.4
	-2.0																						1.9
																					-1.4	21	
	0.6																					21	
	-1.8																					21	0.9
	-1.4																					21	0.8
	-0.8																					21	1.7
	-0.3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	21	1.3
	-1.0																					21	0.9
	-0.1																					21	1.2
	-2.1																					21	1.1
	-2.0		_	_	_	_		_	_			_	_	_	_	_		_	_			21	1.4
	0.2	_	_	_													1.0					_	2.6
	-0.5																					20	0.4
	-0.4																					21	0.7
	0.6		_	_	_	_		_	_			_	_	_	_	_		_	_			21	0.6
		_	_	_																		21	
	-0.4						0.0										-1.5					19	0.4
																					-1.7		0.9
68				0.5													-2.4				-0.7	19	
07	_[-0.5	-0.7	-u.0	0.0	-∪.0	0.0	U.Z	1.0	-0.5	0.0	0.0	-1.4	ا .د ا	-U, I	-0.4	-∪.∠	0.0	U.1-	0.0	0.0	-U./	21	ι.Ζ

APPENDIX 5. 'Sum of Weighted z-Scores' (WSZ) for Laboratories in Category A.

Lab Code	* Aldicarb (sum)	* Azinphos-methyl	Boscalid	Buprofezin	Cadusafos	Carbofuran (sum)	* Deltamethrin	Diazinon	Isofenphos-methyl	* Lambda-Cyhalothrin	* Metalaxyl & Metalaxyl-M	* Methamidophos	* Methidathion	Methomyl (sum)	* Monocrotophos	* Oxamyl	* Parathion-methyl (sum)	* Phosalone	* Procymidone	* Thiacloprid	Triazophos	No. of Pesticides	SWZ
71	-1.9	0.6	0.1	1.8	0.3	-0.2	-1.2	1.3	0.2	-0.7	-0.1	-2.2	0.0	-1.0	-2.7	-1.3	0.4	0.1	8.0	-0.5	0.4	21	1.3
76	0.5	1.0	-0.5	1.7	-0.3	0.4	-1.7	1.1	0.4	-1.0	0.0	0.2	0.2	-3.9	0.1	1.2	-1.6	0.1	0.0	0.2	-0.1	21	1.5
79	0.3	0.9	8.0	0.1	0.4	0.5	0.9	0.3	0.1	-0.3	0.4	1.7	0.5	0.0	8.0	0.7	0.3	0.6	0.0	0.2	0.6	21	0.5
82	-0.8	0.1	0.2	-0.1	-1.0	0.2	1.4	-0.2	-0.5	0.1	-0.4	-0.1	0.4	-1.0	-0.7	0.0	-2.7	0.9	0.2	-0.2	8.0	21	8.0
85	-0.4	-3.9	1.5	0.2	0.9	-0.8	-1.3	1.4	0.3	0.0	0.0	0.1	2.0	-0.8	0.4	-1.3	-0.8	1.7	0.1	-0.4	0.3	21	1.8
87	0.2	0.5	1.2	0.5	0.6	0.7	-0.2	0.5	0.4	-0.4	-0.4	1.4	8.0	-0.2	1.2	0.3	0.0	0.9	-0.1	-0.1	1.3	21	0.6
89	0.7	1.6	-1.1	-2.3	-0.7	-0.7	0.5	0.4	0.4	0.1	-0.3	-3.6	-1.2	-3.9	1.0	0.6	-3.6	-2.1	0.1	-1.2	-0.7	21	3.8
90	-0.1	-0.3	0.0	-0.9	-0.4	-0.9	1.0	-0.2		0.2	-0.4	0.8	-0.3	0.1	-0.1	-0.1	-0.7	5.0	0.3	0.1	-0.2	20	1.6
91	0.2	-0.1	0.1	0.1	1.3	-0.5	-0.4	0.4	0.3	-0.5	0.0	0.0	0.2	-3.9	0.0	0.1	1.2	0.1	0.2	-0.5	0.7	21	1.2
92	0.4	8.0	0.6	2.0	0.0	1.0	1.9	2.5	1.3	1.5	1.1	1.9	0.7	-0.2	-0.3	-0.4	1.9	4.1	8.0	1.1	2.6	21	2.8
93	-0.4	0.1	0.1	-0.1	-0.8	-0.5	0.4	-0.4	-0.7	-0.1	-0.1	0.0	0.3	-0.4	-0.6	-0.2	-2.5	0.4	0.1	-0.2	8.0	21	0.7
96	2.0	0.2	0.2	0.9	8.0	1.1	3.6	1.7	0.7	1.3	-0.4	0.3	0.5	-0.3	-0.6	5.0	-0.6	1.3	1.6	-0.1	0.9	21	3.0
104	0.1	3.2	-3.9	-2.1		-0.3	-0.9	-2.1	-2.3	-1.3	-1.3	-2.4	-1.5	-3.9	-0.7	0.4	-3.3	-2.0	-2.2	-0.2	-2.0	20	6.0
106	-2.8	1.4	0.7	-0.8	0.9	-0.7	1.7	1.8	1.4	2.8	-1.0	-0.9	1.6	-3.9	-1.1	-0.8	8.0	2.7	0.7	0.0	2.9	21	3.3
108	-0.3	-1.8	-0.2	-2.1		0.0	1.1	-1.2		0.1	-0.4	0.6	-1.5	-3.9	1.1	-0.2	-1.4	-1.6	2.9	0.6	-1.3	19	2.5
109	1.4	-1.3	-0.9	-1.2	-0.4	-0.4	-3.7	-0.8	-1.5	-0.5	0.2	0.7	-0.6	0.0	-0.2	-0.1	-1.1	-1.8	-0.5	-0.4	-1.2	21	1.6
119	-0.9	1.1	0.2	-0.2	-0.7	-0.5	-0.2	-0.6	-0.8	0.1	-0.6	0.0	0.9	-0.8	0.5	-0.5	-2.0	1.1	0.0	0.1	1.1	21	0.6
120	-0.7	0.0	-0.5	-0.2	-1.2	0.3	0.0	-0.7	-1.4	-0.2	-0.4	0.0	0.1	-1.0	-0.8	-0.1	-2.4	-3.9	-0.2	-0.5	-0.5	21	1.7
121	0.6	0.7	0.1	0.4	1.6	-0.9	-0.9	0.4	0.6	-1.1	0.2	2.1	0.2	0.6	0.4	0.5	-1.1	8.0	0.2	1.3	-0.3	21	0.9
125	-0.4	0.4	2.3	0.3		-0.4	0.9	0.9	0.3	1.1	0.4	-0.2	-1.1	-0.4	0.3	0.3	-2.8	0.0	0.5		0.6	19	1.2
131	1.0	0.2	0.2	0.6	0.3	0.2	-0.4	0.7	-0.4	-0.2	-0.1	0.4	0.2	0.7	0.5	0.1	-0.4	0.0	0.1	0.6	1.0	21	0.4
133	-0.2	0.0	-0.2	-1.5	-0.5	-0.6	0.2	-1.0		0.3	0.1	-2.1	-0.1	-0.2	0.7	0.1	1.2	0.0	0.0	0.2	-1.1	20	0.7
135	-0.2	0.3	-0.6	0.0	-0.7	-0.6	0.9	-0.5	-0.8	0.6	-1.0	8.0	0.7	0.0	-0.1	-0.1	-2.4	1.6	0.0	-0.2	0.3	21	8.0
136	-0.7	-0.1	0.4	-0.8	-0.9	-0.5	0.3	-0.8	-1.3	0.3	-0.3	-1.2	-0.4	0.2	-0.9	-0.2	-1.1	-1.8	-0.7	0.1	-0.3	21	0.6
137	0.0	-0.5		3.3		-1.5	5.0	-0.5	2.2	2.9	-0.8	-0.9	0.6	1.0	-1.9	0.6	-1.0	1.5	3.2	-0.6	1.6	19	4.5
141	0.7	-0.2	0.1	-0.1	0.4	0.4	0.4	0.7	0.3	-0.3	0.3	3.5	0.2	1.0	0.5	0.3	0.3	-0.1	-0.1	0.4	-2.3	21	1.5
143	-0.7	0.2	-0.1	0.4	0.3	-0.8	0.1	0.2	0.3	-0.4	0.1	-0.5	8.0	-0.7	-1.0	-0.9	-1.0	0.3	0.0	-1.0	1.3	21	0.5
145	5.0	-1.9	-1.8	-2.1		0.0	-1.9	-2.4	-1.3	-1.4	1.3	-0.5	-1.5	0.5	0.2	0.6	-1.7	-1.6	-0.7	0.2	-1.4	20	2.8
148	0.4	5.1	1.3	-0.6		2.6	-0.1	0.6	-0.7	-1.2	-1.3	1.5	-3.5	3.8	0.5	-1.1	-1.5	1.0	0.2	-1.2	-0.1	20	4.2

201702 201702 201705 201705 201704 201704 201705 201705 12 %Unsatisfactory Lab106 19092 19093 19099 19099 19099 19099 EUPT-FV-11 - Graphical Representation for Laboratories in Category A 9 Laboratories Lab26 Lab108 Lab60 9dsl 38dsl 44dsl Lab20 Lab90 Lab120 Lab52 Lab120 9 %Satisfactory 7 Laboratories lab19 Lab69 rsp58 Labii 28082 Bab29 Bab48 Bab49 Bab49 Bab49 Bab49 60 Laboratories Lab135 % Good Lab62 lab133 Lab51 Lab35 lab24 26136 18481 8481 18483 6/ 1ab18 1ab28 1ab119 Zabs, 120538 Lab47 Lab63 Lab5 Lab5 7dsJ 2dsJ 04dsl Labi43 **OFLs NRLs** 4864 Lab37 Lab37 Lab6 Lab3 Lab32 Lab15 Lab15 Lab15 14b36 3,0 5,0 0,0

APPENDIX 7. Methods used by participants for determining pesticides.

These are the explanations to fill in the tables.

PARAMETER	EXPLANATION
Pesticide	Pesticide Name
Scope of your Method	NA, ND, D
Residue Level	(mg/kg)
Reference Number	Number assigned by the laboratory
Analytical Procedure Used	Table F1
Sample Weight	(g)
Extraction Solvent/s	Table F2
Clean-up step	Table F3
Quantification Using Standards	S or M S: Standard/calibration in pure solvent M: Standard/calibration in matrix extract
Internal Standard	YES or NO
Injection Volume	(µL)
Injection Type	1None; 2Split/Splitless; 3Split; 4PTV, 5On-Column
Determination Technique	GC-ECD,GC-NPD, GC-FPD,GC-Q-MS, GC-QQQ-MS/MS,GC-ITD-MS/MS,GC-TOF/MS, HPLC-FL,HPLC-UV,HPLC-DAD,LC-MS,LC-MS/MS, LC-TOF/MS,
Confirmation Method	Give the confirmation technique used if any. e.g. GC-ECD,GC-NPD, GC-FPD,GC-Q-MS, GC-QQQ-MS/MS,GC-ITD-MS/MS,GC-TOF/MS, HPLC-FL,HPLC-UV,HPLC-DAD,LC-MS,LC-MS/MS, LC-TOF/MS
RL	(mg/Kg) RL: Reporting Level must be given for all pesticides. For pesticides with metabolites/degradation products, give it for the full residue definition of the pesticide as well as for individual compounds when required.
Was your result adjusted for recovery?	YES or NO In general, results are not adjusted for recovery, when the mean recovery is in the range 70-110%. If your results have been adjusted for recovery, then please report the Recovery Factor that you used Reference: METHOD VALIDATION AND QUALITY CONTROL PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED Document No. SANCO/2007/3131
Recovery	%
Recovery	Write "1" if recoveries reported originated from experiments performed at the same time as the test and write "2" if recoveries reported have been originated from validation data

APPENDIX 7. Methods used by participants for determining pesticides.

Table F1.- Reference Methods

Number	Reference
1	§ 64 LFGB Nr. L 00.00-34 (DFG-Method) S 19, former § 35 LMBG Nr. L 00.00-34
2	Analytical Methods for Pesticide Residues in Foodstuffs. Ministry of Welfare, health and cultural affairs, Netherlands, Multiresidue Method 1, 3.1.2, 6th Ed, 1996
3	Fillion et al. Journal of AOAC International 78-5-1995
4	Specht W, Pelz S, Gilsbach W. Fresenius J Anal Chem. (1995) 353: 183 - 190
5	Gilvydis Dm Walters SM (1990) JAOA Chem. 73
6	Janson et al. Journal of Chromatography A 1023 (2004,9, 93-104
7	Klein, J., Alder, L. JAOAC 86, 1015 (2003); prEN 15637, ChemElut-method
8	Leothay, S. Et al. JAOAC 88 (2005)
9	LUKE, M.A., FROBERG, J.E., DOOSE, G.M., MASUMOTO, H.T. (1981); J. Assoc. Off. Anal. Chem. 64(5); 1187-1195
10	M. Anastassiades et al JAOAC 86 (2003) original QuEChERS-method
11	prEN 15662, citrate-buffered QuEChERS-method
12	Official Method of Analysis (1990) 15th Ed., 985.22 AOAC Arlington VA
13	Internal Method (specify the reference) OBLIGATORY

Table F2.- Extraction Solvents

Number	Denoted as
1	ethyl acetate
2	acetone followed by cyclohexane and ethyl acetate
3	acetone followed by dichloromethane
4	acetone followed by dichloromethane and petroleum ether
5	acetonitrile
6	methanol
7	dichloromethane
8	other (specify which)

Table F3.- Clean Up Steps

Clean Up Ste	ps								
GPC	Gel permeation chromatography								
SPE Solid phase extraction									
DSPE Dispersive Solid Phase Extraction									
LL	Liquid-liquid partition								
NO	No clean-up								
О	Other								

This year the laboratories were asked to define firstly their analytical methods. When reporting the pesticides sought for they were asked to refered to which method they had used. The first table describes the methods used by the laboratories. Then the second table describes specific information for each one of the pesticides sought for.

	Determination Confirmation (%) Technique Method (%) Technique Method (%) Technique (%)	ECD + NPD GC-Q-MS 2 PN-EN 12393-1,2,3:2000	HPLC-UV HPLC-UV 2 PN-EN 14333-3:2005	GC-ECD GC-Q-MS 1 1	GC-NPD/FPD GC-Q-MS 1	LC-MS/MS 2 10	GC-QQQ-MS/MS GC-QQQ-MS/MS 2	GC-Q-MS NO 1	LC-MS/MS NO 1	LC-MS/MS 1 11	GC-Q-MS 1 11	GC-Q-MS LC-MS/MS 1 9	LC-MS/MS NO 1	LC-MS/MS 1 11 11	LC-MS/MS 1 11	GC-ITD-MS/MS GC-Q-MS 1 9	GC-ECD GC-ECD 1 9
Method Descriptions	Inyection Volume Type (µl)	01	20 5	1 2	1 2	1	1	1 2	5	50 2		2 3	5	10 5	10 5	2 2	2
Method	Internal Standard			ON N	<u>0</u>	O Z	O Z	АД	ТРР	O Z	<u>0</u>	O Z	<u>0</u>	O _N	<u>0</u>	<u>0</u>	Ç
	Quantification Using Standards	v	S	Σ	Σ	Σ	Σ	×	Σ	×	Σ	≥	Σ	Σ	Σ	Σ	Σ
	Clean Up Steps	gel permeation chromatography + spe	717	GPC	GPC	DSPE	GPC	DSPE	O _Z	DSPE	DSPE	GPC	DSPE	DSPE	O _Z	Q Z	S
	Extraction Solvent/s	e]	2	2	3	2	5	5	5	5	4	5	5	_	4	4
	Sample Weight (g)	100	75	90	50	01	50	10	01	10	01	15	01	10	01	15	15
	Method	-	2	-	2	ю	4	1	2	-	2	1	2	-	2	ю	4
	Lab	100			5	700		S	3	400		- 500		98			

APPENDIX 7. Methods used by participants for determining pesticides.

Final Report- European Commission Proficiency Test FV-11, 2009

APPENDIX 7. Methods used by participants for determining pesticides.

	Analitycal Procedure	11	11	11				11		1	11	11	Ε	11	11	11	-	1	11
	(1:YE5 or 2:NO)	2	2	2	7	7	2	2	2	2	_	_	-	7	-	-	-	7	2
	Confirmation	GC-Q-MS	GC-Q-MS	GC-ECD	GC-FPD	LC-MS/MS	O _N	GC-QQQ-MS/MS	GC-QQQ-MS/MS	GC-QQQ-MS/MS	O _N	GC-FPD	GC-ECD	O _N	GC-QQQ-MS/MS	GC-QQQ-MS/MS	LC-MS/MS	GC-ECD	O
	Defermination Technique	GC-NPD	GC-ECD	GC-QQQ-MS/MS	GC-QQQ-MS/MS	GC-QQQ-MS/MS	LC-MS/MS	LC-MS/MS	GC-ECD	GC-FPD	LC-MS/MS	GC-QQQ-MS/MS	GC-QQQ-MS/MS	GC-QQQ-MS/MS	LC-MS/MS	GC-FPD	GC-QQQ-MS/MS	GC-ECD	GC-PD
otions	Inyection Type	2	2	4	4	4	ς	ς	т	т	ς	4	4	4	Ŋ	т	4	ю	ო
Descrip	Inyection Volume (µl)	3	3	3	3	က	20	20		-	20	3	3	8	20	-	3		1
Method Descriptions	Internal Standard	TPP	ETION	ТРР	TPP	ШР	TPP	TPP	PCB 209	TPP	TPP	TPP	ТРР	ТРР	ТРР	ТРР	ТРР	PCB 209	ТРР
	Quanification Using Standards	S	S	Σ	Σ	Σ	Σ	Σ	Σ	Σ	S	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ
	Clean Up Steps	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE
	Extraction Solvent/s	5	5	5	5	ις	5	5	2	5	5	5	5	ιΩ	ιΩ	ιΩ	5	5	5
	gamble (g)	10	10	01	01	01	01	01	01	01	01	01	01	01	01	01	0	01	10
	Method	-	2	1	2	က	4	5	9	7	80	6	01	=	12	13	4	15	16
	qp	5	4						1		<u>.</u>	200							

APPENDIX 7. Methods used by participants for determining pesticides.

APPENDIX 7. Methods used by participants for determining pesticides.

APPENDIX 7. Methods used by participants for determining pesticides.

						Method	Method Descriptions	otions				
Lab	Method	Sample Veight (g)	Extraction Solvent/s	Clean Up Steps	Quantification Using Standards	Internal Standard	Inyection Volume (µl)	Inyection Type	Determination Technique	Confrmation	Recovery (1:YES or 2:NO)	Analitycal Procedure
	ı	10	-	SPE	Σ	Yes	2	2	GC-TOF/MS	GC-TOF/MS	_	8038
031	2	01		SPE		Yes	20	5	LC-MS/MS	LC-MS/MS	-	8055
	8	10	5	ON	Σ	Yes	20	5	LC-MS/MS	LC-MS/MS	-	10
ç	_	15	9	DSPE	Σ	Yes	10	52	LC-MS/MS	LC-MS/MS	-	Ξ
789	2	15	9	DSPE	Σ	Yes	0.8	-	GC-Q-MS	GC-Q-MS	-	Ξ
Š	ı	15	ı	ON	Σ	O N	10	4	GC-ITD-MS/MS	GC-ITD-MS/MS	2	PNT-ANA-02
255	2	15	5	DSPE	Σ	O Z	10	3	LC-MS/MS	LC-MS/MS	-	PNT-ANA-04
5	2	15	7	GPC	S	Etion	2	2	SW-D-J9	GC-Q-MS	-	ISTISAN 97/23, 1997, 18-20
450	-	01	5	DSPE	S	441	S	2	LC-MS/MS	LC-MS/MS	-	11
	ı	10	5	DSPE	Σ	Yes	3	3	SW/SW-DDD-DD	ON	-	11
035	2	01	Ŋ	O Z	Σ	Yes	ო	2	LC-MS/MS	LC-TOF/MS	-	
	е	01	5	DSPE	٤	Yes	м	ю	GC-Q-MS	O _Z	-	-11
è	2	5	5	ON	×	οN	10	l	TC-WS/WS	LC-MS/MS	-	11
89	-	01	5	SPE	Σ	alpha-HCH-d6	10	4	GC-Q-MS	GC-Q-MS	-	Joumal of Chromatography A, 1190 (2008) 316-326
001	ı	01	5	DSPE	×	οN	2	2	SW-D-D5	ON	-	PRES/069
3	2	10	5	DSPE	V	ON	10	5	LC-MS/MS	ON	1	PRES/069
	ı	90	2	GPC	×	οN	l	2	GC-ECD	GC-Q-MS	-	-
	2	50	2	GPC	Σ	o Z	-	ιΩ	GC-NPD	GC-Q-MS	-	_
038	т	20	2	GPC	٤	O Z	-	2	GC-Q-MS	GC-Q-MS	-	
	4	25	9	11	Σ	O Z	10	5	LC-MS/MS	LC-MS/MS	ı	7

APPENDIX 7. Methods used by participants for determining pesticides.

						Method	Method Descriptions	ofions				
Lab	Method	Sample Weight (g)	Extraction Solvent/s	Clean Up Steps	Quantification Using Standards	Internal Standard	Inyection Volume (µl)	Inyection Type	Defermination Technique	Confirmation	(1:YES or 2:NO)	Anailycal Procedure
Ö	ı	10	5	DSPE	Σ	Desmetryn	5	4	GC-QQQ-MS/MS	GC-QQQ-MS/MS	-	Ξ
039	2	10	5	DSPE	Σ	Desmetryn	1	1	LC-MS/MS	LC-MS/MS	1	11
S	2	10	acetone	SPE	Σ	Yes	-	2	SW-O-O9	SW/SW-DDD-DD	-	-
5	-	20	9	SPE	Σ	0 Z	25	ις	LC-MS/MS	ON	-	7
	ı	10	5	11	Σ	O X	٦	2	LC-MS/MS	GC-Q-MS	2	01
5	2	10	5		Σ	0 Z	-	3	LC-MS/MS	9	2	10
3	က	10	Ŋ	=	Σ	O Z	_	2	GC-Q-MS	9	2	01
	4	10	Ŋ	1	Σ	0 Z	-	2	GC-Q-MS	GC-ECD	2	10
043	2	10	7	GPC	S	ON	ı	2	GC-NPD	GC-Q-MS	2	Modified Method from ISS publication (2003)
	5	15	acetone/ petroleum ether/ dichloromethane	GPC	S	Yes	01	4	rc-ms/ms	rc-ws/ws	1	2
	-	50	-	Oz	ν	O Z	-	ιΩ	GC-PD	GC-Q-MS	-	NF EN 12393 method P
044	2	50	-	Oz	ν	O Z	-	7	GC-NPD	GC-Q-MS	-	NF EN 12393 method P
	ю	50	-	SPE	S	O Z	-	ю	GC-ECD	GC-Q-MS	-	NF EN 12393 method P
	4	50	-	O _Z	v	Yes	-	2	GC-Q-MS	O _N	-	NF EN 12393 method P
7	2	10	-	GPC	Σ	Yes	1.5	3	GC-QQQ-MS/MS	GC-QQQ-MS/MS	-	CHEM-014
3	-	10	1	ON	Σ	Yes	က	5	UPLC-MS/MS	UPLC-MS/MS	-	CHEM-054
046	-	80.85	9	SPE	S	Yes 500µg/I	-	2	GC-Q-MS	GC-Q-MS	1	EN ISO 14181: Animal feeding stuffs. EN 12393: Non fatty foods.

APPENDIX 7. Methods used by participants for determining pesticides.

	Analitycal Procedure	11	וו	2	2	10	11	11	11	11	11	11	8	80	ı			7	ı		7
	Recovery (1:YES or 2:NO)	-	-	-	-	-	1	-	-	-	-	-	2	7	-	-	-	-	-	-	-
	Confirmation Method	LC-MS/MS	GC-Q-MS	LC-MS/MS	GC-ECD	LC-MS/MS	GC-Q-MS	GC-Q-MS	GC-ITD-MS/MS	GC-ITD-MS/MS	LC-MS/MS	HPLC-DAD	GC-Q-MS	LC-MS/MS	GC-ITD-MS/MS	GC-ITD-MS/MS	GC-ITD-MS/MS	LC-MS/MS	GC-QQQ-MS/MS	GC-QQQ-MS/MS	LC-MS/MS
	Determination Technique	LC-MS/MS	GC-TOF/MS	GC-NPD	GC-ECD	LC-MS/MS	GC-ECD	GC-NPD	GC-PD	GC-ITD-MS/MS	LC-MS/MS	HPLC-DAD	GC-Q-MS	LC-MS/MS	GC-NPD	GC-NPD	GC-ECD	LC-MS/MS	GC-NPD	GC-ECD	LC-MS/MS
otions	Inyection Type	l	3	2	2	5	2	5	5	5	-	-	4	5	l	-	-	5	2	2	2
Method Descriptions	Inyection Volume (µl)	4	3	5	2	01	-	-	-	Ŋ	01	20	5.7	ю	l	-	-	20	l	-	20
Method	Internal Standard	Yes	Yes	O N	O Z	<u>0</u>	O _N	0 Z	0 Z	Yes	0 Z	0 Z	diethatylethyl	diethatylethyl	ON	0 Z	0 Z	0 Z	ON.	0 Z	No
	Quantification Using Standards	٤	×	Σ	Σ	٤	Σ	Σ	Σ	Σ	S	Σ	×	Σ	×	Σ	Σ	Σ	×	Σ	X
	Clean Up Steps	DSPE	DSPE	11	Ⅎ	QUECHERS	DSPE	DSPE	DSPE	DSPE	OZ	DSPE	DSPE	DSPE	GPC	GPC	GPC	1	GPC	GPC	1
	Extraction Solvent/s	5	5	-	toluol	S	S	2	2	Ŋ	5	2	5	S	2	() () () () () () () () () () () () () (7	9	1	-	9
	Meight (g) Sample	10	10	25	25	01	10	10	10	10	10	10	15	15	50	50	50	5,0	75	75	10
	Mumber	-	2	2	-	ю	-	2		4	5	9	ı	2	-	2	ю	4	-	2	က
	qp	5	- 04/	'	048			ı	Ç	<u>,</u>	ı	ı	C	3		i c	5	1		052	

APPENDIX 7. Methods used by participants for determining pesticides.

	Analitycal Procedure	11		10	10		7	10	7			10	10	10	10	2	2	2	п	ιι
	(1:YES or 2:NO)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Confirmation Method	GC-Q-MS	GC-Q-MS	GC-Q-MS	SW/SW-DT	GC-Q-MS	LC-MS/MS	GC-Q-MS	ON	LC-MS/MS	LC-MS/MS	TC-MS/MS	GC-Q-MS	ON	ON	LC-MS/MS, GC-MS/ITD	LC-MS/MS, GC-MS/ITD	LC-MS/MS	SW/SW-DT	GC-Q-MS
	Defermination Technique	GC-FPD	GC-ECD	HPLC-DAD	LC-MS/MS	GC-ECD	LC-MS/MS	GC-Q-MS	LC-MS/MS	GC-ECD	GC-NPD	GC-Q-MS	LC-MS/MS	GC-Q-MS	LC-MS/MS	GC-FPD, ECD,ITD-MS	GC-ECD,LC-MS/MS	LC-MS/MS	LC-MS/MS	GC-ECD/NPD
otions	Inyection Type	ю	m	5	2	2	-	2	2	-	-	8	2	е	7	2	7	Ŋ	5	2
Method Descriptions	Inyection Volume (µl)	-	-	8	01	-	01	ı	10	-	-	5	55	S	55	1-2	2-5	ß	4	7
Method	Internal Standard	Yes	Yes	<u>0</u>	200	50µg/kg	500ng/mL	Ditalimphos	o Z	tr-HCEO	ПРР	O N	9	9 2	O Z	ON N	o Z	o Z	ON N	O Z
	Quantification Using Standards	Σ	Σ	S	W	Σ	Σ	×	×	S	S	×	Σ	Σ	Σ	×	Σ	Σ	×	Σ
	Clean Up Steps	DSPE	DSPE	DSPE	DSPE	GPC	SPE	DSPE	'n	GPC	GPC	DSPE	Q Z	DSPE	O _Z	OPO	OZ	O _Z	ON	DSPE
	Extraction Solvent/s	5	2	5	5	2	9	5	9	2	2	5	5	5	5	ı	-	ſ	5	S
	Sample Sample	15	15	15	01	50	10	10	10	100	100	10	10	10	10.0	95	50	50	01	10
	Method	-	2	က	-	2	ю	-	ı	2	е	-	2	е	4	J	7	က	ı	2
	- GB		053			054		055		950	1		1)	ı		058		C L	, SS

APPENDIX 7. Methods used by participants for determining pesticides.

	Analitycal Procedure	11	11	11	11	11	11	11	1	-	11	11	-	1.1	111	ı	-	9	9	8	ω
	Analii																				
	Recovery (1:YES or 2:NO)	-	-	-	-	-	2	5	-	-	1	2	7	2	2	1	-	1	2	-	-
	Confirmation	LC-MS/MS	GC-Q-MS	GC-Q-MS	GGN-DD	O _Z	GC-NPD	O _Z	GC-Q-MS	GC-Q-MS	ON	ON	GC-Q-MS	GC-Q-MS	GC-Q-MS	LC-MS/MS	GC-Q-MS	GC-Q-MS	LC-MS/MS	GC-QQQ-MS/MS	LC-MS/MS
	Defermination Technique	LC-MS/MS	GC-Q-MS	GC-Q-MS	GC-Q-MS	LC-MS/MS	GC-Q-MS	LC-MS/MS	GC-Q-MS	GC-Q-MS	LC-MS/MS	LC-MS/MS	LC-MS/MS	GC-Q-MS	GC-PD	LC-MS/MS	GC-Q-MS	GC-Q-MS	LC-MS/MS	GC-QQQ-MS/MS	LC-MS/MS
otions	Inyection Type	-	т	ю	3	S	е	5	8	т	5	5	r,	e	3	5	2	2	-	3	-
Descrip	Inyection Volume (µl)	∞	ო	ю	2	01	7	01	3	10	5	10	10	2	2	10	-	2	10	5	20
Method Descriptions	Internal Standard	TRIS	TRIS	TPM	ТРР, ТВР	TPP, Dimethoat D6	ТРР, ТВР	TPP, Dimethoat D6	O _N	O Z	No	Linuron-D6	Linuron-D6	Triphenylmethane	Tris- (1,3-dichlorisopropyl)- phosphate	ON	0 Z	ON	O Z	ON	O Z
	Quantification Using Standards	٤	٤	Σ	Σ	Σ	Σ	Σ	Σ	Σ	M	×	Σ	Σ	W	×	Σ	V	Σ	×	٤
	Clean Up Steps	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE	GPC	O Z	ON	DSPE	DSPE	DSPE	DSPE	GPC	GPC	GPC	GPC	DSPE	OZ
	Extraction Solvent/s	5	S	5	5	S	5	5	2	5	5	5	5	5	5	4	4	ı	-	ı	-
	Sample Weight (g)	01	01	01	01	01	01	01	90	01	10	10	01	10	10	20	20	20	20	15	15
	Method	-	2	т	1	2	ю	4	-	2	3	1	2	က	4	1	2	1	2	1	2
	Lab		090	-		5	5			062				063		770	490	3/6	8	770	200

APPENDIX 7. Methods used by participants for determining pesticides.

						Methoc	Method Descriptions	otions				
Lab	Method	Sample Weight (g)	Extraction Solvent/s	Clean Up Sleps	Quantification Using Standards	Internal Standard	Inyection Volume (µl)	Inyection Type	Determination Technique	Confirmation	(1:YES or 2:NO)	Analitycal Procedure
	-	5	Dichloromethane/ acetone	MSPD (silica gel/alumina)	S	O Z	-	2	GC-NPD	GC-ECD	-	MSPD-GC
270	2	5	hexane/ diethyl ether	MSPD (silica gel/alumina)	S	O Z	-	2	GC-ECD	GC-ECD	-	MSPD-GC
8	т	5	Dichloromethane/ acetone	MSPD (silica gel/alumina)	S	o Z	-	7	GC-ECD	GC-ECD	-	MSPD-GC
	4	10	methanol/HCI	dichloromethane	S	ON	10	5	HPLC-DAD	HPLC-DAD	-	HPLC-DAD
	1	10	5	DSPE	×	Yes	5	3	GC-QQQ-MS/MS	GC-QQQ-MS/MS	-	www.quechers.com
890	7	10	5	DSPE	Σ	Yes	5	2	LC-MS/MS	LC-MS/MS	-	www.quechers.com
	ю	20	r	GPC	Σ	ON.	4	2	GC-ECD-NPD	GC-QQQ-MS/MS	-	PN-EN 12393-1-2-3
ò	2	75	-	O _Z	Σ	O N	5	1	LC-MS/MS	LC-MS/MS	-	T. Pihiström Anal Bioanal Chem (2007) 389: 1773-1789
000	-	75	1	ON	M	ON	2	1	GC-QQQ-MS/MS	GC-QQQ-MS/MS	1	T. Pihlström et al. Anal Bioanal Chem (2007) 389:1773-1789
	2	5	5	dispersive silica gel	×	ON	20	5	HPLC-DAD	UV-VIS spectra data base	-	Internal method (based on Fillion et al. JAOAC 78-5-1995
070	1	1	5	OZ	×	ON	50	2	Automatic TDS sampler GC-Q-MS	Mass spectra database	-	internal method (based on Fillion et al. JAOAC 78-5-1995
120	1	10	5	SPE	×	ЧЧ	3	3	GC-Q-MS	GC-Q-MS	1	11
- ò	2	10	æ	SPE	Σ	ПРР	10	-	LC-MS/MS	LC-MS/MS	2	=
072	-	25	acetate d'ethyl/ cyclohexane/ acetona (50/40/10)	O _N	S	0.1 mg/kg	ı	ις	GC-ion trap	GC-ion Trap	-	EN 12393 1,2,3
	2	10	4	SPE	S	o Z	100	5	HPLC-UV	HPLC-UV	-	En 14333-1
073	-	15	7	GPC	S	o Z	4	2	CG-NPD /	GC-Q-MS	2	ISTISAN 97/23
5	2	15	7	GPC	S	ON	100	2	HPLC-DAD	HPLC-DAD	2	ISTISAN 97/23
07.4	-	5	б	SPE	Σ	O Z	-	2	GC-ECD	GC-Q-MS	2	Kadenczki Et. al. JAOAC 75(1992)
) 1	2	5	ъ	SPE	×	ON.	ı	2	GC-NPD	GC-Q-MS	2	Kadenczki Et.al. JAOAC 75(1992)

APPENDIX 7. Methods used by participants for determining pesticides.

						Method	Method Descriptions	otions				
Гар	Method	Sample Weight (g)	Extraction Solvent/s	Clean Up Steps	Quantification Using Standards	Internal Standard	Inyection Volume (µl)	Inyection Type	Determination Technique	Confirmation Method	(1:YES or 2:NO)	Analitycal Procedure
	1	20	ı	11	S	ON	20	-	HPLC-DAD	HPLC-DAD	2	Publication
	2	20	7	GPC	ς 	O Z	8	-	HPLC-FL	HPLC-FL	2	Publication
075	ю	50	Acetone followed by methanol	SPE	S	1.008 mg/Kg	ю	т	GC-Q-MS	GC-Q-MS	2	Publication
	4	50	Acetone followed by methanol	SPE	S	1.008 mg/Kg	ю	т	GC-ITD-MS	GC-ITD-MS	2	Pubblication
	5	20	7	GPC	S	O Z	25	-	LC-MS/MS	LC-MS/MS	2	Pubblication
720	-	10	ß	ON	Σ	ТРР	٦	ε	GC-Q-MS	GC-Q-MS	-	11
° /	2	01	ις	QUECHERS	Σ	O Z	-	-	LC-MS/MS	LC-MS/MS	-	11
077	1	10	1	DSPE	S	No	ı	2	GC-Q-MS	GC-Q-MS	2	1
	ı	10	5	ON	S	PCB 52	-	3	GC-ECD	GC-ITD-MS/MS	1	11
020	7	25	acetone	Ⅎ	S	O Z	01	ιΩ	HPLC-UV	HPLC-FL	2	Wyd. Metod. PZH, Warsaw 2002 (in Polish)
0	ю	15	4	SPE	S	3,4,5-trimethacarb	100	ιΩ	HPLC-FL	Q	2	EN 14185-1:2003
	4	10	5	ON	S	PCB 52	1	3	GC-ITD-MS/MS	GC-ITD-MS/MS	2	11
	1	10	5	DSPE	Σ	O Z	10	5	IC-MS/MS	ON	2	
	2	01	r)	DSPE	Σ	O Z	0	Ŋ	LC-MS/MS	GC-NPD	2	
620	ю	50	9	GPC	Σ	0,5µg/mL	-	2	GC-ECD	GC-Q-MS	2	_
	4	50	9	GPC	Σ	0,5µg/mL	-	7	GC-NPD	GC-ECD	2	_
	5	50	9	GPC	×	0,5µg/mL	1	2	GC-ECD	ON	2	1
Cac	-	10	57	SPE	Σ	Yes	-	7	GC-QQQ-MS/MS	GC-QQQ-MS/MS	-	01
3	2	10	5	TI	M	Yes	1	2	LC-MS/MS	LC-MS/MS	1	10
180	-	15	4	O _Z	Σ	HCB	-	2	GC-ITD/MS	GC-TOF/MS	-	2
3	7	7.5	4	ON	Σ	No	8	5	LC-MS/MS	ON.	-	2

APPENDIX 7. Methods used by participants for determining pesticides.

	Analitycal Procedure	01	01	01	10	וו	EN12393-Method-P	11	=	01	2	7	8	2	anyone	9	7	6	-	2
	(J:XE2 or S:NO)	ı	-	-	-	1	ı	ı	-	-	2	7	-	1	-	-	-	ı	-	-
	Confirmation Method	GC-ITD-MS/MS	HPLC-DAD	GC-ITD-MS/MS	ON	GC-Q-MS	GC-ECD	GC-Q-MS	LC-MS/MS	ON	SW-D-DD	LC-MS/MS	GC-ECD, NPD DIFFERENT COLUMNS	GC-ECD, NPD DIFFERENT COLUMNS	GC-ITD/MS	LC-MS/MS	LC-MS/MS	GC-ITD-MS/MS	LC-MS/MS	GC-ITD-MS/MS
	Defermination Technique	GC-FPD	HPLC-UV	GC-ECD	GC-ITD-MS/MS	GC-Q-MS	GC-ECD	GC-Q-MS	LC-MS/MS	GC-MS	GC-TOF/MS	LC-MS/MS	GC-NPD	GC-ECD	GC-ITD/MS	LC-MS/MS	LC-MS/MS	GC-ECD	LC-MS/MS	GC-PD
otions	Inyection Type	ε	ſΩ	т	3	2	2	ю	3	2	2	ςς	3	2	2		ı	2	-	2
Method Descriptions	Inyection Volume (µl)	2	01	2	2	1	ι	20	5	2	5	20	-	_	-	10	10	ı	20	2
Methoc	Internal Standard	0 N	O Z	O Z	No	ТРР	O Z	ПРР	o Z	Yes	ЧdП	ПРР	O _Z	OZ	O Z	8	No	ON.	9 2	ΟN
	Quaniffication Using Standards	٤	S	٤	Σ	×	S	Σ	S	Σ	Σ	Σ	Σ	×	S	S	S	S	٤	S
	Clean Up Steps	AI2O3	AI2O3	AI2O3	AI2O3	DSPE	GPC	DSPE	DSPE	DSPE	ChemElut (Diatomeen-Erde)	ChemElut (Diatomeen-Erde)	O Z	ON	=	=	11	ON	ON	ON
	Exfraction Solvent/s	5	Ŋ	ß	5	5	ı	5	κ	5	9	9	4	4	hexane	9	ı	4	4	-
	Sample (g)	15	15	15	15	10	95	10	01	5	10	10	7.5	7.5	25	5	20	10	10	10
	Method	ı	2	က	4	1	1	ı	2	1	1	2	-	2	-	2	3	1	ю	2
	lab		000	700		083	084	90	8	980	7007	<u> </u>	000	880		680			060	
		I											1							

APPENDIX 7. Methods used by participants for determining pesticides.

						Method	Method Descriptions	otions				
Lab	Method	Sample Weight (g)	Extraction Solvent/s	Clean Up Steps	Quantification Using Standards	Internal Standard	Inyection Volume (µl)	Inyection Type	Determination Technique	Confirmation	Recovery (1:YES or 2:NO)	Analiycal Procedure
	-	15	4	ON	Σ	O Z	r,	4	GC-ITD-MS/MS	LC-MS/MS	-	2
160	2	15	4	O _N	٤	OZ.	4	2	GC-ECD	GC-ITD-MS/MS	-	2
	е	7.5	4	O Z	Σ	<u>0</u>	ςς	ις	LC-MS/MS	LC-MS/MS	-	2
C	-	10	acetonitrile	ON	٤	Yes	2		LC-MS/MS	LC-MS/MS	-	QuCHEREs
740	7	01	acetonitrile	O Z	Σ	Yes	0	ΡΤV	GC-TOF/MS	GC-TOF/MS	-	QuCHEREs
	ı	10	5	DSPE	S	O N	ι	ις	GC-NPD	GC-ECD	-	II
	7	01	S	DSPE	ν	0 Z	-	ιΩ	GC-ECD	GC-NPD	-	Ξ
	က	01	5	DSPE	ν	0 Z	2	2	GC-PFPD	GC-NPD	-	Ξ
	4	10	5	DSPE	S	9 Z	01	ιΩ	LC-MS/MS	9	-	1
C	5	10	5	DSPE	S	9 Z	-	2	GC-ECD	GC-ITD-MS/MS	7	17
640	9	01	5	DSPE	S	O Z	-	ιΩ	GC-NPD	GC-PFPD	-	Ξ
	7	01	5	DSPE	S	O Z	2	2	GC-NPD	GC-ITD-MS/MS	7	Ξ
	00	10	5	DSPE	S	O Z	01	ιΩ	LC-MS/MS	9	2	Ξ
	6	10	5	DSPE	ν	0 Z	-	ιΩ	GC-ECD	GC-ITD-MS/MS	-	-
	10	10	5	DSPE	S	No	2	2	GC-PFPD	GC-ITD-MS/MS	2	11
8	2	15	ı	SPE	S	ON.	20	5	HPLC-DAD	HPLC-DAD	2	no reference
094	-	15	7	GPC	Σ	Ethion 0.3mg/l	_	2	GC-ITD-MS/MS	GC-ITD-MS/MS	2	rAPPORTI istisan 97/23
09.5	ı	10	3	'n	×	Hexaclorbenzene	ı	2	GC-ECD/NPD	ON	ı	1

APPENDIX 7. Methods used by participants for determining pesticides.

Method Descriptions	Quantification Internal Volume Type Technique Method (µ) Type Technique Method (µ) Type Technique Method (µ) Type Technique Method (µ) Type Technique (µ) Type Type (µ) Type Technique (µ) Type Type (µ) T	M No 1 2 LC-MS/MS NO 2 11	1 2 GC-Q-MS GC-ECD	M No 1 2 GC-Q-MS GC-NPD 2 11	M TPP 10 4 GC-QQQ-MS/MS 1 2 2	M TPP 10 3 LC-MS/MS LC-MS/MS	n M No 2 2 GC-ECD GC-NPD 2 9	n M No 2 2 GC-NPD GC-NPD 9	n M No 2 2 GC-ECD C-ECD 2 9	S PCB 0.1 g/ml 2 2 GC-Q-MS GC-Q-MS 2 10	M No 10 3 GC-ITD-MS/MS 2 9	S GC-FCD GC-TD-MS/MS 1 PN-EN 12393-1,2,3	S GC-ITD-MS/MS 1 PN-EN 12393-1,2,3	S No 5 HPLC-UV HPLC-DAD 1 PN-EN 14333-3	M	M No 1 2 GC-NPD GC-ECD 2 Kadenczki Et.al. JAOC 75 (1992)	M TPP 7 4 GC-FPD GC-ITD-MS/MS 1 10	S GC-ECD GC-ECD 2 STN	M TPP 7 4 GC-ITD-MS/MS I 10	M No 10 3 GC-ITD-MS/MS GC-ITD-MS/MS 1 1 1	M No 15 5 LC-MS/MS 1 8
Method Descriptions	Inyection Volume (µl)	-	-	1	10	10	2	2	2	2	10	4	4	20		-	7	2	7	01	15
	Clean Up Steps	DSPE	DSPE	DSPE	П	П	florisil column	florisil column	florisil column	П	TI	GPC	GPC	ON	SPE	SPE	DSPE	=	DSPE	Oz	SPE
	Extraction Solvent/s	5	S	5	ı	ı	4	4	4	5	4	8	м	ı	3	ю	5	n-hexane	5	-	5
	Sample Weight (g)	10	10	10	15	15	100	100	100	10	15	50	50	75	5	5	10	01	10	10	15
	Method	-	5	3	1	2	-	2	က	1	1	-	7	3	-	7	ı	7	3	-	7
	lab		960		700	20		860		660	100		101		COL	70		103		Ş	4

APPENDIX 7. Methods used by participants for determining pesticides.

(6) Jugiew Meight (3)	Method Descriptions	action Clean Up Quantification Standard Standard (µl) Type I Type Technique Method 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	etone SPE S 2 GC-ECD GC-Q-MS 1 1	etone SPE S 2 GC-Q-MS GC-Q-MS 1 quademi ISS 3/97	5 DSPE M No 1 2 GC-ECD GC-Q-MS 1 11	5 DSPE M No 15 4 LC-MS/MS NO 1	5 DSPE M No 1 2 GC-ECD LC-MS/MS 1	5 DSPE M No 1 2 GC-Q-MS 1 11	5 GC-FPD 1 1 1	2,3,5-trimetacarbe 200 5 HPLC-FL o	1 GPC S HPLC-DAD different wave 1 EN 12393-2 (Method P)	l 2 GC-TOF/MS	1 GPC S I CC-ECD GC-TOF/MS 2 EN 12393-2 (Method P)		1 GPC M No 1 2 GC-PD GC-NPD 2 Based on EN12393-2 with additional	4 NO M SAR-1-04 GC-NPD GC-TOF/MS 1 SAR-1-04		4 NO S GC-ECD 1 SAR-2-04p	4 NO S NO 100 1 HPLC-FL 1 SAR-1-00	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Clean Up Steps	SPE	SPE	DSPE	DSPE	DSPE	DSPE	DSPE	GPC	GPC	GPC	GPC	GPC	GPC	ON	O _Z	Ox	ON	
Number							 						50							
8 01 801 801		Method			-	2	! !	4	5	-	2		! !	Ŋ	9	-	2		4	

APPENDIX 7. Methods used by participants for determining pesticides.

						Method	Method Descriptions	otions			ry (ON:	
-17 - 77	Metho	Sampl Meight	Extraction Solvent/s	Clean Up Steps	Quantification Using Standards	Internal Standard	Volume (µl)	Inyection Type	Determination Technique	Confirmation Method	Recove	Analitycal Procedure
ĺ	1	25	ı	ON	×	0 N	ı	2	GC-Q-MS, GC/FPD	GC-Q-MS	-	Rapporto ISTISAN 97/23
1	2	50	3	DSPE	Σ	0 Z	5-20 rheodyne	5	LC/MS/MS, LC-pickering	LC-MS/MS	-	Rapporto ISTISAN 97/23
Ì	-	10	1	GPC	Σ	ON.	4	2	GC-ECD-NPD	GC-MS	-	2
Ì	1	10	5	SPE	Σ	PCB 198	4	2	GC-Q-MS	9	2	10
	1	300	1	DSPE	W	Yes - 10 (µg/ml)	2	2	GC/MSD	GC-ECD	2	10
	_	5.00	7	ON	×	0.5 mg/l	1	2	GC-Q-MS	GC-Q-MS	-	L.Dagna, E. Sesia et al., Boll. Chim. Igien vol 44 (1993)
	-	20	1	GPC	Σ	O Z	52	2	GC-NPD	GC-NPD	-	PN-EN 12393-2
	2	50	8	GPC	Σ	0 2	-	1	GC-ECD	GC-ECD	-	PN-EN 12393-2
	3	50	hexane and acetone	SPE	S	No	١	1	GC-ECD	GC-ECD	-	PN-EN 12393-2
	1	15	4	ON	×	o _N	ı	2	GC-ECD	GC-ECD	1	2
	-	100	3	CPC	S	οN	ı	2	GC-ECD	GC-Q-MS	2	PN-EN 12393;2008
	2	100	က	GPC	S	O Z	-	2	GC-NPD	GC-Q-MS	7	PN-EN 12393:2008
	3	50	1	ON	S	No	40	5	HPLC-PDA	ON	2	Wyd. Met. PZH 2002
		001	3	OPC	S	O Z	ı	2	GC-ECD	GC-MS	-	PN-EN 12393-1, PN-EN 12393-2, PN-EN 12393-3
	2	75	-	11	S	o N	10	2	HPLC-FL	HPLC-DAD	-	PN-EN 14333-3
1	e .	100	3	GPC	Σ	O Z	2	3	GC-NPD	GC-ECD, GC-MS	-	PN EN 12393-1, PN-EN 12393-2, PN-EN 12393-3
	-	100	ဧ	GPC	Σ	O Z	-	2	GC/ECD GC/NPD	GC/MS	_	PN-EN 12393 :2000
	2	75	1	וו	S	ON	90	5	HPLC-FL	HPLC-UV	1	PN EN 14333-3 2005
	-	01	5	DSPE	S	O Z	-	2	GC-NPD	LC-MS	-	Ξ
	2	01	5	DSPE	S	O Z	70	-	IC-MS	9	-	Ε
	ю	01	5	DSPE	ν	O Z	-	2	GC-ECD	9	-	Ξ
	4	01	5	DSPE	S	0 Z	2	2	GC-ITD/MS	ON	2	Ξ

APPENDIX 7. Methods used by participants for determining pesticides.

	Recovery (1:YES or 2:NO) Anality cal Proceed or e	-			=	=	11	=	2	2	1 PN-EN 12393-1,2,3:2008	1 P-EN 12393-1,2,3:2008	1 PN-EN 14333-3:2005	2 11	11	2 11	2 11	2 11	11
	Confirmation	GC-ECD	GC-ITD-MS/MS	HPLC-DAD	O _Z	9	LC-MS/MS	GC-ECD	ON	Q Z	ON	O _Z	HPLC-DAD	O _N	HPLC-DAD	ON	LC-MS/MS	O _N	GC-ITD-MS/MS
	Defermination Technique	GC-ECD	GC-NPD	HPLC-UV	GC-ITD-MS/MS	HPLC-DAD	IC-MS/MS	GC-Q-MS	GC-Q-MS	LC-MS/MS	GC-ECD	GC-NPD	HPLC-FL	GC-Q-MS	LC-MS/MS	GC-ITD-MS/MS	GC-ITD-MS/MS	LC-MS/MS	LC-MS/MS
otions	Inyection Type	2	7	7	7	-	ı	е	8	-	2	7	5	4	5	4	4	-	-
Method Descriptions	Inyection Volume (µl)	٦	-	50	-	20	10	5	5	5	2	7	20	∞	5	5	5	Ŋ	5
Method	Internal Standard	ON N	O Z	O Z	O Z	O Z	Yes	Yes	АШ	ТРР	O Z	O Z	OZ	ТРР	<u>0</u>	0.05	0.05	O Z	O Z
	Quantification Using Standards	S	S	S	S	S	V	Σ	S	S	٤	Σ	W	Σ	Σ	S	S	S	S
	Clean Up Steps	SPE	O Z	O Z	O Z	O Z	าา	==	DSPE	DSPE	GPC	GPC	ON	DSPE	DSPE	DSPE	DSPE	DSPE	DSPE
	Extraction Solvent/s	ß	ιΩ	w	δ	ĸ	5	δ	5	κ	acetone, dichloromethane, ethyl acetat	acetone, dichloromethane, ethyl acetate	ethyl acetate, methanol	Ŋ	æ	ર	Ŋ	ιΩ	5
	Meight (g) Sample	10	10	01	10	10	10	10	10	10	10	10	30	10	10	10	10	10	10
	Method	-	7	т	4	5	٦	2	1	7	ı	7	3	٦	2	ı	7	т	4
	Гар			120			101	7	CCL	77		123		-	124		200	2	

	Analitycal Procedure	SPE cleanup of NPD extract. First Mediferranean workshop, programme and abstracts, Athens, Greece 10-12 May 2000, E.J. Avramides et al. A simple cleanup method for the gas chromatographic determination of residues of electron captive compounds in fruits a	7	F.Gnaegi et al. 1974. Dosage des residus de fongicides a noyau benzimidazole et des thiophanates dans les raisins, les jus de raisin et les vins et, en general, dans les fuites et legumes. Tavaux de la Societe de Pharmacie de Montpellier, 34, 91-100. R.	PN - EN 14333-3 lipiec 2005 and SC/IR - 08 15.10.2007 wyd.1	PN-EN 12393-01:2000; PN-EN 12393-02:2000; PN-EN 12393-03:2000;	PN-EN 12393-01:2000; PN-EN 12393-02:2000; PN-EN 12393-03:2000;	2	PN-EN 12393;2000	PN-EN 12393;2000	Wydawnictwo Metodyczne PZH, 2002	7	7	6
	Recovery (1:YES or 2:NO)	-	-	-	2	-	7	7	-	-	1	-	1	7
	Confrmation	GC-ECD	GC-NPD	O _N	ON	GC-Q-MS	GC-Q-MS	GC-NPD	GC-NPD	GC-Q-MS	ON	O Z	ON	ON.
	Determination Technique	GC-ECD	GC-NPD	ò	HPLC-FL	GC-NPD	GC-ECD	GC-NPD	GC-ECD	GC-NPD	HPLC	LC-MS/MS	GC-Q-MS	GC-PD
otions	Inyection Type	2	2	-	5	3	2	2	-	-	5	52	3	5
Method Descriptions	Inyection Volume (µl)	2	5	Q.	20	-	-	_	2	2	50	2	2	-
Method	Internal Standard	<u>0</u> 2	O Z	<u>0</u>	ON.	O Z	O N	o Z	100 ng/ml	1000 ng/ml	No	o Z	ON	ON.
	Quantification Using Standards	٤	Σ	W	S	Σ	Σ	Σ	S	Σ	S	Σ	W	S
	Clean Up Steps	SPE	ON	9	717	ON	GPC	O _N	SPE	GPC	П	1	П	GPC
	Extraction Solvent/s	ethyl acetate, toluene	-	-	1	-	3	1	3	б	acetone	9	6	3
	Mejāpţ (ā) Zawbje	25	25	25	50	50	50	50	90	100	25	20	20	100
	Method	-	8	ю	1	-	2	-	1	2	3	-	2	-
	Lab		126		127	128		129		130		13	2	132

APPENDIX 7. Methods used by participants for determining pesticides.

						Method	Method Descriptions	otions				
Lab	Method	Sample Weight (g)	Extraction Solvent/s	Clean Up Steps	Quaniffication Using Standards	Internal Standard	Inyection Volume (µl)	Inyection Type	Determination Technique	Confrmation	Recovery (1:YES or 2:NO)	Analitycal Procedure
	٦	10	7	Oz	S	O Z	ı	2	GC-ECD	GC-Q-MS	-	ISTISAN 97/23
133	5	10	7	O Z	S	O Z	-	2	GC-Q-MS	GC-Q-MS	-	ISTISAN 97/23
	3	10	7	ON	S	No	20	1	LC-MS/MS	LC-MS/MS	-	ISTISAN 97/23
100	1	01	5	DSPE	×	100 ddd	2	2	SW-DD	ON	2	10
4°C	2	100	б	11	S	O Z	-	2	GC-MS	O _Z	7	6
	ı	15	ß	DSPE	S	O Z	ı	2	GC-ECD	GC-ECD	-	10
135	2	15	Ω	OZ	S	0 Z	_	5	GC-NPD	GC-NPD	-	10
	m I	15	3	GPC	S	O Z	20	S	HPLC-DAD	HPLC-DAD		10
136	-	30	_	GPC	Σ	Yes	2	2	GC-Q-MS	GC-Q-MS	-	Roos AH, et al, 1987, Anal Chim Acta, 196: 95-102
2	2	10	ιΩ	ON	Σ	Yes	30	-	LC-MS/MS	LC-MS/MS	-	80
127	ı	15	5	DSPE	×	ТРР	10	4	GC-ITD-MS/MS	GC-ITD-MS/MS	-	11
/61	2	15	5	DSPE	Σ	ТРР	10	1	LC-MS/MS	LC-MS/MS	-	11
138	ı	90	ı	ON	W	0 N	ı	2	GC-MS	GC-MS	2	3
139	ı	100	3	gel permeation chromatography and solid phase extration	Σ	ON No	ECD-1 NPD-3	2	GC-ECD and GC-NPD	GC-ECD	2	PN-EN 12393
2	-	2	acetone	SPE	Σ	O Z	2	7	GC-ECD	GC-NPD	-	MSPD
<u>4</u>	7	7	acetone	SPE	Σ	O Z	2	7	GC-NPD	GC-ECD	-	MSPD
[7]	ı	01	3	DSPE	×	Atrazin D3	20	2	rc-ms/ms	LC-MS/MS	ı	-
4	2	10	Ŋ	DSPE	Σ	O Z	5	п	GC-Q-MS	GC-Q-MS	2	r

APPENDIX 7. Methods used by participants for determining pesticides.

						Method	Method Descriptions	otions				
Lab	Method Number	Sample Weight (g)	Extraction Solvent/s	Clean Up Steps	Quanffication Using Standards	Internal Standard	Inyection Volume (µl)	Inyection Type	Determination Technique	Confirmation Method	(1:YES or 2:NO)	Analitycal Procedure
	-	100	2	GPC	S	o _N	-	2	GC-ECD	GC-ECD	2	PN-EN 12393-1,2,3:2000
Ç	5	001	2	GPC	S	<u>0</u>	5	n	GC-NPD	GC-NPD	2	PN-EN 12393-1,2,3:2000
147	т	25	9	HPLC FILTER – PTFE MEMBRANE	S	<u>8</u>	30	5	HPLC-UV	HPLC-UV	2	Wyd. Met. PZH - Warsaw 2002, Poland
	4	75		HPLC FILTER – PTFE MEMBRANE	S	O Z	50	5	HPLC-UV	HPLC-UV	-	PN-EN 14333-3:2005
	-	10	4	ON	Σ	O Z	8	7	GC-ECD	GC-Q-MS	-	6
5	7	01	-	Hd	Σ	<u>0</u>	25	-	LC-MS	LC-MS/MS	-	-
	-	50	2	GPC	S	OZ.	-	2	GC-NPD	GC-ECD	2	PN-EN 12393-1,2,3:2008
	7	01	2	GPC	ν	O Z	-	7	GC-ECD	GC-NPD	7	PN-EN 12393-1,2,3:2008
144	n	20	8	GPC	S	O Z	-	7	GC-ECD	O _Z	2	PN-En 12393-1,2,3:2008
	4	20	_	GPC	ν	O Z	50	ß	HPLC-UV	O _Z	7	Wydawnictwo Metodyczne PZH, 2002
	5	1,5	4	SPE	S	Yes	120	5	HPLC-FL	ON	2	PN-EN 14185-1:2004
771	-	25	-	GPC	Σ	OZ	2	2	GC-Q-MS	GC-Q-MS	ı	-
3	7	25	_	GPC	S	<u>0</u>	5	5	LC-MS/MS	LC-MS/MS	-	-
	-	20	1	GPC	S	O Z	е	2	GC-NPD	HPLC-DAD	-	PN-EN 12393; 2008
146	7	70	acetone	SPE	S	O Z	-	7	GC-ECD	HPLC-DAD	-	PN-EN 12393; 2008
	ю	15	ortophosporic acid and methanol	SPE	Σ	O Z	50	5	HPLC-FL	HPLC-DAD	-	PN-EN 14333-1; 2005
147	J	10	5	DSPE	S	ON	1	2	GC-Q-MS	GC-Q-MS	1	11
871	-	20	б	ON	S	0.5	-	2	GC-Q-MS	GC-Q-MS	2	
<u> </u>	2	10	5	DSPE	S	ON.	10	5	LC-MS/MS	LC-MS/MS	2	=

APPENDIX 7. Methods used by participants for determining pesticides.

	Anailycal Procedure	ιι	NF EN 12393	NF EN 12393	NF EN 12393	MT-RES-006 (Miniluke)	MT-RES-001 (MiniLUKE)	MT-RES-005 (MiniLUKE)
	Recovery (1:YES or 2:NO)	1	-	-	-	-	-	-
	Confirmation Method	GGN-OD	SM-D-DD	GC-Q-MS	GC-Q-MS	GC-ITD-MS/MS	GC-ITD-MS/MS	LC-MS/MS
	Defermination Technique	GC-ITD-MS/MS	GC-ECD	GC-FPD	GC-Q-MS	GC-ITD-MS/MS	GC-ECD	LC-MS/MS
otions	Inyection Type	ı	5	7	т	4	7	-
Method Descriptions	Inyection Volume (µl)	2	2	7	2	10	7	01
Method	Internal Standard	Yes	Yes	Yes	Yes	ЧД	o Z	o Z
	Quantification Using Standards	W	S	S	S	×	Σ	S
	Clean Up Steps	DSPE	SPE	OZ	OZ	ON	OZ	O _Z
	Extraction Solvent/s	5	-			4	4	4
	Sample (9)	01	25	25	25	15	15	15
	Method	1	-	2	-	-	2	က
	lab	149		150			151	

APPENDIX 7. Methods used by participants for determining pesticides.

	poqteM	-	-	2	2	_	3	ю	3	_	-		2	2	10	8	_	ю	ю	-		-
iFi	<u></u> %	59		- 16	94.3	88	119	06	95	94.7	104		06	02	91.9		85	92	71.9	20		96
neth	gecovery (mg/kg)		.247 9	182 9		197 8		152			81					139 6	157 8	6 681		12 7		
*Deltamethrin	(mg/kg) Concentration	0.166	0	o.	0 0.187	o.	0.138	0	3 0.141	0.127	0		5 0.131	0.2	0.167	o.	0.	0	0.049	0		5 0.139
*De	ור	0.0	10.0	0.002	0.010	0.010	0.0	0.0	0.03	0.01	0.0		0.05	0.0	0.0	0.005	10.0	0.03	0.01	0.0		0.05
	Scope of method	۵	۵	۵	Ω	۵	۵	۵	۵	۵	۵	₹	۵	۵	۵	۵	۵	۵	Ω	۵	₹	Ω
E	Method		3	2		2	-	ъ	2		3	-		-	4	-	-	-	-	2	-	
SUF	% Kecovery		108	81		85	62	·	85		103	22		104	8.96	62	114		95.5	20	73	
Jran	(w3\k3)		0.329	0.287		0.214	0.245	0.289	0.329		0.143	0.393		0.3	0.326	0.215	0.387	0.303	0.2	0.24	0.103	
Carbofuran sum	(mg/kg) Concentration		0.01 0.0	0.002 0		0.010 0	0.01 0.0				0.01 0.	0.01			0.1	0.006 0	0.01			0.02	0.05 0.	
Car	of method RL							0.01	0.01					0.01				0.0	0.01			
	Scope	Z Z	Δ	Δ	Ž	٥	٥	Δ	Δ	Ž	٥	٥	ž		Δ	٥	٥	О	Δ	Δ	٥	Ž
	Method		က 	2		-	-	რ 	۳ 	· ·	2		-		13		e 	2	რ 			
ifos	% Kecovery		100	88		87	%	100	8		88		88		7.76		102	82	74.1		83	
Cadusafos	Concentration (mg/kg)		0.892	969.0		0.612	0.81	0.803	0.861		0.54		0.371		0.562		0.83	0.692	0.444		0.465	
Cac	(w3\k3) BF		0.01	0.002		0.01	0.01	0.01	0.02		0.01		0.05		0.01		0.01	0.1	0.01		0.05	
	bodtem to	 4 Z			 ≰ Z					 ₹		 ₹		 ₹						¥ Z		 ≰
	Scope	_		2	_	_	3	8	3	2	_	_	_	_	12	2	_	2	е	_	_	_
	%														 							
Buprofezin	gecovery (mg/kg)		+	16 6		3 77	3 - 90	6 109	2 90	, 95.	101		1 - 82		ω.	4 122	2 82	6 93	2 73.	2 - 2	7 98	
bro	Concentration		1.14	0.689		0.663	0.453	0.756	0.662	96.0	0.67		0.411		0.608	0.634	0.432	0.726	0.432	0.42	0.647	
BU	(wâ\kâ) BF		0.01	0.002		0.01	0.01	0.01	0.01	0.01	0.01		0.05		0.01	0.01	0.01	0.01	0.02	0.01	0.05	
	Scope of method	₹ Z	۵	۵	₹	۵	Ω	۵	۵	۵	۵	ž	۵	₹	۵	Ω	Ω	О	۵	۵	۵	ž
	Method		-	2		1	1	ю	Э		ъ		2		10		2	1	1	2	1	
70	% Kecovery		66	92		95	96	109	93		107		82		99.1		104	107	91.8	20	78	
Boscalid	(wa\ka)		0.485	0.45		0.315	0.373	0.469	0.28		.53		0.356		0.43		0.431	0.585	0.492	0.32	0.366	
Bos	(mg/kg)										0		0.05 0.								0.05 0.	
	of method RL		0.01	0.002		0.01	0.01	0.01	0.01	٠ ٠	0.01				0.01		0.02	0.01	0.02	0.01		
	Scope	Ž			ž		٥			₹		ž		ž		Ž	٥				٥	₹
hyl	Method	-	2	7	1, 2	-	-	ო	ო		7		-	_	6	4	-	-	-	2	-	
*Azinphos-methyl	% Kecovery	29	4	82	115.2	93	9.2	127	80		118		98	88	91.2	98	99	98	92.3	70	92	
I-SOL	Concentration (mg/kg)	0.366	0.317	0.36	0.292	0.332	0.349	0.425			0.438		0.401	0.52	0.384	0.227	0.387	0.391	0.465	0.27	0.314	
inpl	(wd\kd) Br	0.024	0.01	0.002	0.01	0.01	0.01	0.01	0.02		0.01		0.05	0.01	0.01	0.011	0.01	0.01	0.01	0.01	0.1	
*Az	Scope of method	0	 _	0 -	 	 _) 	Q			 ₹				О						 ≰ Z
	Method		8	2	_	2	-	е	2	_	8	_			8	2	2	-	-	2		_
Ш	%				3.2										ļ							
*Aldicarb sum	Kecovery (mg/kg)		88 97	6/ 90	103.2	98 86	.9 87	9	15 75		5 70.3	11 32			93.2	9/ 9	3 97	6;	3 82.9	6 70		
icar	Concentration		0.658	969.0	0.708	0.524	0.679	99.0	0.745		0.525	0.421			0.554	0.316	0.863	0.649	0.663	0.59		
Ald	(mg/kg) RL		0.01	0.01	0.01	0.01	0.01	0.01	0.01		0.01	0.01			0.01	0.01	10.0	0.01	0.01	0.01		
*	Scope of method	ž			۵	۵	٥		۵	ž	۵		¥	ž	۵	۵	۵	Δ	۵	۵	¥	ž
	Гар	100	002	003	004	005	900	200	600	010	011	012	013	014	015	016	017	018	019	020	021	022

APPENDIX 7. Methods used by participants for determining pesticides.

	Method	_	1	2	2	2	_	2	1	1	2	1		, 2, 3	-	-	1, 3	-	2	4		3	2
Tr.	%	62.6	104	82	125	73	88	117	- 19	- 16	86			98 -1,		87		001	85	96		82	76
netk	gecovery (mg/kg)		0.16	0.19				0.25				133 8		6	ļ		0.158	1 273		123		.22 8	0.156
*Deltamethrin	(mg/kg)	5 0.144	·		1 0.217	1 0.102	1 0.155		2 0.123	1 0.173	20 0.161	0.			1 0.147	1 0.123		0	1 0.151			0	
*	of method	0.05	0.01	0.01	0.01	0.01	0.0	0.01	0.02	0.0	0.020	0.01		10.0	0.0	0.0	0.0	0.02	0.01	0.0		0.010	0.005
	Scope		٥		О			٥	٥		٥	٥	ž			О	٥	٥	٥	Δ	₹	О	٥
E	Method	-	7		-	7	7	-	က 		1, 2	7		7	7	5	4	2	7	7		5	-
an su	% Kecovery	101.6	109	83	83	69	95	115	∾-	8	82	93	83	66		66	16	100	75	86		81	98
ofurc	Concentration (mg/kg)	0.275	0.32	0.24	0.262	0.143	0.286	0.27	0.337	0.279	0.222	0.227	0.181	0.307	0.271	0.308	0.336	0.433	0.217	0.293		0.217	0.222
Carbofuran sum	(wâ\kâ) BF	0.02	0.02	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.005	0.01	0.01	0.01		0.01	0.005
ŏ	ot method	Δ	Δ	Δ	Δ	Δ	Δ	۵	Δ	Δ	Δ	Δ	Δ	Δ	Δ	۵	۵	Δ	Δ	Δ		D	Δ
	podteM	-		-	2	-	-	2	3	-	1, 2	-		2	2	-	2, 3	2		2		1	2
so	% Kecovery	92.4		6/	107	%	83	88		89	6	- 28		66	9/	88		001		107		95	82
Cadusafos	(mg/kg)	0.598		0.611	0.725	0.144	0.494	0.38		0.434	0.538	0.462		0.708	9.0	0.536	0.632	0.755		0.658		0.633	0.372
Cac	(wð\kð) KF	0.02		0.01	0.01	0.05	0.01	0.01	0.01	0.01	0.010	0.01		0.01	0.01	0.01	0.01	0.01		0.01		0.010	0.005
	scope of method		 ≸	Δ	Δ			Δ	9		۵	۵		Δ		Δ		۵			 ≰	D - C	Δ
	bonteM	-	-	2	2	2	2	-	-	-	2	-	-	, 2, 3	-	-	2, 3	2	2	2		2	2
.⊑	% Kecovery	94	06		120	74.1	66	95	99		94	68	- 36		83	96	- 26	001	88	- 74		77	102
ofez	Concentration (mg/kg)	0.477	0.4	99.0	0.856	404	474	.581	475	.559	.612	0.464	.592	0.826	673	.528	0.754	0.678	209	789		.503	.516
Buprofezin	(wa/ka)	0.02 0	0.01	0.01	0.01 0	0.02 0.	0.01 0.	0.01 0.	0.04 0.	0.01 0.	0.03 0.	0.01 0	0.01 0.	0.01 0.0	0.01 0.	0.01 0.	0.01 0	0.01 0	0.01 0.	0.01 0.		0.01 0.	0.005 0.
	of method Scope	о О	 О	о О	о О			٥ ۵	о О						о О	о О	о 	о О			Z) - C	O
	bonteM	2	-	2	-	2	2	_	т	-	1, 2	-	-	2	_	-	2, 3	2	2	2	_	3	-
7	% Kecovery	39.5	72.7	16	901	20.8	63	104	81	63	75	82	107	102	95	26	103 1,	001	93	- 26		81	65
Boscalid	Concentration (mg/kg)	0.275	0.35	0.45	0.764	0.256 7	0.299	0.358	0.504	0.262	456	0.367	0.36	0.435	0.434	0.393	0.414	0.598	0.346	0.454		0.37	0.253
Bos	(wa/ka)	0.01	0.01	0.01	0.01	0.025 0	0.01	0.01	0.01	0.01	0.010 0.456	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01		0.01	0.005 0
	of method RL	0	о О	о 	о 	0.0	о 	о 	0	о 	0.0	0	о 	о 	о 	о 	о 	о 	о 	о 	₹	O -	D - 0.0
	Scope																က						
thy	% podłaM	.7.	.6. 2			2 - 2		3	e 				2	3 2		9 - 2	5 1, 2,		5 - 2	2			2
-me	Kecovery (mg/kg)	6 102.7	5 105.	15 92		3 86.2	82	7 113	9 92	29 9	4 99	99 6	2 88	7 103	4 98	3 118	8 115	2 100	4 115	8 120	9	7 78	5 79
soyc	Concentration	0.316	0.45	0.4		0.183	0.26	0.317	0.389	0.236	0.404	0.209	0.322	0.437	0.384	0.33	0.378	0.322	0.214	0.388	0.45	0.447	5 0.225
*Azinphos-methyl	(wð\kð) BF	0.05	0.0	0.0		0.02	0.0	0.01	0.01	0.0	0.01	0.02	0.0	0.01	0.0	0.0	0.01	0.02	0.0	0.0	90:0	0.02	0.005
*	Scope of method	٥	٥		ž	Δ		٥	٥	Δ	٥	٥	۵			٥	٥	٥	٥	Ω	٥	Ω	٥
_	Method	7	7		-	7	7	-	ო 	2	-	ļ	_	7	5	2	4	2	_			5	-
sur	% Kecovery	177	99.5		95	88	94	104	∾-	6	82	ļ	83	001		94	87	100	96	86		74	85
*Aldicarb sum	Concentration (mg/kg)	0.566	0.75		0.762	0.464	0.614	0.733	0.759	0.554	0.63		0.281	0.720	0.505	0.781	0.948	0.721	0.642	0.743		0.322	0.560
Aldi	(wð\kð) BF	0.02	0.05		0.03	0.02	0.01	0.01	0.01	0.01	0.010		0.01	0.01	0.01	0.01	0.005	0.01	0.01	0.01		0.02	0.005
*	of method	Δ	Δ	ž	Δ	Δ	Δ	Δ	Δ	Δ	Δ	ž	Δ	Δ	Δ	Ω	Ω	Δ	Δ	Ω	₹ Z	D	Ω
	qpŢ	023	024	025	026	027	028	029	030	031	032	033	034	035	980	037	038	039	040	041	043	044	045

APPENDIX 7. Methods used by participants for determining pesticides.

	Method	-	2	-	-	-	ю	2	2	2	-	2	က	2	2	2	1	_	9	2	-	-	2
thrir	% Kecovery	70	120	102.0	66	114	78.6	86	108	83	54	80	116	98	100	93.2	78	70	95	90.3	93	86	81.2
ame	Concentration (mg/kg)	0.137	0.186	0.169	0.182	0.025	0.156	0.18	0.1	0.153	0.154	0.111	0.192	0.116	0.21	0.176	0.157	0.111	0.189	0.156	0.088	0.137	0.2
*Deltamethrin	(mg/kg) RE	0.01	0.01	0.02	0.02	0.010	0.005	0.01	0.01	0.01	0.02	0.01	0.02	0.01	0.01	0.01	0.05	0.01	0.01	0.03	0.01	0.01	0.03
*	Scope of method	Δ	Δ	Δ	Δ			Δ	Δ	Δ	Δ				Q	Q						Δ	Δ
	pouleM	-	-	3	5	2	4	ю		1, 3		-	4	ъ	1	1	2	ю	-	2		2	
Carbofuran sum	% Kecovery	02	0	84	72	82	75.5	calc		113		001	 ≷S	94	92		100	87		9.78			
urar	Concentration (mg/kg)	0.144	0.254	0.293	0.245	0.178	297	0.273		.231		0.235	0.317	0.219	.237	0.32	0.263	0.241	.338	0.2		0.19	
rbof	(wa/ka)	0.01	0.01	0.01	0.005 0	0.005 0	.002 0.	0.01		0.01		0.01	0.01	0.01	0.01 0.	0.01	0.005 0	0.01	0.005 0.	0.02		0.01	
S	of method Scope		Δ) 	о О	о О	о О		 ₹ Z	о О	 ₹ Z	о О	о 		0 - 0) 	о О				Ž	о О	 ≰ Z
	bodfeM	-	-		3	-	-	ъ		1, 2		-	-	1	2		1	2	2, 4			2	
SO	% Kecovery		170		8		93.2	16		83		100	85		92		100	107				50	[
Jsaf	(wa/ka)		0.786		0.313	999	0.901	.64		919		573	.53	0.467	663		0.624	0.564	734			0.14	
Cadusafos	(mg/kg) Concentration		10		0.02 0.	0.005 0.	0.002 0	0.01 0.		.01 - 0.		0.01 0.	0.01 0.0	0.01 0.0	.01 0.		0.02 0.	0.01	0.005 0.			0.01	
	of method RL	 ₹	о О		О	о О	о О	0	 ₹ Z	0	 ∢ Z	0	0	О	O - O	ΑA	0 О	0	- O	 ≰	 ≸	О	₹
	Scope	_	2	_	4	2	-	-		-	_	-	е	-	2	-	1	2	2	-	-	2	_
.⊆	% Kecovery		601	97.0	110		86.1	8				001	2 2	103	104	113		103	- 16	0.101	- 78	091	95.0
Buprofezin	(w3\k3)		0.771	0.94 9	0.762	0.708	0.828 8	.84		853		. 674		0.438	0.767	0.997	0.684	0.547	0.812	0.708	0.316	0.37	0.75 9
Supre	(mg/kg) Concentration		0.01 0.0	0.01 0.0	0.02 0.	0.005 0.	5	0.01 0.		0.01 0.		0.01 0.		0.01 0.	0.01 0.	0.01 0.0	0.02 0.	0.01 0.	0.005 0.	0.01 0.	0.01 0.	0.01 0	0.03 0
ш	of method RL	¥ Z	· · · · · ·	· · · · · ·	· · · · ·	D.0	D 0.01	о О	ž	·0	 ≰ Z	·0	ND 0.01	О	D 0.	D 0.	·0	о О	D. 0.0	·0	0	0	O
	Scope	z	-	3	4	2	3	1	Z	3	Z	1	Z Z	2	2	1	1	2		2		2	
	%		91	77.0	100	102	92.8	87		001		001	88	94.0	96	86	84	92	84	3.2		124	
alid	gecovery (mg/kg)		0.566	0.402 77	0.398		0.53 92	0.411 8		537 10		0.328	0.348 8	0.284 94	0.423 9	0.512 9	0.295 8	0.265 9		0.383 88		9	
Boscal	(mg/kg) Concentration					05 0.44	:	1		0.									05 0.461			1 0.21	
	of method		0.01	0.01	0.02	0.005	0.005	0.01		0.01		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.005	10.0		0.01	
	Scope	ž		2 D	О			٥	Ź	О	ž	О	О	О	D	D	Q		4		Ž	٥	X X
thyl	Wethod %		7 - 2		1 5	2	4.					2	3	0	5 2	7 2				- 4			.0.
-m-s	Kecovery (mg/kg)	4 70	107	1 56	8 94	102	6 101.4	66 6		5 74	14 21	96 8	3 103	2 95.0	5 95	5 92.7	6 93	3 109	11 79	8 89.4	7 84	92 6	5 100.0
oho	(mg/kg) Concentration	0.754	0.382	0.461	5 0.348	5 0.054	5 0.516	0.199		0.46	0.244	0.268	0.343	0.252	0.45	0.595	2 0.326	0.313	0.381	0.318	0.207	0.149	2 0.55
*Azinphos-methyl	ВГ	0.01	0.01	0.02	0.05	0.005	0.005	0.01		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.0	0.0	0.01	0.01	0.02
* `	Scope of method	Ω		٥	٥				Ϋ́	٥		٥	٥	٥	Ω	D	٥		٥		Q	Ω	Ω
=	Wethod	-	-	რ 		2	4	რ 		1, 3			4	က 				က 	-	1 9		2	
*Aldicarb sum	Kecovery		0	83.0	82	6 6	7.97	calc		2/ !		100	68	68	8 8		06	94		100.6		sum	
cark	Concentration (mg/kg)		0.76	0.389	0.36	0.662	0.427	0.52		0.605		0.495	0.638	0.314	0.323	0.689	0.569	0.585	0.76	0.584		0.41	
* Aldi	(m3/k3) RL		0.01	0.01	0.01	0.01	0.005	0.01		0.01		0.01	0.01	0.01	0.01	0.01	0.005	0.01	0.005	0.03		0.01	
*	Scope of method	Ϋ́	Δ	۵	۵	۵	Δ	۵	ž	۵	ž	۵	۵	۵	О	۵	۵	۵	۵	۵	ž	۵	₹
	Гар	046	047	048	049	020	051	052	053	054	055	056	057	058	059	090	190	062	063	064	065	990	290

APPENDIX 7. Methods used by participants for determining pesticides.

١	Method	-	-	-	-	-	-	-	3	1	1		3	1		က	1	1	1		1	2	-
thrir	% Kecovery	26	92	107	82	62	85	72	86.1	16	70		110	71		80	112	105	103		77	80	06
*Deltamethrin	Concentration (mg/kg)	0.17	0.163	<0.01	0.11	0.128	0.31	0.111	0.062	60.0	0.27		0.191	0.174		0.211	0.161	0.174	0.106		0.15	0.054	0.178
Delt	(wð\kð) BF	0.005	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.01		0.01	0.01		0.01	0.01	0.05	0.05		0.01	0.01	0.02
*	scope of method			9			Δ	Δ		Δ	۵	≨	۵	Q	¥	۵	Q	Q	Q		D	۵	Ω
ч	Method	2	2	-	2	-	-	2	2	2	-		-	2	1	4			2		2		3
n sur	% Kecovery	06	87	95	1.96	85	75	77	66	16	20		88	06	82	95			78.9		92		100
fura	Concentration (mg/kg)	0.223	0.286	0.245	0.27	0.235	0.207	0.664	0.314	0.31	0.24		0.316	0.335	0.523	0.295			0.225		0.331		0.235
Carbofuran sum	(wð\kð) KF	0.01	0.01	0.01	0.01	0.02	0.04	0.01	0.004	0.005	0.01		0.01	0.01	0.025	0.01			0.01		0.01		0.01
ŏ	scope of method			Δ		Δ		Ω	Δ	_	Δ	₹	Δ	Ο	О	Δ	¥.	ΑN	Ω	₹	D	¥ X	۵
	pouleM	3	1	1	2	-	-			-			2	1		ı			1		2		-
lfos	% Kecovery	26	68	9/	101.9	82	8			16			88	72.7		92			106		85		8
Cadusafos	(mg/kg) Concentration	0.611	0.525	0.665	99.0	969.0	0.275			0.57			0.669	0.377		0.455			0.753		0.7		0.5
Ca	(wâ\kâ) KF	0.01	0.01	0.01	0.01	0.02	0.03			0.005			0.01	0.01		0.01			0.01		0.01		0.02
	of method	Δ	Δ	Δ	Δ	Δ	Δ	ž	ž	Δ	ž	ž	۵	Q	Ą	۵	ΝΑ	NA	Δ	Ϋ́	D	¥ X	Δ
	Method	3	2	1	١	1	1	-	4	1	1	1	1	1	1	4			1	1	1		3
zin	% Kecovery	104	88	85	95.5	82	8	18	77.4	105	8	112	16	72	80	88			120	115	91		88
Buprofezin	Concentration (mg/kg)	0.72	0.632	0.771	0.92	0.541	0.317	0.906	0.555	0.91	0.44	92.0	0.659	0.417	0.871	0.615			0.672	0.574	0.72		0.273
Bup	(wð\kð) KF	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.005	0.01	0.01	0.01	0.01	0.025	0.01			0.01	0.01	0.01		0.01
	Scope of method			Δ		Δ	Δ	۵	Δ	۵	۵	۵	۵	Ω	О	۵	ΑN	Α	Δ	۵	D	Ϋ́	۵
	podleM	٦	2	-	2	-	-	-	3	-	1		2	2	1	3	1		1	1	2		3
Þ	% Kecovery	06	82	93	79.0	85	06	80	80	102	70		94	117	77	113	66		109	112	92		100
Boscalid	Concentration (mg/kg)	0.503	0.335	0.496	0.42	0.373	0.402	0.307	0.285	0.36	0.29		0.501	0.596	0.883	0.432	0.304		0.572	0.343	0.54		0.305
Bc	(wð\kð) KF	0.005	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.005	0.01		0.01	0.01	0.025	0.01	0.01		0.02	0.05	0.01		0.01
	scope of method							Ω			Δ	ž	۵	Ω	О	٥	Ω	¥	Δ	٥	D	¥ X	Ω
lγι	Method	1	-	2	2	-	_	2	3	2	1	_	2	1	1	1	1		1		2	1	-
*Azinphos-methyl	% Kecovery	73	7.1	64	92.2	06	85	70	99.1	86	105	105	94	9.86	75	118	115				82	100	09
hos-I	Concentration (mg/kg)	0.3	0.275	0.386	0.41	0.385	0.33		0.21	0.44	0.29		0.431	0.491	0.835	0.367	0.652				0.4	0.353	0.5
zinp	(wð\kð) KF	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.005	0.05	0.01	0.01	0.01	0.025	0.01	0.01		0.01		0.01	0.02	0.01
*	scope of method			Δ		Δ	Δ	Q	Δ		Δ	Q	۵	О	D	٥	Q	ΑN	Q	Ϋ́	D	Ω	۵
ر	Method		2	1	2		2		2	2		3	1	2	2	2			2		2		3
*Aldicarb sum	% Kecovery		103	109	82.6		80		102	88		70	16	109	108	88			86.5		67		100
carb	Concentration (mg/kg)		0.57	0.418	0.34		0.251		0.857	0.745		0.32	0.711		0.559	0.523			0.589		0.695		0.778
Aldic	(wâ\kâ) KF		0.01	0.01	0.02		0.04		0.004 0.857	0.005		0.05	0.01	0.01	0.04	0.01			0.01		0.01		0.02
*	scope of method	Ϋ́	۵	۵	Ω	ž	۵	ΥN	۵	۵	٧X	۵	Q	QN	Q	Q	ΥN	VΑ	Q	ΨN	Q	Ϋ́	Ω
	Гар	890	690	070	120	072	073	074	075	076	077	078	020	080	081	082	083	084	085	980	087	088	089

APPENDIX 7. Methods used by participants for determining pesticides.

	Method	-	2	-	6	-	-	-	-	က		-	-	-		-	1,2	-	4	က	-	-	-
thrin	% Kecovery	9.2	94	101	06	09	70-110	16	18.48	93		85	124.7	82		96	06	80	87	130.7		94.6	66
ame.	Concentration (mg/kg)	0.195	0.143	0.23	0.174	0.076		0.3	0.103	0.167		0.109	0.142	0.19		0.121	0.24	0.223	0.118	0.202		0.141	0.15
*Deltamethrin	(mg/kg) RF	0.01	0.01	0.04	0.01	0.02	0.025	0.01	0.05	0.01		0.01	0.05	0.02	\	0.010	0.05	0.01	0.05	0.01	0.01	0.05	0.01
*	Scope of method		Δ	Δ	Δ	Δ	<u>Q</u>	Δ	Δ	Δ			Δ			Δ					 9	Δ	Δ
	Method	т	ю	2	4	-	-	-	2					2		2	2	2	-	4	2		
Carbofuran sum	% Kecovery	0/		98-95		0/	70-110	001	83				k	78	k	9.2		112	 88	92.4			
furar	Concentration (mg/kg)	0.22	0.251	0.351	0.251	0.294	0.475	0.359	0.316					0.2		0.261	0.13	0.234	0.261	0.28	0.252		
arbo	(ma\ka) Br	0.01	0.01	0.002	0.01	0.02	0.075	0.01	0.02					0.05		0.010	0.02	0.01	0.02	0.01	0.02		
Ö	Scope of method	Δ	Δ	Δ	Δ	Δ		۵	Δ	ž	≨	ž	ž	Δ	≨	۵	Δ	Δ	Δ	Δ		Α̈́	¥
	Method	ю	ı	2	-	-		-	-						-			-			-		
lfos	% Kecovery	78	102	86	101	R		66	66.03						117			26			85		
Cadusafos	Concentration (mg/kg)	0.556	0.811	0.611	0.491	0.642		0.732	0.484						0.507			0.749			0.543		
Ö	(wd\kd) BF	0.01	0.01	0.002	0.01	0.02		0.01	0.05						0.01			0.01			0.01		
	Scope of method		Δ			Δ	≨	۵	Δ	ž	ž	ž	≨	ž	۵	₹	₹	۵	≨	₹	Δ	Ϋ́	Ϋ́Z
	Wethod	3	3	2	4	-	-	_		2	-		2	-	3	1	2	2	8	1	-		1
szin	% Kecovery	78	82	102	26	8	70-110	26		68	8		1.1	87	82	75	95	109	92	9.98	94		86
Buprofezin	Concentration (mg/kg)	0.495	0.648	96.0	0.616	0.378	0.6545	0.786		0.638	1.142		0.487	0.73	0.528	0.309	0.7	0.518	0.366	0.311	0.441		0.28
BUK	(wâ\kâ) KF	0.01	0.01	0.002	0.01	0.02	0.05	0.01		0.01	0.0026		0.05	0.03	0.01	0.01	0.02	0.01	0.02	0.01	0.01		0.01
	Scope of method	۵	۵	٥	۵	۵	۵	۵	₹	۵	۵	ž	۵	۵	۵	Q	Q	۵	۵	۵	۵	Ϋ́	О
	Method	ر د	က	2	6	-	-	_		_د				-		2	1, 2	-		2	-		
<u>i</u>	% Kecovery	8	8	86	8	06	70-110	103		06				8			82	62		112.3	94		
Boscal	Concentration (mg/kg)	0.417	0.421	0.481	0.428	0.262	0.312	0.437		0.498				0.52			0.52	0.487		0.392	0.321		
BC	(mg/kg) RE	0.01	0.01	0.002	0.01	0.02	0.05	0.01		0.01				0.03		0.01	0.02	0.01		0.05	0.01		
	Scope of method	۵	۵	٥	۵	۵	Δ	۵	ž	Δ	ž	ž	ž	٥	ž	QV	Q	۵	ž	۵	Ω	Ϋ́	ž
Ρχ	poqteM	ო 	ო	5	6	-	-	_	_	_		-	2		-	2	1,2	ო	ო	-	_	-	L
met	% Kecovery	0/	82	107	101	110	70-110	92	80.33	92		82	109.9		82	120	8	66	88	75.8	74	97.7%	
hos-	Concentration (mg/kg)	0.325	0.35	0.428	0.365	0.332	0.712	0.376	0.328	0.327		0.109	0.287		0.298	0.639	0.61	0.482	0.198	0.191	0.239	0.368	
*Azinphos-methyl	(mg/kg)	0.01	0.01	0.08	0.01	0.02	0.5	0.01	0.05	0.01		0.02	0.05		0.01	0.010	0.05	0.01	0.05	0.05	0.01	0.02	
*	Scope of method	۵	۵	۵	۵	۵	۵	۵	۵	۵	ž	۵	۵	ž	۵	۵	۵	۵	۵	۵	Δ	٥	¥ Z
ے	Wethod	ო	რ 	5	4		-	-	-							5		2	-	4	7		
o sur	% Kecovery	- 22		96-66			70-110	001	97.3							82		103	601	1.96			
*Aldicarb sum	Concentration (mg/kg)	0.635	0.687	0.731	0.595	\ ·	0.538	0.994	0.561	 		 	 		 	0.675		0.2	0.575	609:0	0.883		
*Ald	(ma/ka) RL	0.01	0.01	0.008	0.0		0.01	0.01	0.05						 	0.01		0.02	0.03	0.0	0.03		
	Scope of method	۵	۵	۵	۵	₹ Z	٥	۵	٥	₹ Z	ž	ž	ž	ž	ž	٥	Ž	۵	٥	٥	٥	₹ Z	ž
	Гар	060	160	092	093	094	095	960	260	860	660	100	101	102	103	104	105	106	107	108	109	110	Ξ

APPENDIX 7. Methods used by participants for determining pesticides.

	Method		-	ъ		-	-	-	3	-	2	-	1	-	-	-		2		-	-	GC	-
thrin	% Kecovery		20	9/		87.68	98	9.62	105	102	08<	75	84.5	85	110	84.8		70.0		84	70	117	87
*Deltamethrin	(mg/kg)		0.199	0.142		0.15	0.153	0.22	0.15	0.156	0.121	0.334	0.14	0.151	0.193	0.13		0.151		0.153	0.143	0.108	0.164
Delta	(wa\ka) &r		0.010	0.050		900.0	0.050	0.01	0.01	0.01	0.01	0.1	0.01	0.01	0.05	0.03		0.01		0.002	0.005	0.02	0.01
*	Scope of method		۵	۵				Δ	Δ	Δ	Δ	Δ	Δ			Δ							Δ
	Method		-						2	3	2			2	4	2					-		ъ
us ı	% Kecovery		86						901	92	08<			86	06	68.4							78
urar	Concentration (mg/kg)		.238						0.25	.307	0.216			0.295	0.255	0.27					.298		0.241
Carbofuran	(wð\kð) 'BF		0.010 0.						0.01	0.01 0.0	0.01			0.005	0.01	0.05					0.005 0.		0.01
CO	Scope of method		Δ	 Y	≤	ž	ž	ž	Δ	۵		ž	¥ Ž	Δ	Δ	۵		 Ž		 Ž	٥	 ¥	
	podteM								-	2	2										-		2
fos	% Kecovery		·			· ·			08	78.5	8<	\	k										87
Cadusafos	Concentration (mg/kg)								0.5	0.425	0.849										0.658		0.535
Cac	(mg/kg) RE								0.01	0.01	0.01										0.005		0.01
	Scope of method	¥ Z		¥		 ₹	ž	ž	Δ	Δ	Δ					¥ Z		 ≰		 ≰		A A	۵
	Wethod	1	-						2	-	2	-	2	-	2	2					-		2
zin	% Kecovery	16			· ·	· ·		·	25	92	08/	8	77.2	26	06	103.2					98		88
Buprofezin	Concentration (mg/kg)	0.45	0.422		· ·	· ·		·	9.0	0.614	0.704	0.888	0.511	0.762	0.693	0.49					0.727		0.391
Bup	(w3\k3) &F	0.01	0.01						0.01	0.01	0.01	0.05	0.01	0.01	0.01	0.05					0.005		0.01
	Scope of method	۵	Δ	¥ Z	¥ Z	ž	ž	ž	Δ	Δ	۵	Δ	Δ	۵	Δ	۵	¥ Z	ž	¥ Ž	 Ž	۵	A A	۵
	Method		-						ю	-	2		-	2	-						-		-
<u>p</u>	% Kecovery		06						113	93	08^		56.0	94	06						88		82
Boscalid	Concentration (mg/kg)		0.362						0.43	0.367	0.427		0.266	0.582	0.649						0.43		0.394
Во	(wð\kð) BF		0.01		· ·				0.01	0.01	0.01		0.01	0.005	0.01						0.005		0.01
	Scope of method	ž	Δ	ž	ž	ž	ž	ž	Δ		Δ	≨	Δ	۵	Δ	Ϋ́	ž	 ≰ Z	¥	 ₹		¥ X	Ω
lyı	Wethod	-	1	-	-	2	3	-	1	2	2		2	1	4	2		1	-	1	1	GC	2
*Azinphos-methyl	% Kecovery	80	09	104	26	77.95	93	71.2	113	104	>80		104.3	95	88	95.2		85.0	96.36	119	26	75.4	80
1-SOL	Concentration (mg/kg)		0.256	0.319	0.387	0.349	0.31	0.348	0.45	0.355	0.416		0.605	0.215	0.388	0.32		0.304	0.227	0.341	0.37	0.336	0.351
zinpl	(w3\k3) BF	0.01	0.01	0.05	0.01	0.151	0.05	0.01	0.01	0.01	0.01		0.01	0.01	0.02	0.05		0.01	0.08	0.02	0.005	0.02	0.01
*	of method Scope	g	Δ	Δ	Δ	Δ	Δ	Δ	۵	۵	Δ	ž	Δ	۵	۵	Ω	Ž	۵	Δ	۵	٥	О	О
	Method							-	2	3	1			2	3						1		3
sum	% Kecovery								92	80	>80			92	88						>90		72
*Aldicarb sum	Concentration (mg/kg)								0.51	0.536	0.754			0.747	0.584						0.827		0.632
Aldic	(wâ\kâ) KF							0.01	0.01	0.01	0.01			0.005 0.747	0.1						0.005		0.01
*	ot method Scope	₹	₹ Z	₹ Z	₹ Z	₹ Z	₹ Z	9	Δ	Δ	Δ	₹ Z	₹ Z	Ω	۵	¥ Z	₹ Z	¥ Ž	 ₹ Z	₹	Ω	ΑΑ	۵
	Гар	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133

APPENDIX 7. Methods used by participants for determining pesticides.

ırin	% poqqəw		1.9	7	113		.3		2	76.5 1	5 1	5 2	108	100 2			_ _ _
neth	Kecovery (mg/kg)		91 104.9	26 89	.395 11		3 85.3	88 88	71 0		61 75	25 95			52 60	9 108	
*Deltamethrin	(mg/kg) Concentration		1 0.191	1 0.168			1 0.13	1 0.2189	1 0.171	0.2	5 0.161	1 0.125	1 0.081	1 0.179	5 0.152	5 0.19	
*De	ВГ		0.01	0.01	0.01		0.0	0.01	0.01	0.008	0.05	0.01	0.0	0.01	0.05	0.05	
	Scope of method	Ž	٥	٥	۵	Ž	٥	۵	۵	۵	۵	۵	٥	۵	۵	٥	
E	Method		7	-		-		2	-		5		-		2	-	
an su	% Kecovery		112.4	100	112	75-110		110	0		8		116		02	86	
ofurc	Concentration (mg/kg)		0.241	0.248	0.175	0.191		0.2300	0.311		0.229		0.283		0.467	0.261	
Carbofuran sum	(wð\kð) KF		0.02	0.01	0.01	0.05		0.01	0.01		0.02		0.01		0.05	0.02	
Ŭ	Scope of method	Ž	Ω	٥		Δ	¥	Δ	Δ	¥	Δ	¥		ž	Δ	۵	
	Method		2	-					2		-						_
fos	% Kecovery		112.4	88					0		8						
Cadusafos	Concentration (mg/kg)		0.506	0.481					0.668		0.655						
Ca	(wð\kð) KF		0.01	0.01					0.01		0.01						
	scope of method	ž	Δ	Δ	≤	₹	¥ Z	ž	Δ	¥.	Δ		₹	 ≰			
	Method	-	8	1	-	-		2	2		-	2	-		-	-	
zin	% Kecovery	100	104	88	98	75-95		103	0		105	8	901		2	901	
Buprofezin	Concentration (mg/kg)	0.58	0.645	0.51	1.158	0.771		0.7406	0.624	{ ·	0.706	0.545	0.309		0.541	89.0	
Bupi	(mg/kg) (RL	0.01	0.01	0.01	0.01	0.01	l	0.01	0.01	{ ·	0.01	0.01	0.01		0.01	0.05	-
	Scope of method	۵	Δ	о О	Δ	Δ	 ≸			 ≰ Z			0	 ≨		о О	-
	Method		-	2				-	2		-		-		2	-	
D	% Kecovery		99.5	107		k ·	l	104	107	{·	100	{·	104		0/	102	-
Boscalid	Concentration (mg/kg)		0.35	0.451		l ·	l	0.384	0.426		0.408	!	0.224		0.546	0.402	-
Bos	(mg/kg) (RL		0.03	0.01			l	0.01	0.01		0.04 C		0.01		0.01	0.05	-
	Scope of method		Δ	Δ	ž	ž	¥ Z			 ₹	Δ	 ₹		 ≨	Δ	о О	
7	Method		е	2	2	-		2	-	2	-	-	-		-	-	
neth	% Kecovery		71.1	- 26	82	70-120	ŧ	103	0	74.9	08	9.5	103		09	95	
n-soi	Concentration (mg/kg)		0.38	0.345	0.307	0.381 70-120	l	0.5057	0.34	0.27	0.372	0.29	0.187		0.811	0.408	
*Azinphos-methyl	(mg/kg) (RL		0.01	0.01	0.01	0.02	l	0.01	0.01	0.01	0.05	0.02	0.01		0.01	0.02 0	
*Az	Scope of method	 ≰	Δ				₹						0	 ≰ Z			-
	bodteM		ю	2	2				-		2	2	2		2		
sum	% Kecovery		26	06	88	k ·	l	ł ·	0	{·	20	26	06		0/		
*Aldicarb sum	Concentration (mg/kg)		0.633	0.535	0.664	l ·	l	!	0.765		0.535	0.401	1.544		0.723		
Ildic	(mg/kg) (RL		0.02	0.01	0.01				0.05		0.02	0.009	0.02		0.05		-
*	Scope of method	₹	0	0	0	₹	¥ Z	₹	0	₹ Z	0	0.	0	 ₹ Z	0	 ¥	
	dbJ	134	135	136	137	138	139	140	141	142	143	144	145	146	148	149	

APPENDIX 7. Methods used by participants for determining pesticides.

	Method		8	2		2	-	т	2		3				8	2	2	1	1	2		
Methomyl Sum	% Kecovery		9.2	85		82	74		85		95.5				2.68	101	100		115.7	70		
my	(wa\ka)		0.326	277		526	0.19	0.292	0.279		0.3				0.256	0.178	0.845	0.277	0.289	0.23		
ethc	(mg/kg) Concentration		0.01 0.3	0.010 0.277		0.010 0.226	0.01 0.	0.01 0.3	0.01 0.3		0.01 0				0.01 0.3	0.01 0.0	0.01 0.8	0.01 0.3	0.01 0.3	0.02 0.		
We	of method RL	¥ Z	о О	D:0		D:0	·0	O	О О	 & Z	0	 Ž	 Ž	 Ž	0	О 0.	О 0.	ο ο	0	0	Y Y	 ≰ Z
	Scope	z	2	2	N NA] [3	3	3	Z N		Z	Z	Z	13		3	2	3	1	Z	Z -
UC	%				2.4 1,					 6:	4		 C									
athic	уесолегу	09	- 87	88	102.		107		001	19 -	104		06	76.5	98.	78	79	02	72.	2	. 97	80
*Methidathion	Concentration (mg/kg)	0.372	0.521	0.524	0.464	0.49	0.453	0.61	0.582	0.249	0.59		0.55	0.73	0.527	0.409	0.437	0.541	0.335	0.2	0.225	0.280
Me	(wâ\kâ) BF	0.005	0.01	0.002	0.010	0.010	0.01	0.01	0.02	0.01	0.01		0.05	0.01	0.01	0.047	0.01	0.02	0.01	0.01	0.02	0.05
*	of method of method	۵	۵		۵	۵	Δ		Ω	۵	۵	 ₹	۵	۵	۵	D	D	۵	۵	۵	Ο	Ω
os	Wethod	-	3	-	1, 2	2	-	က	6		က		-	-	Ξ	2	4	-	-	-	-	-
hdo	% Kecovery	19	6/	83	92.1	80	28	80	88		33		79	85	80.3	75	109	71	86.3	70	102	09
*Methamidophos	Concentration (mg/kg)	0.316	0.299	0.482	0.548	0.329	0.341	0.407	0.343		0.45		0.17	0.15	0.401	0.278	0.325	0.463	0.49	0.32	0.441	
ethc	(wð\kð) KF	0.01	0.01	0.010	0.010	0.010	0.01	0.01	0.03		0.01		0.05	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.05	0.05
*	Scope of method	۵	۵	۵	۵	۵	Δ	۵	Ω	Ž	۵	ž	۵	۵	۵	D	D	Ο	۵	Δ	D	Q
-	Method		3	2	1, 2	-	ю	ю	က	-	ю		-	-	=	2	3	2	-	1	1	٦
anc I-M	% Kecovery		26	16	8.79	66	120	102	20	85.7	114		88	96	104.8	139	109	93	106.7	70	60-140	80
*Metalaxyl and Metalaxyl-M	Concentration (mg/kg)		0.599	0.49	0.234	0.403	0.445	0.481	0.393	0.324	0.58		0.46	0.52	0.402	0.316	0.572	0.54	0.593	0.52	0.131	0.479
1eta Metc	(wð\kð) KF		0.01	0.002	0.010	0.010	0.01	0.01	0.01	0.01	0.01		0.05	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.05	0.05
× ×	Scope of method			о О	О	О) 	 _	Δ	 ≰ Z		Δ		О	О	 _	 _) 	Δ
hrin	Wethod	-	1	-	2	1	е	ı	3	ı	2		2	2	10	3	1	2	3	ı	1	-
*Lambda-Cyhalothrin	% Kecovery	95	68	100	99.4	88	119	110	78	92.7	110				96.5	80	81	06	84.4	70	101	26
-C	Concentration (mg/kg)	0.237	0.38	0.319	0.358	0.262	0.211	0.241	0.192	0.263	0.34		0.303	0.29	0.321	0.233	0.269	0.247	0.173	0.21	0.207	0.207
pda	(mg/kg)	0.009	0.01	0.004	0.010	0.010	0.01	0.01	0.03	0.01	0.01		0.05	0.01	0.01	0.005	0.01	0.01	0.01	0.01	0.02 c	0.02 0
am	of method RL											¥ Z										
	Scope	٥	٥	٥			٥		О	О	О	Z	О	О	О	D	D	О			Q	О
Isofenphos-methyl	Wethod %		2	2			က 				5				6 0	1	3	5			1	
S-me	Кесочегу		1 89	1 87		3 - 93	101	5 114	98 - 1	5 92.	66				2 100	5 81	3 115	1 - 93	7 70.9	70	1 80	
ohq	Concentration (mg/kg)		0.89	0.591		0.518	0.498	0.71	0.481	0.555	0.65				0.532	0.415	0.883	0.641	0.377	0.38	0.551	
fen	(w3\k3) KF		0.01	0.002		0.010	0.01	0.01	0.01	0.01	0.01				0.01	0.006	0.01	0.01	0.01	0.01	0.02	
SO	Scope of method	¥	۵	۵	¥ Z	۵	Δ	Δ	۵	۵	Δ		 Ž	¥ Z	Δ	Ο	Q	۵	۵	Δ	Q	₹
	Wethod	-	2	-	1, 2	ı	ю	-	3	-	-	2	-	1	6	1	1	2	2	ı	1	-
uc	% Kecovery	19	100	104	118.2	66	92	105	63	86.7	92	66	16	84	112.4	82	88	88	97.2	70	92	84
*Diazinon	Concentration (mg/kg)	0.921	2.88	1.54	1.336	1.52	1.14	1.49	1.25	1.682	1.35	1.068	0.777	1.13	1.08	0.813	1.037	1.56	1.331	1.02	0.879	0.469
* D <u>.</u>	(mg/kg) RL	0.01	0.01	0.01	0.010	0.010	0.01	0.01	0.01	0.01	0.01	0.1	0.05 0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01 0	0.01 0
	Scope of method		0		0 —	0 —	0	0) 		Δ	Δ	Δ	Δ	Δ)) 	ο	Δ	0	D - C	Δ
	Гар	10	02	03	104	0.5	90	701	60	10	=	12	13	14	115	116	117	18	119	20	21	22

APPENDIX 7. Methods used by participants for determining pesticides.

Pockarion Pock		Method	2	2		1		2	1	3	2	1		1	2	2	2	4	2	1	2		5	1
Thirding	Sum		91.7	94		78		102	107	∾	118	9.2		105	104		104	95	100	06	co-		78	92
Thirdical property Thirdic	lomyl		0.267	0.3		0.279		0.295	0.234	0.348	0.279	0.234		0.212	0.314	0.282	0.293	0.324	0.33	0.295	0.271		0.218	0.235
Thirdical property Thirdic	eth		10.0	0.02		0.02			10.0			010.			10.0	10.0	10.0	.005	10.0				.010	.005
Figure F	Ž	of method					ž															ž		
Folicy Foli		podteM	-	ю	-		-	2	-	-	-	2	-	-	2	-	-		2	2	4	2	1	2
Maintain	noir		100.7		95		80	93	110	83	72	95	77	9.2	103	26	66	26	001	9.2	8	70	100	94
Maintain	idatk		0.446	0.45	0.58			0.429	0.46	0.432	0.425	0.534	0.403	0.471	9.576	7.467	0.47	0.547	0.537	3.362	0.482	0.68	0.565	0.394
Molicazino- Mol	/eth			2.02	0.01		0.02		10.0								0.01					0.1		
Controlled Con	*	poqtem jo																				Δ		
Composition	SC	Method	-	2	-	-	2	2	1	3	2	1	-		2	1	2	4	2	-	2	2	1	-
	ohdc		137.7		103	107	72	87	18	87	72	84	56		9.2	82	101	68	100	75	100	20	72	99
	mid			0.35	0.13	0.5	0.25	0.312	0.391	0.455	0.424	0.422	.186		0.539	0.452	0.582	7.566	0.505	3.399	0.442	0.18		0.349
	ətha	(wâ\kâ)				0.01						010,											.010) 500.0
Composition Software Softwa	*We	of method												 ≰ Z										
Metrolinor Software Software Software Metrolinor Metrolino			-	ю	2	2	2	2	-	т	-	1, 2	2	2	2,	-	1	4	2	2	2	2	4	2
#Diazinon #Sofemblos-methy #Lambda-Cyhalothrin #Cambda-Cyhalothrin #Cambda-Cyhalo	and -M		91.8	6.601	- 16	09	68.4	86	104	104	91	- 26	104	- 26		94	93	74	100	98	52	08	77	- 26
#Diazinon #Sofemblos-methy #Lambda-Cyhalothrin #Cambda-Cyhalothrin #Cambda-Cyhalo	axyl	(wð\kð)		55	0.43	.614	0.25	.488	J.44	.514	.425	.445	.388	1.442	,508	.416	.451	,506	.685	.416	0.5	0.5	0.31	.363
#Piczinon #Piczinon Hodenphos-methy #Lambda-Cyhalothrin #L	Netal Aeta	(wð\kð)		0.5		10		10					10	10	10		10			[0]				
Mathematical Math	× <	poulem jo																						
*Diazinon Sofembhos-methy *Lambda-Cype Cope	rin		_	8	2	2	2	_	_	_	-	2	_			1	1	-	_	2	4		3	2
*Diazinon Sofembhos-methy *Lambda-Cype Cope	iloth			 &		9	2		 80	0	 ∞	2				2	6		 Q		9		2	
#Diazinon Isofenphos-methyl Scope of method (mg/kg) of method of method of method of method of method (mg/kg) of method of mg/kg) in D old																								
#Diazinon Isofenphos-methyl Scope of method (mg/kg) Recovery Recov	da-C	Concentration																						
#Diazinon Isofenphos-methyl Scope of method (mg/kg) Recovery Recov	qui	ВГ	0.02	0.0	0.0	0.0	0.01	0.0	0.01	0.02	0.0	0.01	0.0		0.01	0.01	0.01	0.0	0.02	0.0	0.01		0.01	0.00
#Diazinon Isofenphos-methy/ Scope of method of mother of method of method of mother of method of method of mother of method of mother of method of method of mother of method of method of mother of method of method of method of mother of method of method of method of mother of method of metho	*Lc		۵	۵	Δ	٥	۵	٥	۵	٥	۵	٥	٥	ž		Ω	۵	۵	۵	Δ	۵	ž	٥	Ω
*Didzinon	thyl	Wethod		-	_	2		2	2	ო	_	1, 2	_	2	1, 2,		-		5	2	ო		-	7
*Didzinon	-me		100	92.6	87			86	80					16						- 6				
*Didzinon	souc		0.411	0.52	0.54	0.712		0.361	0.3	0.607	0.367		0.414	0.461	0.654	0.578	0.386	0.607	0.755	0.51	0.455			
*Didzinon	ofenk		0.02	0.01	0.01	0.01		0.01	0.01	0.01	0.01	0.010	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01		0.010	0.005
*Diazinon *Diazinon *Diazinon RL (mg/kgl) D 0.002 1.119 93.55 11 D 0.001 0.905 91 11 D 0.002 1.28 90.9 2 D 0.001 1.002 60 11 D 0.001 1.27 115 11 D 0.001 1.31 1000 2 D 0.001 1.34 92 11 D 0.001 1.44 87 11 D 0.001 1.38 92 2 D 0.001 1.44 87 11 D 0.001 1.38 92 100 D 0.001 1.44 87 11 D 0.001 1.38 95 2 D 0.001 1.38 95 2 D 0.001 1.38 92 100 D 0.001 1.38 92 100 D 0.001 1.44 87 11 D 0.001 1.280 102 14 D 0.001 1.38 85 2 D 0.001 1.38 85 2 D 0.001 1.280 102 4 D 0.001 1.21 108 11 D 0.001 1.280 102 4 D 0.001 1.21 108 11	Isc		۵	۵	۵	٥	₹ Z	۵	۵	۵	۵	۵	۵	٥		٥	О	٥	٥	۵	۵	¥	٥	Ω
#Diazinon #Diazinon Concentration of method of metho		Method	_	_	_	2	2	2	_	_	_	2	_	2	1, 2,	-	_		_	2	4	2	_	2
O O O O O O O O O O O O O O O O O O O	on	% Kecovery	93.5	88	16	101	90.9	86	115	91	09	100	92	100		94	87	94	100	85	102	09	108	82
O O O O O O O O O O O O O O O O O O O	iazin		1.119	6:0	0.905	1.42	1.28	1.045	1.27	1.27	1.002	1.31	1.18	0.882	1.74	1.4	1.44	1.434	2.51	1.3	1.280	0.71	1.21	0.894
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	*			0.01		0.01	0.02		0.01	0.02		0.010	0.05		0.01	0.01	0.01		0.02	0.01		0.04	0.010	
Lab		of method																						
		qpŢ	023	024	025	026	027	028	029	030	031	032	033	034	035	036	037	038	039	040	041	043	044	045

APPENDIX 7. Methods used by participants for determining pesticides.

	bodteM				5		4			<u>د</u>		1	4	ر د	1		7	က 		1			
Methomyl Sum	% Kecovery		0	85.0	70	81	101.0			74		100	100	26	88		16	69		100.5		103	
omy	Concentration (mg/kg)		0.313	0.291	0.22	0.267	0.329	0.3		0.338		0.241	0.262	0.276	0.275	0.297).229	0.252	0.289	0.234		0.248	
eth	(wð\kð) KF		0.01	0.01	0.01	0.010	0.01	0.01		0.01		0.01	0.01	0.01	0.01	0.01	0.005 0.229	0.01	0.005 0.289	0.02		0.01	
Σ	Scope of method	 Ž	Δ	۵	۵	0_	٥	٥	 ≰ Z	۵	 ≰	D (٥	٥	D (D - (Ω_	۵		D - (¥) 	¥ Z
	Method	-	2	-	က	-	-	-	-	1,2	-	1	-	-	2	2	-	2	2, 4	2	-	-	-
hion	% Kecovery	70	112	94.0	95	94	91.6	94	93	95	72	100	93	06	95	98.3	95	85	76	88.7	94	102	92.6
*Methidathion	Concentration (mg/kg)	0.304	0.51	0.658	0.491	0.304	0.522	0.461	0.51	0.602	0.535	0.455	0.478	0.347	0.5	0.641	0.487	0.342	0.57	0.48	0.283	0.231	0.7
Meth	(wð\kð) KF	0.01	0.01	0.02	0.01	0.005	0.002	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.04	0.01	0.005	0.03	0.01	0.01	0.02
*	scope of method								a	a	Δ	Q	Q	Q	Q	Q	a	۵	Δ	Q	a	Ω	Q
OS	pouteM	- 1	- 1	3	5	2	2	3		1, 2		1	4	3	1	1	2	8	2, 4	2	2	1	
hdo	% Kecovery		81	89.0	26	88	72.4	78		77		100	SA	88	74	76	74	100	95	0.68	92	113	
*Methamidophos	(mg/kg) Concentration		0.433	0.45	0.221	0.324	0.446	0.493		0.119		0.439	0.329	0.39	0.331	0.521	0.462	0.486	0.421	0.265	0.126	.309	:
tha	(wa/ka)	0.01	0.01	0.01	0.01	0.010	0.005	0.01		0.01		0.01	0.01	0.01	0.01	0.01	0.005	0.01	0.01	0.01	0.01	0.01	
*Me	scope Scope		о О	о О	о О	0	0	о О	 Ž	0	 ≰	D C	0	٥	D C	D : 0	ο _	0	о О	D 0	٥) D	∀ Z
	bonteM	-	-		4	2	4	ю		1, 2	-	1	е	-	2	1	2	2	2	2	1	2	
and -M	% Kecovery	20	 8		901	- 26	94.4	105		92	111	001	102	96	06	105	66	138	103	87.0	87	104	
*Metalaxyl and Metalaxyl-M	(wð\kð)	< 0.01	. 1/2		. 472	0.422	.555	. 214		.472	0.474	0.416	0.459	0.368	0.45	. 487	0.44	0.345	. 2995	0.408	.339	348	
etal	(mg/kg) Concentration		0		0		0	· · · · ·		0						0			0		0	0	
* We	of method	0.0	0.0		0.0	0.005	0.002	0.0		0.0	0.01	0.01	0.01	0.01	0.01	0.01	0.005	0.01	0.005	0.01	0.01	0.0	
	Scope	2	٥	Ž	٥	٥	٥	٥	Ž	О	٥	D	D	О	D	D	D	О	٥	D	٥	D	Z Z
halothrin	pouleM						ო	7	2	2,3	-	3	<u>ო</u>	5	2	2	-	5	რ 	2	-	-	2
	% Kecovery		83	90.0	88	110	67.8	92	100	83	80	85	96	110	109	8.96	88	100	110	90.7	88	94	79.9
*Lambda-Cy	Concentration (mg/kg)		0.277	0.289	0.222	0.052	0.21	0.653	0.17	0.283	0.295	0.229	0.266	0.182	0.34	0.317	0.274	0.245	0.298	0.295	0.12		0.4
ppqu	(wð\kð) KF		0.01	0.01	0.02	0.005	0.002	0.01	0.01	0.01	0.01	0.01	0.01	0.05	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.02
*Lan	scope of method	 Ž										Ω	Ω		D	Ω	Δ			Ω	Δ	Q Q	0
	bodłeM	-	2		3		-	-		ı		2	3	1	2	1	1	3	2, 3, 4			1	-
Isofenphos-methyl	% Kecovery		Ξ		102		88.0	- 62		110		20	102	06	93	109	62	63	88			105	92.3
hos-I	Concentration (mg/kg)		0.535		0.521		0.61	0.478		0.557		0.24	0.507	0.34	0.647	0.716	0.556	0.397	0.619			0.261	9.0
enp	(wâ\kâ) KF		0.01		0.01		0.005	0.01		0.01		0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.005			0.01	0.02
Isof	Scope of method	 Ž	Δ	 Ž	Δ	 ≰		Δ	ž	۵	ž	ο	۵	۵	D	D	Δ	Δ		N A	ž	٥	Ω
	bonteM	-	2	2	е	-	-	ı	ı	1, 2	-	3	3	1	2	3	1	2	3, 4	2	ı	2	1
Ľ	% Kecovery	02	101	83.0	06	100	98.4	98	89	98	103	66	103	91	106	115	66	109	88	97.8	71	76	84.7
*Diazinon	(wa\ka)	0.611	1.375	1.288	1.09	1.31	1.52 9	1.56	0.79	1.773	1.74	1.251	1.32	0.979	1.345	1.6	1.658	1.34	1.52	1.4	0.703	0.425	1.45 8
*Dic	(mg/kg) (mg/kg)	0.01 0.	0.01	0.01	0.01	0.005	0.002	0.01	0.01 0	0.01 1.	0.01	0.01	0.01	0.01 0.0	0.01	0.01	0.02	0.01	0.01	0.01	0.01 0.	0.01 0.	0.01
	of method RL	О.		. O	. O	D. 0.	D 0.0	 0	О .	О .		D 0.	О .	О.	D 0.	D 0	О - 0.	О -	о О	D : 0.	D 0.	D - 0.	Ο
	2cobe	046	047	048	049	050	051	052	053	054	055	056	057	058	059	090	190	062	063	064	065	990	290
		O	O	O	O	D	0	0	0	0	0	0	0	þ	0	D	0	ō)))	0	0

	bodłeM								- 5														· · · ·
Methomyl Sum	% Kecovery		66	94	80.9				16		70	80	107		92	80			69.4		103		
om)	Concentration (mg/kg)		0.269	<0.05	0.21				.324		0.4	0.2	.274		0.486	0.207			.225		0.26		
leth	(wâ\kâ) KF		0.01	0.05	0.01				0.004 0.324	0.01	0.05	0.03	0.01 0.0		0.01	0.01			0.01		0.01		0.02
Σ	of method Scope	 Ž		9	Δ		₹	ΑN	ے۔۔	9		Ο		ž	D	Ο	ΑN	 ≰	Δ	ΑN	۵	Ϋ́	Q
	bodłeM	က	2	-	-	-	-	2	4	-	_	1	2	-	1	1	1		-	1	-	- 1	-
*Methidathion	% Kecovery	104	22	108	99.5	83	87	7.1	93.2		2	88	94	102	78	100	113		51	116	108	88	20
hida	Concentration (mg/kg)	0.51	0.836	0.593	0.47	0.485	0.312	0.365	0.392	0.5	0.4		0.526	0.674	1.19	0.518	0.614		0.713	0.458	0.57	0.473	0.333
Met	(wâ\kâ) KF	0.01	0.01	0.03	0.01	0.02	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.025	0.01	0.01		0.01	0.01	0.01	0.02	0.01
*	of method	Ω	Δ	۵	۵	۵	Ω	D	Ω	9	Δ	QN	۵	Ω	D	О	Ο	₹	Ω	D	Ω	О	Ω
SC	bodłeM	-	2	ı	2	1	1		4	2	1		2		2	1			2		2		3
*Methamidophos	% Kecovery	100	71	78	78	93	80		Q	98	70		71		78	85			80.8		53		20
amid	(mg/kg)	0.465	0.26	0.773	0.18		0.129		0.289	0.42	0.44		0.581		0.532	0.397			0.411		0.55		0.0445
eth	(wð\kð) KF	0.005	0.01	0.03	0.01	0.02	0.02		0.2	0.01	0.01		0.01		0.04	0.01			0.01		0.01		0.01
*	scope of method	Δ	Δ	Δ	Ω	Q	Ω	NA	Ο	Δ	Δ	NA	Ω	ž	D	D	ΑÄ	ž	Ω	Α̈́	Ω	ΝΑ	О
7	podteM	-	2	-	-	-	-	2	3	-	-		2		1	4	1		-	1	1		ъ
Metalaxyl and Metalaxyl-M	% Kecovery	88	96	86	87.5	109	76	80	81.1	26	70		9.2		79	26	88		114	105	66		100
Metalaxyl an Metalaxyl-M	Concentration (mg/kg)	0.566	0.522	0.521	0.44	0.489	0.502	1.31	0.332	0.455	0.47		0.495		0.917	0.409	0.393		0.445	0.395	0.4		0.421
Meta	(wâ\kā) KF	0.005	0.01	0.01	0.01	0.02	0.03	0.01	0.01	0.01	0.01		0.01		0.025	0.01	0.01		0.02	0.01	0.01		0.01
*	scope of method	Δ	Δ	Ω	۵	Δ	۵	D	Ο	۵	۵	NA	Δ	ž	D	D	D	 ≰	Ω	D	Ω	Ϋ́	О
alothrin	podteM	1	1	1	1	1	1	1	3	1	1	1	3	1	1	3	1		1	1	1	2	-
Jalo	% Kecovery	901	96	105	81.5	70	72	70	86.1	94	70	105	103	84.2	96	89	120		133	105	99	71	100
*Lambda-Cyh	Concentration (mg/kg)	0.335	0.287	0.321	0.22	0.376	0.309	0.22	0.148	0.2	0.26	0.27	0.243	0.448	0.406	0.272	0.268		0.266	0.248	0.24	0.188	0.271
nbda	(wâ\kā) KF	0.005	0.01	0.01	0.02	0.02	0.02	0.01	0.01	0.005	0.01	0.01	0.01	0.01	0.025	0.01	0.01		0.01	0.01	0.01	0.01	0.01
*Lar	Scope of method	Δ	Δ	Δ	Ω	Ω	Ω	D	Ω	Δ	Δ	D	Δ	Δ	D	D	D	₹	Δ	D	٥	О	О
hyl	pouleM	е	2		٦	٦				٦			2	-		1			٦		ı		-
met	% Kecovery	26	105		92.0	85				94			93	95.4		88			120		06		70
Isofenphos-methyl	(mg/kg)	0.493	0.467		0.57	965.0				0.59			0.553	0.51		0.472			0.583		9.0		0.599
fenk	(wð\kð) KF	0.01	0.01		0.01	0.02				0.01			0.01	0.01		0.01			0.02		0.01		0.01
ISC	Scope of method	۵	۵	ž	۵	۵	ž	Ϋ́	¥	۵	ž	Ϋ́	۵	۵	Ϋ́	۵	ΑA	ž	۵	Α̈́	Δ	Ϋ́	۵
	pouleM	е	2	-	٦	٦	٦	2	4	٦	-	1	2	-	1	1	1		٦	1	ı	ı	-
no	% Kecovery	102	105	105	89.5	95	9/	75	89.1	86	88	101	06	71.8	80	82	87		106	101	87	83	06
*Diazinon	Concentration (mg/kg)	1.342	1.56	2.12	1.66	1.2	0.707	1.37	1.183	1.58	0.93	1.51	1.35	1.2	2.36	1.19	1.52		1.69	1.44	1.4	1.256	1.39
*	(wâ\kâ) KF	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.025	0.01	0.01		0.02	0.01	0.01	0.01	0.01
	Scope of method	Δ	Δ	Δ	Δ	Δ	Δ	Q	Ο	۵	Δ	Q	۵	۵	D	D	D	ž	Δ	D	۵	D	Ω
	Гар	890	690	070	071	072	073	074	075	9/0	077	078	620	080	081	082	083	084	085	980	087	088	680

APPENDIX 7. Methods used by participants for determining pesticides.

	podteM			- 2	4		- 1	- 1								2	2	- 2	1	4	- 2		
yl Sum	% Kecovery	70		100				104	97.72										104				
Methomyl Sum	of method (mg/kg) Concentration	0.010 0.282	0.01	0.008 0.264	0.01 0.252			0.01 0.255	0.05 0.227						0.01	0.01	0.01	0.01	0.02 0.237	0.01	0.02 0.279		
	Scope	Ω	2	٥	٥	₹	Ϋ́	٥	Q	Ϋ́	ž	Ϋ́	ž	Ϋ́	Ϋ́	QN	QN	N Q	Q	2		NA	ž
_	podtaM		ო	2									7	-			1, 2	ო	ო	_	_		
thior	% Kecovery	26	68	86	%	02	70-120	8	78.10	103	70.3	80	101.1	82		20	82	%	84	103.5	8	92.1	
*Methidathion	Concentration (mg/kg)	0.432	0.498	0.56	0.511	0.439	0.4585	0.536	0.353	0.476		0.371	0.316	0.51		0.29	0.62	99.0	0.333	0.294	0.397	0.472	
Met	(wð\kð) KF	0.01	0.01	0.002	0.01	0.02	0.025	0.01	0.02	0.01	0.0045	0.02	0.02	0.04	0.01	0.010	0.02	0.01	0.02	0.01	0.01	0.02	
*	Scope of method	Δ	Δ	Δ	Δ	Δ	Δ	Δ	٥	Δ	Q	Ω	Δ	Δ	₹ Z	٥	٥	Δ	٥	Δ	Ω	D	₹
SO	podleM	ო	m	-	9	_	-	-	-			-				- 1	2	2	5	_	_	1	
oph	% Kecovery	110	69	80	84	110	70-120	18	56.68			75				70		98	9/	130	92	90.7	
*Methamidophos	Concentration (mg/kg)	0.482	0.407	0.597	0.407	0.658	0.487	0.437	0.295			0.192				0.162		0:308	0.202	0.461	0.479	0.316	
1etha	(w3\k3) KF	0.01	0.01	0.008	0.01	0.02	0.05	0.01	0.02			0.01			0.01	0.010	0.02	0.01	0.01	0.01	0.01	0.02	
*	Scope of method	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Q	ž	₹ Z	Q	ž	ž	ž	Δ	QV	Δ	۵	Δ	Δ	О	ž
ס	pouteM	ო	ო	2	4	-	-	-	-	7	-	-		7	ო	-	5	5	က 	-	-		-
1 and yl-M	% Kecovery	76	82	66	9	09	70-120	81	86.51	113	90.45	85		88	16	79	85	112	88	78.9	95		66
Metalaxyl ar Metalaxyl-M	Concentration (mg/kg)	0.4	0.445	0.569	0.442	0.43	0.835	0.41	0.33	0.411	0.166	2.23		0.5	0.401	0.3	0.46	0.338	0.411	0.404	0.47		0.38
*Metalaxyl and Metalaxyl-M	(wð\kð) KF	0.01	0.01	0.002	0.01	0.02	0.075	0.01	0.05	0.02	0.0067	0.02		0.05	0.01	0.010	0.02	0.01	0.02	0.01	0.01		0.01
*	scope of method	۵	۵	۵		۵	۵	٥	a	۵	Ω	a	¥			Q	Q		۵	۵		¥N	٥
thrin	Wethod	-	-	-	6	-	٦	-	-	က	-	-	-	-	-	1	1, 2	-	3	ю	-	1	-
halothrin	% Kecovery	95	66	96	66	09	70-110	110	91.62	26	85	80	7.86	88	85	104	06	96	92	129	95	70.2	105
*Lambda-Cy	Concentration (mg/kg)	0.277	0.23	0.369	0.262	0.175	0.205	0.354	0.186	0.376	0.0247	0.674	0.236	0.27		0.181	0.37	0.452	0.238	0.272	0.234	0.155	0.34
nbdc	(wð\kð) KF	0.01	0.01	0.008	0.01	0.02	0.025	0.01	0.02	0.01	0.0027 0.0247	0.02	0.05	0.02	0.01	0.010	0.05	0.01	0.02	0.01	0.01	0.05	0.01
*Lan	scope of method	Δ	۵	۵	Δ	Δ	۵	۵	۵	Δ	۵	۵	۵	Δ	9	Ω	Δ	Δ	Ω	Δ	Δ	D	Ο
Ιγι	Method		ı	2	3	ı	1	1	1							1		-	3		ı		
Isofenphos-methyl	% Kecovery		86	100	105	80		92	67.37							82		9.2	92		85		
-sou	Concentration (mg/kg)		0.575	0.715	0.448	0.353		0.632	0.388							0.235		0.731	0.278		0.335		
fenp	(wâ\kâ) BF		0.01	0.002	0.01	0.02		0.01	0.02						0.01	0.010		0.01	0.05		0.01		
Iso	scope of method	¥ Z	۵	۵	Δ	Δ	¥	۵	Ω	₹	¥ Z	₹	ž	₹	ž	Ω	¥ Z	Δ	Ω	₹	۵	ΑN	₹ Z
	Method	2	3	1	2	_	1	1	1	2	1	1	_	1		-	1, 2	3	3	1	-	1	1
on	% Kecovery	69	84	109	103	06	70-110	92	62.79	108	90.2	85	96.2	26	92	75	80	86	85	2.68	88	93	95
*Diazinon	Concentration (mg/kg)	1.173	1.36	2.04	1.12	1.097	1.2504	1.77	1.32	1.302	0.198	1.37	0.79	1.1	1.15	0.582	1.35	1.82	0.855	0.868	1.0.1	1.228	-
*	(wð\kð) KF	0.01	0.01	0.008	0.01	0.02	0.01	0.01	0.02	0.01	0.003	0.02	0.01	0.02	0.01	0.010	0.02	0.01	0.02	0.01	0.01	0.02	0.01
	Scope of method	Ω	۵	۵	Ω	۵	۵	Ω	Q	۵	۵	Q		Ω	Ω	Q	Q	Ω	Q	٥	٥	Q	Q
	Гар	060	160	092	860	094	095	960	760	860	660	100	101	102	103	104	105	901	107	108	601	110	111

APPENDIX 7. Methods used by participants for determining pesticides.

_	porteM								2	က				2	e 								
/I Sum	% Kecovery								72	94	>80			95	06						111		78
Methomyl Sum	(mg/kg) Concentration (mg/kg)								1 0.22	1 0.21	1 0.318			0.005 0.318	0.248						0.005 0.326		0.01 0.261
Me	BF of method Scope	₹ Z	 ≰ Z	 ≰ Z	 ₹	Ž	₹ Z	 ₹ Z	D 0.01	D 0.01	D 0.01	 ₹ Z	¥ Z	D 0.00	D 0.1	 ₹	 ≰ Z	 ≰ Z	 ₹	 ₹ Z	D 0.00	 ∀ Z	D 0.0
	bodteM	-	-	-		2	3	-	1	2	7	-	1	-	-	2		-	-	-	-	GC	2
hion	% Kecovery	84	83	66		76.63	104	78.6	86.7	8.98	8<	7.5	74.6	103	77	102.3		70.0	92.6	91	87	9.62	87
*Methidathion	Concentration (mg/kg)	0.446	0.497	0.333		0.36	0.389	0.429	0.58	0.485	0.492	0.425	0.427	0.438	0.344	0.55		0.404	0.381	0.388	0.492	0.49	0.459
Meth	(wâ\kâ) KF	0.01	0.010	0.020		0.007	0.020	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.05	0.02		0.01	0.08	0.02	0.005	0.01	0.01
*	oę wethod Scope	Δ	Δ	Δ	ž	Δ	۵	Δ	Δ	Ω		Δ	۵	۵	Ω	Ω	ž	Δ	Δ	Δ	Δ	۵	
SO	bonteM	-	-	_		2			2	7	2			2	ю	2			_	2	-		2
*Methamidophos	% Kecovery	98	86	86		76.63			50	84	^80			26	06	120.4			87.11	79	29		78
amic	Concentration (mg/kg)		0.498	0.215					0.4	0.402	0.614			0.358	0.388	0.77			0.506	0.262	0.447		0.189
/etha	(wð\kð) KF	0.01	0.010	0.010		0.011			0.01	0.01	0.01			0.005	0.01	0.05			0.08	0.003	0.005		0.01
*	Scope of method	Q.	۵	۵	ž	Q	¥ Z	¥ Z	Q	۵	۵	ž	Ϋ́	٥	Q	О	ž	ž	۵	۵	۵	A A	Q
~	Method	-	-						2	2	2	-	2	-	4					-	-		ю
*Metalaxyl and Metalaxyl-M	% Kecovery	92	94						100	73	>80	80	8.06	26	06					96	06		81
Metalaxyl an Metalaxyl-M	Concentration (mg/kg)	0.559	0.485						0.38	0.4	0.47	0.496	0.586	0.508	0.493					0.329	0.441		0.461
Meta	(wð\kð) KF	0.01	0.010						0.01	0.01	0.01	0.2	0.01	100	0.02					0.02	0.005		0.01
*	Scope of method	Δ		 Ž	 Ž	¥	Ž Ž	¥ Ž	۵	Δ	Ω	Δ	Δ	Δ	Δ		ž	ž	ž	Δ	Δ	¥ Z	Ω
thrin	Method	1	1	3	1	1	1	ı	3	1	2	ı	1	ı	1	1		2		ı	2	GC	-
halothrin	% Kecovery	82	91	85	96	94.52	93	08	113	104	>80	75	62.6	95	125	91.9		85.0		85	69	104	87
*Lambda-Cy	Concentration (mg/kg)	0.237	0.22	0.23	0.329	0.249	0.302	0.312	0.27	0.251	0.191	0.502	0.188	0.291	0.338	0.28		0.299		0.269	0.251	0.122	0.285
nbdu	(wð\kð) KF	0.01	0.010	0.050	0.01	0.001	0.010	0.01	0.01	0.01	0.01	0.1	0.01	0.01	0.04	0.02		0.01		0.002	0.01	0.005	0.01
*Lar	scope of method	۵	Δ	Δ	Δ	Δ	۵	Δ	۵	Δ	Ω	Δ	۵	۵	Δ	Δ		Δ	ž	Δ	Δ	О	٥
hyl	Method								ı	2	2			1	1						2		
Isofenphos-methyl	% Kecovery								80	76.8	08×			95	06						84		
-sou	Concentration (mg/kg)								0.43	0.355	0.626				0.582						0.492		
fenp	(wâ\kâ) KF								0.01	0.01	0.01			0.01	0.01						0.005		
lso	scope of method	ž	ž	ž	ž	ž	¥	Ž	۵	Δ	Δ	Ž	ž	g	۵	ž	ž	ž	ž	ž	Δ	Ϋ́	₹
	Method	-	-	-	-	-	ю	-	ı	2	2	-	-	-	-	2		-		-	-	GC	2
on	% Kecovery	88	9/	91	92	83.50	112	9.86	80	92.5	8<	80	75.2	96	06	102.7		76.0		80	87	88.4	87
*Diazinon	Concentration (mg/kg)	1.519	1.126	0.518	1.47	1.095	1.48	1.358	1.06	1.04	1.38	0.92	1.183	1.15	1.523	1.13		0.955		96.0	1.46	1.17	0.932
*	(wð\kð) KF	0.01	0.010	0.010	0.01	0.001	0.010	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02		0.01		0.01	0.005	0.01	0.01
	scope of method	Δ			Δ		۵	Δ	Δ		Δ	Δ		Δ	Δ	Δ	ž	Δ	ž	Δ	Δ	Ω	Ω
	Гар	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133

APPENDIX 7. Methods used by participants for determining pesticides.

	Method		3	- 2							2	5						
/I Sum	% Kecovery		83	98	112				0		85	94	89		70			
Methomyl Sum	(mg/kg) Concentration (mg/kg)		0.28	01 0.288	01 0.346				0.343		0.226	0.006 0.171	0.315		0.542			
Me	ol method		0.02	10.0	0.01				0.01		0.02		0.01		0.05			
	Scope	Z Z		٥	٥	ž	Ž Z	Ž Ž		2 NA	٥	1 D	٥	Z A	٥	Ž	Ž	Ž
UC	% podleM		.8					5 - 2			5 1		5 ! 1			3) ; 2	
ıthic	Кесолегу		75.8	94		70-120	118.	6 105	0	73.4	105	86	105	001	9	103	06	
*Methidathion	Concentration (mg/kg)		0.551	0.426	0.542	0.601	0.376	0.5636	0.495	0.32	0.561	0.37	0.293	0.457	90.0	0.474	0.46	
Mei	(wâ\kâ) KF		0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.004	0.02	0.02	0.01	
*	ot method of method	ΝΑ	a						a		a	Q	a		۵	a		₹
os	poqtaM		2	2	-	-			-	7	-	1	2	-	2		2	
opho	% Kecovery		115.0	18	72	60-120			99	75.7	09	80	72	100	70		70	
*Methamidophos	Concentration (mg/kg)		0.489	0.282	0.316	0.334			0.754	0.38	0.355	0.156	0.356	0.458	0.554		0.341	
ethc	(w∂\k∂) KΓ		0.01	0.01	0.01	0.02			0.01	0.01	0.01	0.02	0.01	0.002	0.01		0.05	
*	Scope of method	¥ Z	Δ	Δ	Δ	Δ	ž	ž	۵	Δ	۵	D	۵	Δ	Δ	¥ Z	О	ž
	Method		1	2	2	-		2	2		1	1	1		-	1	1	1
and I-M	% Kecovery		06	111		75-110		94	86		85	85	901		70	105	96	113
laxyl Ilaxy	(mg/kg)		0.332	0.416	0.362	0.366		0.44	0.485		0.466	0.25	0.596		0.307	0.423	0.445	0.57
*Metalaxyl and Metalaxyl-M	(wâ\kā) KF		0.01	0.01	0.01	0.01		0.01	0.01		0.04	0.02	0.01		0.05	0.05	0.01	0.02
\ \ *	of method	 ≰ Z	 _				 Ž) O		 ≸		Δ		Δ
nrin	porteM	1	٦	2	-		-	-	2	-	1	2	1	2	-	-	-	-
halothrin	% Kecovery	100	103		117		88.0		0	83.7	75	95	101	001		107	06	001
-Cyh	Concentration (mg/kg)	0.223	0.305	0.289	0.46		0.227	0.3904	0.249	0.24 8	0.24	0.21	0.171	0.261	0.187	0.315	0.196	0.31
*Lambda-Cy	(wâ\kâ)	0.010 0	0.01 0	0.01 0.0	0.01		0.01 0.0	0.01 0.0	0.01 0	0.01	0.02	0.01	0.01 0	0.01 0	0.02 0	0.02 0	0.01 0	0.01
am	of method																	
	2cobe	٥	О			ž						D		٥	٥	О	O	٥
ethyl	bohtaM								2									
-me	% Kecovery		95		128			86	104		75		108		8	110	71	
Isofenphos-methyl	Concentration (mg/kg)		0.426	0.366	0.832			0.5466	0.578		0.578		0.367		0.442	0.571	0.616	
fenk	(wâ\kâ) KF		0.01	0.01	0.01			0.01	0.01		0.01		0.01		0.05	0.05	0.01	
Iso	of method	₹	٥	Δ	Δ	ž	ž	Δ	٥	ž	۵	NA	۵	ž	Δ	۵	Q	₹
	Method		2	-	1	1	1	2	2	2	1	1	1	٦	-	-	2	-
uc	% Kecovery		99.2	87	85	70-110	100.9	102	0	76.3	80	85	107	80	09	86	77	115
*Diazinon	Concentration (mg/kg)		1.1		1.08	1.14 7	1.2	1.6357	1.47	99.0	1.32	1.14	0.508	0.868	1.425	_	1.287	9.
*	(wâ\kā) Kr		0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	0.05	0.01	0.01	0.01
	scope Scope	 ≰ Z	۵	Δ	۵	۵	۵	Δ	۵		۵) - O	۵	۵	Δ	۵	ο	
	Гар	134	135	136	137	138	139	140	141	142	143	144	145	146	148	149	150	151

	Wethod	_	7	7		_	m	2	т		7		_	-	13	4	m	2
SC	%	150	101	91		86	601	66			102		88	110	83.5	94	001	78
bhc	gecovery (mg/kg)										.525 1		375 8					
*Triazophos	(mg/kg) Concentration	0.482	1 0.721	0.639		0.010 0.532	1 0.612	1 0.631	2 0.326		0		0	1 0.91	1 0.611	9 0.568	1 0.618	2 0.681
*Tri	of method	0.005	0.01	0.002			0.01	0.01	0.02		0.01		0.05	0.01	10.01	0.009	0.01	0.02
	scope	٥			2 NA		Ω		Ω	ž		Ž	٥		Ž	Ω		Δ
7	% poqteM			2	.3 1,2			2			3				0.		3 2	
pric	Кесоvеry		06	06	142.3			102	78		112				102.0		123	104
aclo	Concentration (mg/kg)		1.13	0.915	0.846	0.453	0.961	0.889	0.917		1.36				0.809		0.959	0.973
*Thiacloprid	(w3\k3) KF		0.01	0.002	0.010	0.010	0.01	0.01	0.01		0.01				0.01		0.04	0.01
•	Scope of method	ž	Δ	۵	۵	Δ	Δ	Δ	Δ	ž	Δ	ž	ž	ž	۵	ž	Δ	Δ
	Method	-	1	1	2	1	3	ı	3	1	1	2	2	2	10	3	ı	2
one	% Kecovery	09	120	108	102.3	86	104	104	16	1.69	101	107	87	75	111	89	06	96
*Procymidone	Concentration (mg/kg)	0.523	0.942	0.898	0.983	0.746	0.75	0.823	0.681	0.662	6:0	0.0119	109'	0.73	0.81	0.983	0.821	0.911
roc	(mg/kg) RL	0.012	0.01	0.006	0.010	0.010	0.01	0.01	0.01	0.01	0.01	0.01 0.0	0.02 0.	0.01	0.01	0.02	0.01	0.01
*	Scope of method	0		0	0	о О												ο
	bodteM	_	2	-	1, 2	-	е	8	е	-	2		-	-	6	-	3	2
əc	% Kecovery	69	26	001	142.6	78	Ξ	601	120	90.3	011		68	84	97.4	68	16	
*Phosalone	(mg/kg)	0.322	0.529	0.424	0.396	0.368	0.383	0.46	.391	0.3	0.46		0.24	6.0	0.391 9	0.366	0.382	0.418
3hos	(mg/kg) Concentration							<u></u>	0									
*	ВГ	0.025	0.01	0.005	0.010	0.010	0.01	0.01	10:01	0.0	0.01		0.05	0.01	0.01	10.0	0.02	0.01
	Scope of method	٥	٥	٥	٥		٥	٥			٥	Ž Ž	О	٥	۵		Q	٥
Sum	Wethod		7	-	7	-	რ 	ო	ო	_	-		-		9, 13	-	-	1, 2
thyl S	% Kecovery		76	100	102.6	88	92		72	76.4	06		98	06	91.6	80	98	
*Parathion-Methyl	Concentration (mg/kg)		0.43	0.357	0.17	0.225	0.277	0.399	0.209	0.076	0.32		0.332	0.59	0.264	0.104	0.144	0.352
thior	(ma/kg)		0.01	0.010	0.010	0.010 0	0.01	0.01	0.02 0	0.01	0.01		0.05 0	0.02	0.01	0.025 0	0.01	0.01
ara	of method RL																	
*	2cobe Wethod	Ž	3	2 D		2 D		3	2 D	2 D	3	Z Z	О	٥	4 D	2 D	2 D	
	%		95 3	87	111.2	85	71 1	86		80.6	001	30			89.5	93 - 2	100	100
ımyl	Kecovery (mg/kg)		0.279	0.24 8	0.237	0.197	0.23	0.271	0.243	0.177 8	0.25	0.356			0.258 8	0.158	0.292	0.312
*Oxamyl	(mg/kg) Concentration		0.01 0.	0.005 0	0.010 0.	0.010 0.	0.01 0	0.01 0.0	0.01 0.0	0.01 0.	0.01 0	0.01 0.			0.01 0.0	0.01 0.0	0.01 0.	0.01 0.
*	of method RL	 ≰ Z		0.0	0.0	0.0	о 	 0	 O		 O.	О.	 ≰	 ≰	О.	 O	 O	 0.
	ycobe		3	2	_	2	_	8	8		8				12	2		_
souc	% Kecovery		93	9.5	106.4	78	06	26	88		75		85		92.5	16		83
otop	(mg/kg)		0.364	0.448	0.454 10	0.376	0.322	0.418	0.196		0.35		0.372		0.338 9	0.306		0.422
*Monocrotophos	(mg/kg) Concentration		0.01 0.3	0.002 0.4	0.010 0.4	0.010 0.3	0.01 0.3	0.01 0.4	0.03 0.		0.01 0.		0.05 0.0		0.01 0.3	0.01 0.3		0.01 0.4
*Mo	of method RL									∢		∢						
ν.	Scope	Z Z	D D	3	4 O	5 D	Q 9	0 4	0 6	N A	1 D	2 NA	3	4 A A	5 D	9	N AA	0 8
	Гар	100	000	003	004	002	900	007	600	010	011	012	013	014	015	910	017	018

APPENDIX 7. Methods used by participants for determining pesticides.

	Method	3		1	1	- 1	3		2	2		1	1	1	1, 2			2	
SOL	% Kecovery	81.4	70	66	80	114.0	97.8	84	115	114	79	103	92	71	96	98		106	95
ldoz	Concentration (mg/kg)	0.461	0.23	0.362	0.360	0.45	0.38	0.62	0.802	0.37	0.358	0.41	0.525	0.391	0.646	0.711		0.65	0.591
*Triazophos	(wð\kð) KF	0.01	0.02	0.05	0.05	0.02	0.01	0.01	0.01	0.025	0.01	0.01	0.02	0.01	0.010	0.01		0.01	0.01
*	scope of method	Δ	Δ		Δ	۵			Δ			Δ	Δ	۵	۵	Δ	₹		Δ
	Method	-	7			7	2		-	2	2	-	ო	2	-	2	-	2	2
rj	% Kecovery	94.5	70			104.6	102		101	70	66	100	113	09	66	66	88	100	26
*Thiacloprid	Concentration (mg/kg)	92.0	0.8			0.737			0.971	0.3	0.914	0.789	0.987	0.683	0.836	1.9.1	0.612	0.893	0.894
hiac	(wð\kð)	0.01	0.01			0.02 0	0.01		0.01		0.01	0.01	0.01 0	0.01	0.010 0	0.01	0.01	0.01	0.01
*	of method	0	0	 ≰ Z	¥ Z	0	О	₹	0	D 0.01		0	0	О	0.	0 0	0	0	0
	2cobe			Z	Z						۵							3	
Φ	podław	ო 					က 		2			2							
don	% Kecovery	20	70	102	88	92.3	107	96	113	85	88	82	92	29	80	100	101	104	95
*Procymidone	Concentration (mg/kg)	0.557	0.57	0.307	0.874	9.676	0.56	0.762	0.968	0.31	0.649	0.51	0.692	0.749	0.81	1.06	0.761	0.961	0.788
roc	(w3\k3) KF	0.01	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.125	0.01	0.01	0.01	0.01	0.010	0.01	0.01	0.01	0.01
*	Scope of method					Δ			Δ	٥		Δ					Δ		
	bonteM	ю	1	-	1	1	8	-	2	2	-	-	_	1	1, 2	-	2	7	_
Φ	%	ى: 	20			9.8	801		72		105	103	93	. 92	92 1				95
nolg	gecovery (mg/kg)	5 80.		7 - 94	5 - 80	5 100.		1 - 99								1 - 90	1 91	101	{
*Phosalone	Concentration	0.295	0.2	0.417	0.285	0.285	0.25	0.461	0.622	0.212	0.242	0.371	0.353	0.275	0.396	0.291	0.31	0.406	0.427
*	(mg/kg) RL	0.01	0.01	0.02	0.05	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.05	0.01	0.010	0.01	0.01	0.01	0.01
	Scope of method	۵	۵	٥	٥	٥	٥	۵	٥	۵	۵	٥	۵	۵	۵	۵	۵	٥	Ω
E _n	poqteM	ო	-	-	-	-		-	2	-	-	-	1,3	-	2	-		1, 2	-
thyl Sum	% Kecovery	71.2	70	107	77	112.7	91.3	06	112	81	96	18	ο.	84	94	85		100	
	(w∂\k∂)	- 59	4.	32	60	28	 e	73	15		0.313	51	57	99	35	93			52
-ion-	Concentration	0.265	0.24	0.232	0.109	0.358	0.3	0.373	0.115		0.3	0.251	0.257	0.366	0.335	0.093		0.341	0.252
*Parathion-Me	(mg/kg) RL	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.03	0.01	0.01	0.01	0.01	0.010	0.01		0.01	0.01
*Pc	Scope of method	۵	۵	٥	٥	۵	٥	۵	٥	N Q	٥	٥	۵	Ω	٥	٥	ž	۵	۵
	Wethod		2			2				2	2		e 	2		2		2	2
<u>></u>	% Kecovery	98	70			75.5	69.2		96	87.5	102	96	109	130	93	118		86	100
*Oxamyl	Concentration (mg/kg)	0.24	0.19			0.238	0.3		0.297	0.139	0.272	0.222	0.289	0.196	0.229	0.263		0.291	0.195
Ô *	(wâ\kâ) KF	0.01	0.01			0.01	0.05		0.01	0.05	0.01	0.01	0.01	0.01	0.010	0.01		0.01	0.01
	Scope of method	۵	۵	₹ Z	Ϋ́Z	۵	۵	ž	۵	۵	۵	۵	۵	۵	۵	۵	ž	۵	Ω
SC	Method	1	-				ε	-		5	5		რ 	2	-	-		2	2
hdc	% Kecovery	79.4	70			7.96	97.5	77	96	80.2	101	107		100	92	62		93	100
*Monocrotophos	Concentration (mg/kg)	0.391	0.17			0.516	0.52	0.583	0.46	0.288	0.458	0.381		0.416	0.394	0.143		0.455	0.426
ouc	(wâ\kâ) KF	0.01	0.01		{·	0.02	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.010	0.01		10.0	0.01
* *	Scope of method	۵	۵	 ₹ Z	¥ Z	۵	۵		۵	۵		۵	Q		0	۵			Δ
	dbJ	019	020	021	022	023	024	025	026	027	028	029	030	031	032	033	034	035	036

APPENDIX 7. Methods used by participants for determining pesticides.

	Method	-	2, 3	-	2	2	2	-	7	-	7	2	e	2	-	-		1, 2	
os	% Kecovery	96	86	901	75	103	80	83	68	02	126	91.0	88	96	92.7	84		. 26	\
hdo	Concentration (mg/kg)	0.567	0.631	0.565	0.37	0.644	0.63	0.587	0.344	0.623	0.568	0.676	0.489	0.518	0.628	.508		0.628	
*Triazophos	(wð\kð)	0.01 0.0	0.01 0.0	0.02 0	0.01	0.01 0	0.1 (0.010 0	0.005 0	0.01 0	0.01 0	0.02 0	0.02 0	0.005 0	0.002 0	0.01 0.		0.01	
*	Scope of method RL	۵)	۵	Δ	D - C	Δ	ο _	ο _	۵	Δ	Δ	D - C	О _	ο _	Δ	 ≰ Z	٥	 ₹
	bodteM	7	4	2	-	2		2	-	-	-		5	2	4	က		ъ	
rid	% Kecovery	9.2	94	100	26	66		78	93		9.2		76	110	106.5	81		86	
clop	Concentration (mg/kg)	0.778	0.962	1.115	0.972	0.851		0.924	0.692		.044	·	0.781	0.932	996.0	0.861		0.82	
*Thiacloprid	(wâ\kâ) KF	0.01	0.005	0.01	0.01	0.01		0.010	0.005		0.01		0.005	0.010	0.01	0.01		0.01	
*	Scope of method	۵) 		Δ	о О	 ≰ Z	 	Δ	 ≰ Z		 ≰ Z	о О	 О		Δ	 ≰ Z		 ≰ Z
	Method	-	, 2, 3	-	2	4	2	8	2	-	2	-	1	1	8	2		1, 2	1
one	% Kecovery	9.2	95 1,	001	06	6	70	71	66	20	102	0.101	105	71	92.4	16		- 26	107
*Procymidone	(wa/ka)	883	.813	0.875	0.759	0.735	0.71	0.702	0.711	.537	0.927	0.975	0.83	0.757	0.962 9	0.795		0.814	1.04
rocy	(mg/kg)	0								o 									
* Pr	oį wetpoq	0.01	0.01	0.02	0.01	0.01	90:0	0.010	0.005	0.01	0.01	0.01	0.02	0.005	0.005	0.01		0.01	0.01
	Scope	٥	3		Δ	О	О	٥		Δ	Δ	٥	О		٥	Δ	Ϋ́		Ω
	Method		1, 2,			4	2		7				2	2				1, 2	
one	% Kecovery	86	110	100	06	82	70	88	67	20	113	74.0	106	86	91.5	98		98	71
*Phosalone	Concentration (mg/kg)	0.371	0.34	0.415	0.339	0.361	0.38	0.423	0.245	0.349	0.380	0.362	0.316	0.172	0.451	0.411		0.620	0.338
*Ph	(wð\kð) KF	0.01	0.01	0.02	0.01	0.01	0.05	0.010	0.005	0.01	0.01	0.01	0.01	0.005	0.005	0.01		0.01	0.01
	Scope of method	۵	۵	۵	Δ	О	Ω	Δ	۵	۵	۵	۵	О	Ω	Δ	Δ	₹ Z	۵	Δ
Sum	Method	-	2, 3	-	2	1	2	-	2	-	2	-	3	1	-	-	1	1, 2	-
	% Kecovery	93	87	100	93	85	80	92	75	70	0	82	06	102	89.4		08	16	94
*Parathion-Methyl	Concentration (mg/kg)	0.386	0.364	0.507	0.18	0.283	0.14	0.351	0.303	0.0476	0.27	0.324	0.288	0.235	0.392	0.353	0.12	0.364	
oithio	(wð\kð) BF	0.01	0.01	0.02	0.01	0.01	0.1	0.010	0.005	0.01	0.01	0.02	0.01	0.005	0.002	0.01	0.01	0.01	0.01
*Parc	bodtem to) 	Δ	о 	0			Δ) 	О	о 	Δ) 		Q
*	Scope	2	4	2	-	2		2	-	-	-	8	5	2	4	3		-	
_	% Kecovery	26	18	100	101	96		80	120	,	108	75.0	105	98	87.8	16		99	
*Oxamyl	Concentration (mg/kg)	0.256	0.274	0.28	0.296	0.238		0.155	0.177		0.267	0.235	0.388	0.216	0.215	0.27		0.224	
ŏ *	(wâ\kâ) 'Br	0.01	0.005	0.01	0.01	0.01		0.010	0.005		0.01	0.01	0.01	0.010	0.005	0.01		0.01	
	Scope of method		0		Δ) 	¥ Z	ο	ο	ž		Δ) 	О	Δ	Δ	× × ×		 ≰ Z
Sc	bodteM	2	4	2		2			_	_		m	3	2	2	-			
phc	% Kecovery	86	100	100	101	93		70	83	70	88	92	87	104	101.2	93		84	
*Monocrotophos	Concentration (mg/kg)	0.472	0.525	0.605	0.467	0.441		0.292	0.35	0.115	0.494	0.456	0.367	0.397	0.451	0.505		0.481	
ono	(wð\kð) KF	0.01	0.005	0.01	0.01	0.01		0.020	0.005	0.01	0.01	0.01	0.02	0.010	0.005	0.01		0.01	
*	Scope of method	۵	۵	Δ	Δ	Q	 ₹	Δ	Δ	Δ	Δ	Δ	Q	۵	Δ	۵	 ₹	Δ	 ₹ Z
	Гар	037	038	039	040	041	043	044	045	046	047	048	049	050	051	052	053	054	055

APPENDIX 7. Methods used by participants for determining pesticides.

	Method	1		1	2	7			2, 4			2			1	1	1	1	
SOL	% Kecovery	100	95	94	95	6.66	67	95	93	92.1	117	88	123.1	100	89	113	93.5	95	06
opk	Concentration (mg/kg)	0.399	.528	0.383	0.852	769:	0.514	0.368	0.638	.544	.271	0.316	9.0	0.616	449	1.03	0.59	.626	0.317
*Triazophos	(mg/kg)	0.01 0	0.01 0.0	0.01	0.01	0.01 0.0	0.05 0	0.01	0.005 0	0.01 0.0	0.01 0.	0.01 0	0.01	0.01 0	0.01 0.	0.01	0.01	0.02 0.	0.03 0
*	of method RL	0	О О	 0	0	0 -	о О		<u>о</u>	О	о 	0 - 0	О О	О	0	0 -	 O	 O	О
	Scope	-	4	ю	-	-	2	က	-	-		2		2	2	2	2		
O	% 4104020V	001	103	- 26	96	105	001		26	103.8		95		88	94	94	95.4		
*Thiacloprid	Kecovery (mg/kg)			108.				804	68:	868 10				.801		966			·
iacl	(mg/kg) Concentration	1 0.648	1 0.751	0	1 0.854	1 0.926	15 0.823	0	0	0		1 0.65		0	1.00	0	1 0.78		
*	אר	0.01	0.01	0.01	0.01	0.01	0.005	0.01	0.005	0.01		0.01		0.01	0.0	0.03	0.01		·
	Scope of method	٥	Ω	۵	۵	٥	۵	۵	۵		ž	Ω	Ϋ́		٥	۵	٥	ž	Ž
	Method	7	ю	7	2	2	_	2	<i>г</i>	2	_	1	-	ε	_	-	_	-	_
done	% Kecovery	80	103	91	107		92	101	102	88.3	88	100	92.8	88	88	901	91	83	06
ymic	Concentration (mg/kg)	0.637	0.786	0.482	0.94		0.884	0.715	0.888	0.826	0.517	0.525	0.84	0.792	0.777	0.888	0.93	0.730	0.571
*Procymidone	(wâ\kâ) KF	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.05	0.01	0.01	0.01	0.02	0.02	0.01
*	Scope of method	۵	۵		Δ	Q Q	۵		۵	۵	Δ	۵	۵	۵		۵			Δ
	bodteM	-	е	-	2	-	-	2	3, 4	2	1	2	1	1	-	1	-	-	-
e	% 6/200201	001	119	102	06	104	93	66	114	91.0	118	125	95.5	103		9.5	96.5		06
*Phosalone	Kecovery (mg/kg)	.285	0.38	0.272	0.567	0.582	0.39		0.426	0.366 9	0.168	0.19	0.5 9.	0.479	0.28	0.477	0.38	0.443 8	0.432
Phos	(mg/kg) Concentration	.01 0.3	.01 - 0.	.01 -0.3		.0.5	.02 - 0.	.01 0.241	.01	.01 0.3	.01		.02	0.005 0.4	.01	.0. 10.	.01 -0.	0.02 0.4	0.04 0.0
*	of method RL	· 0	· · · · ·		D 0.01	0.	· · · · · ·	· 0	0	 O	о О	D 0.01	O	D:0	0.	0	· · · · · · · ·	0	0
	gcobe Wethod					т			4			1+2		3					
thyl Sum		2				J.			κ̂										
	% Kecovery	46	109	06	100		67	66		101	82	90-100	105.7	66	91	86	102	85	85
*Parathion-Me	Concentration (mg/kg)	0.287	0.362	0.225	0.345	0.403	0.27	0.322	0.342	0.197	0.048	0.232	0.16	0.125	0.321	0.125	0.35	0.353	0.304
athic	(w3\k3) KF	0.01	0.01	0.01	0.01	0.01	0.05	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.01
*Para	Scope of method	Δ	Δ		Δ		Δ		Δ	Δ		Δ	Δ	Δ		Δ	Δ		
	bodteM	-	4	т	-	-	2	т	2	-		2		2	2		2		2
_	% Kecovery	100	26	26	68	93	96	69	901	103.8		66		101	96		83.6		85
*Oxamyl	Concentration (mg/kg)	0.281	0.226	0.244	0.259	0.253	0.203	0.201	0.242	0.234		0.271		0.259	0.237		0.17		0.253
× O*	(wa\ka) Br	0.01 10.0	0.01 0.0	0.01	0.01 0.0	0.01 10.0	0.005 0	0.01	0.005 0	0.01 0.0		0.01 0		0.01 0.0	0.01		0.01		0.04 0
	Scope of method	۵	۵	Δ	Δ		Δ		Δ	Δ	 ≸	Δ	ž	Δ		ž	۵	 ≰	Δ
S	Method	-	7	ю	-	-	2	т	2, 4	-	2	2		-	2	-	2	-	-
ohd	% Kecovery	001	88	26	92	88	96	76	93	99.3	09	06		98	92	92	70.2	82	75
*Monocrotophos	Concentration (mg/kg)	0.363	0.395	0.392	0.407	0.442	0.438	0.339	0.473	0.437	0.218	0.483		0.541	0.391	<0.01	0.14	0.18	0.507
Suoc	(wâ\kâ) BF	0.01	0.01	0.01	0.01	0.01	0.005	0.01	0.005	0.01	0.01	0.01		0.005	0.01	0.01	0.01	0.02	0.04
*W	Scope of method) 		Δ		О		О	о О		о 	 ₹	0		Q Q	ο		Δ
	dbJ	950	057	058	029	090	190	062	690	064	065	990	290	890	690	070	1/0	072	073
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

APPENDIX 7. Methods used by participants for determining pesticides.

	Method	2		-	-		2	-	-	-	-		-	-	-	-	-	е	ъ
SO	% Kecovery	78		901	02		95	105	9/	901	107		93	110	107	78	09	02	87
*Triazophos	Concentration (mg/kg)	0.413		0.53	0.36		0.616	1.29	1.77	0.644	899:		0.585	0.372	0.71	0.495	0.439	0.506	0.633
Iriaz	(mg/kg) RL	0.01		0.01	0.01		0.01	0.01	0.025	0.01	0.01 0.		0.01	0.01	0.01	0.02 0	0.01	0.01	0.01
*	of method of method	٥	 ≰ Z	Δ	Δ	 ≰ Z	۵	٥	 	٥		 ₹ Z		٥	۵	٥			Δ
	Method		2	2						7			7		2		ю	ю	က
orid	% Kecovery		Q.	92			88			84			81.8		92		100	78	84
clop	Concentration (mg/kg)			0.93			0.912			0.836			0.794		0.85		0.618	0.892	0.775
*Thiacloprid	(wâ\kâ) Kr		0.01	0.005			0.01			0.01			0.01		0.01		0.01	0.01	0.01
*	Scope of method	₹ Ž	Q		 ≰ Z	 ₹	Δ	 Ž	 ≰	Δ	 ≰ Ž	 ≰ Z	Δ	 Ž	Δ	 ≰	Δ		Δ
	poqtaM	-	ю	-	-	-	ю		-	ю	-	-	-	-	-	2		-	-
one	% Kecovery	98	95.2	104	02	100	86		85	92	94	102	109	80	66	94	20	06	87
/mid	Concentration (mg/kg)	115.1	0.75	0.78	0.54	98.0	0.788		1.62	0.819	0.741	0.662	0.79	0.799	092.0	.651	0.79	0.844	0.814
*Procymidone	(mg/kg)	0.01 0.0	0.01	0.01	0.01	0.01	0.01 0.0		0.025	0.01 0.0	0.01	0.03 0	0.02	0.01 0	0.01	0.02 0.	0.01	0.01	0.01
*	of method RL	0	0 	0 	0	0	0 	 ₹	···	0	0 	0	0	О	0	0	0 	0 	0
	2cobe Wethod	-	ю	1	-	1	2	-	1	1	1		1	1	-	1	ю	1	ю
Φ	, %	62	9.0		20	116	9.2	901	06	110			08	110	82			105	102
*Phosalone	Kecovery (mg/kg)	.397	.33 90.					.288			298		.524 8	.392 1					
hos	(mg/kg) Concentration	0	0	0.378	0.27		0.42	0	5 0.788	0.455			0	0	0.45	2 0.343	0.178	5 0.972	0.377
*	אר	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.025	0.01	0.01		10.0	0.01	0.01	0.02	0.01	0.05	0.01
	Scope of method	۵	۵	۵	۵	2	۵	۵	۵	۵	۵	ž	۵	٥	۵	۵	۵	۵	
Sum	Method	7	ო			-	2		-	-			-			-	-	რ 	-
	% Kecovery	71	89.1	91	70	100	96	86.5	80	82	125		105		100	88	50	70	
n-Me	Concentration (mg/kg)	0.121	0.103	0.194	19.0	0.35	0.34	0.647	0.553	0.105	0.151		0.256		0.323	0.112	0.0297	0.263	0.415
athio	(wð\kð) BF	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.025	0.01	0.01		0.02		0.01	0.02	0.01	0.01	0.01
*Parathion-Methyl	Scope of method								0			. ₹		 ≰		۵			ο
•	borheM		2	2		т	-			2			2		2		2	ю	ю
_	% Kecovery		26	88		74	96			98			62.9		93		50	70	82
*Oxamyl	Concentration (mg/kg)		0.336	0.32		0.18	0.29			0.247			0.168		0.27		0.288	0.242	0.255
× V	(wâ\kâ) Kr		0.004	0.005		0.02	0.01			0.01		{·	0.01	·	0.01		0.02	0.01	0.01
	scope of method	ž	Δ	Δ	 ₹	Δ	Δ	 Ž	ž	Δ	 ₹	 ₹	Δ	ž	Δ	ž	Δ		Δ
SC	Wethod		4	2			2		-	-			2				_د	ო 	ო
oydc	% Kecovery		2	92	02		78		8	87			109		87		001	110	79
*Monocrotophos	Concentration (mg/kg)		0.961	0.45	0.47		0.525		0.523	0.358			0.484		0.57		0.546	0.43	0.433
ono	(wð\kð) KF		0.2	0.005	0.02		0.01		0.025	0.01			0.01		0.01		0.01	0.01	0.01
*	scope of method	₹Z	۵	۵	۵	ž	۵	₹	۵	٥	₹	₹	۵	₹	۵	ž	۵	۵	۵
	Гар	074	075	076	077	078	620	080	180	082	083	084	085	980	087	088	680	060	160

APPENDIX 7. Methods used by participants for determining pesticides.

	Method		9				-	2		-	2	2	-			2		1	_
sou	% Kecovery	Ξ	110	70	70-120	95	89.89	83		85	88	73	121	75	80	120	88	91.5	80
Jdc	Concentration (mg/kg)	0.888	0.642	0.309	0.538	0.663	0.372	0.766		.539	.571	0.62	.501	272	0.71	0.927	0.237	0.364	0.377
*Triazophos	(wð\kð)	0.002 0	0.01 0.0	0.02 0	0.05 0	0.01 0.0	0.01 0.0	0.01		0.02 0.	0.01 0.	0.05	0.01 0.	0.010 0.272	0.02	0.01 0.0	0.02 0	0.01	0.01 0
*	of method RL	0.0	о. О		O.	· · · ·	о О	о О	 ₹	о О	о О	· · ·	о О	0.0	о О	0	0.	 0	O.
	2cobe Wetpoq	2	4		-] [Z					2		3		4	2
7	%	00			70-120											103		6.66	
pric	geco∧eιλ (ша\ка)		4 82		20	4				·				98 9		ļ			8 85
aclo	Concentration	1.12	0.844		0.1	0.854				·				0.835		0.879	,	1.01	0.798
*Thiacloprid	(mg/kg) RL	0.002	0.01		0.05	0.01								0.010		0.01		0.01	0.01
	og method Scope	۵	۵	₹ Z	٥	٥	ž	ž	ž	ž	ž	₹ Z	ž	٥	₹ Z	۵	₹	۵	۵
	Method	-	2	-	-	2	_	-	-	_	_	_	က	-	-	-	4	2	-
done	% Kecovery	102	92	06	70-120	105	72.94	96	80.7	06	71.2	87	94	68	9.5	86	68	94.6	94
ymic	Concentration (mg/kg)	0.934	0.8	0.569	1.825		0.799	90.70		3.19	909.0	0.7	0.889	0.348	0.71	0.923	0.522	1.34	0.677
*Procymidone	(wð\kð) BF	0.002	0.01	0.02	0.025	0.01	0.02	0.01	0.0022	0.01	0.02	0.02	0.01	0.010	0.01	0.01	0.02	0.01	0.01
*	Scope of method	۵	Δ	۵	۵	۵	۵	۵	Q.	۵	Δ	۵	۵	۵	Ω	۵	۵	۵	Ω
	Wethod	-	2	-	-	1	-	3		-	2	2	1	-	1, 2	ю	ъ	-	-
ne	% Kecovery	107	114	08	70-120	001	73.05	87		85	91.6	87	113	75	06	26	06	99.1	8
*Phosalone	Concentration (mg/kg)	0.744	0.409	0.184	0.5665	0.49	0.255	0.415		0.714	0.255	0.45	0.371	0.183	0.57	0.62	0.193	0.221	0.198
*Phc	(wâ\kâ) Kr	0.008	0.01	0.02	0.05	0.01	0.05	0.01		0.02	0.05	0.05	0.01	0.010	0.02	0.01	0.05	0.01	0.01
	Scope of method	۵	Δ	۵	۵	۵	Δ	۵	ž	Δ	Δ	۵	۵	۵	Ω	۵	۵	۵	Δ
пп	Method	-	က	-	_	ო	_	2		_	2	_	₈	_	1, 2	2	m		_
thyl Sum	% Kecovery	109-115		80	70-110	87	67.00	110		85	130.7	88	79	88	06	101	92	76.6	
*Parathion-Me	Concentration (mg/kg)	0.47	0.123	0.412	0.308	0.276	0.0822	0.117		0.398	0.259	0.15	0.075	0.055	0.14	0.383	0.07	0.212	0.231
thior	(mg/kg)	0.008	0.01	0.02 0	0.05 0	0.01	0.02 0.	0.01		0.02 0	0.02 0	0.05	0.01	0.01	0.01	0.01	0.02	0.01	0.02 0
Para	of method	 0	о 	0	0	0	О	о 	 ≰ Z	0	о 	0	0	0	0	0	0	0	0
*	Scope	2	4	-	_	_	-							2		2	_	4	2
	% Kecovery	9.5	86	70		96	91.88									8	112	74.3	68
*Oxamyl	Concentration	0.223	0.238			869.0	0.274 9							.275		0.198	0.218	0.235 7	0.241
×O _*	(mg/kg) RL	0.002 0	0.01 0.0	0.05		0.01 0.0	0.05 0							0.010 0.275		0.01 0.0	0.01 0	0.01	0.01
	scope of method	۵	Δ	 Q	¥ Ž	Δ	Δ	¥ Ž	₹ Ž	ž Ž	 ₹	¥ Z	¥ Z	۵	₹	Δ	Δ	Δ	Δ
S	poqteM	7	9	_	-	-				_				-	7	7			_
ophc	% Kecovery	103	93	110	70-120	9.2				85				7.1		92		128.7	88
*Monocrotophos	Concentration (mg/kg)	0.404	0.374		0.1789	0.369				0.573				98.0		0.312		0.558	0.418
ono	(wâ\kâ) KF	0.04	0.01	0.02	0.05	0.01				0.02				0.010	0.02	0.01		0.05	0.01
*	oţ weţµoq 2cobe	Δ	Δ	 Q	Δ	Δ	ž	 Ž	ž	Δ	 ₹	 ₹	₹ Ž	۵	Q	۵	ž Ž		Δ
	rap	092	660	094	095	960	260	860	660	100	101	102	103	104	105	106	107	108	109

APPENDIX 7. Methods used by participants for determining pesticides.

*Monocrotophos *Oxamyl *Parathion-Methyl Sum	*Oxamyl *Parathion-Methyl	*Oxamyl *Parathion-Methyl	*Oxamyl *Parathion-Methyl	*Parathion-Methyl	*Parathion-Methyl	*Parathion-Methyl	\geq	\geq	\geq	\geq	L		*	*Phosalone	llone		Ŷ	*Proc	*Procymidone	one		*Thia	*Thiacloprid		*Tria	*Triazophos	S
Recovery (mg/kg) (mg/kg)	Concentration (mg/kg) Recovery Rec	Recovery Recovery Rethod Concentration (mg/kg) Recovery Recovery	Scope of method (mg/kg) Recovery Recovery Recovery Recovery Rethod of method of method	PE (mg/kg) Concentration (mg/kg) Recovery Method Scope of method RL RL	Concentration (mg/kg) Recovery Retcope of method RL RL RL	Recovery Rethod Scope of method RL RL	Scope of method (mg/kg)	(mg/kg) Concentration			% % Keconelih	Scope of method	(mg/kg) RL	Concentration (mg/kg)	Kecovery	Method	Scope of method	(wâ\kâ) KF	Concentration (mg/kg)	% Kecovery	Scope	(m3\k3) BF ot method	Concentration (mg/kg) %	Method	(mg/kg) of method Scope	Concentration (mg/kg) Recovery	% bontaM
A 0.02	~	~	~	~				0.02					0.1	0.118	88%	1	ž				_	₹Z			D 0.01	0.724 93.8	ω.
AN AN					¥Z	Y Y	V V					٥	0.01	0.22	95	1	¥ Z		·			NA			D 0.01	0.56 98	
٧٧					Ϋ́	ΥZ	Vγ					X A					Q	0.01	0.773	98	1	NA			ΝΑ		
0.010 0.462 97 1 NA D 0.020 0.283	0.462 97 1 NA D 0.020	97 1 NA D 0.020	D 0.020	D 0.020	0.020	0.020	0.020).2	83	80	1 D	0.010	0 0.243	3 70	1	Q	0.010	0.739	77	1 1	NA			D 0.010	0.455 73	
NA D 0.020 0.0735	D 0.020	D 0.020	D 0.020	D 0.020	0.020	0.020	0.020		.073	35	102	1 D	0.050	0 0.279	102	2	Q	0.020	1.02	92	2	NA			D 0.010	0.286 10	108
NA					٧V	Ϋ́Z	ΨN					N A					ΑN				_	NA		-	ΨN		
₹Z ¥Z					¥Z	Ϋ́Z	ΥN					D	0.041	1 0.3	86.67	2	Q	0.01	9.0	70.00	1 1	NA			D 0.007	0.399 95.	50
NA D 0.020 0.091	D 0.020	D 0.020	D 0.020	D 0.020	0.020	0.020	0.020		90.0	1	93	3 D	0.026	6 0.368	3 127	3	Q	0.020	0.788	132	1	NA			D 0.010	0.458 12	125
NA D 0.001 0.091	D 0.01	D 0.01	D 0.01	D 0.01	0.01	0.01	0.01		0.0	1	85	I NA					Ω	0.01	0.47	89.9	1	NA			D 0.01	0.477 88	2
0.01 0.49 80 2 D 0.01 0.22 60 2 D 0.01 0.16	0.49 80 2 D 0.01 0.22 60 2 D 0.01	80 2 D 0.01 0.22 60 2 D 0.01	D 0.01 0.22 60 2 D 0.01	0.01 0.22 60 2 D 0.01	0.22 60 2 D 0.01	2 D 0.01	0.01		0.16		80	1 D	0.01	0.47	86.7	1	Q	0.01	0.78	125	3	D 0.01	0.9 88	2	D 0.01	08 69:0	C
0.01 0.355 87 2 D 0.01 0.245 110 3 D 0.01 0.125	0.355 87 2 D 0.01 0.245 110 3 D 0.01	87 2 D 0.01 0.245 110 3 D 0.01	D 0.01 0.245 110 3 D 0.01	0.01 0.245 110 3 D 0.01	0.245 110 3 D 0.01	110 3 D 0.01	0.01		2.12	:		2 ND	0.01		100	2	О	0.01	0.746	102	1	D 0.01	0.775 87	ε	D 0.01	0.475 10	106 2
0.01 0.483 >80 2 D 0.01 0.279 >80 1 D 0.01 0.236	0.483 >80 2 D 0.01 0.279 >80 1 D 0.01	>80 2 D 0.01 0.279 >80 1 D 0.01	D 0.01 0.279 >80 1 D 0.01	0.01 0.279 >80 1 D 0.01	0.279 >80 1 D 0.01	>80 1 D 0.01	D 0.01		3.23		>80	2 D	0.01	0.442	>80	2	Ω	0.01	0.826	>80	2	D 0.01	1.17 >80	1	D 0.01	0.494 >80	30 2
ND 0.01 1 D 0.01 0.099	0.01 1 D 0.01	0.01 1 D 0.01	0.01 1 D 0.01	0.01 1 D 0.01	1 D 0.01	D 0.01	D 0.01		0.0	66	78	1 D	0.05	5 0.314	1 80	1	Ω	0.02	0.735	74	1	ΑN			ΨZ		
0.01 0.251 57.2 2 NA D 0.01 0.329	0.251 57.2 2 NA D 0.01	57.2 2 NA D 0.01	NA D 0.01	D 0.01	0.01	0.01	0.01		3.3		75.2	2 D	0.01	0.342	99.4	2	Q	0.01	699.0	78.0	1	NA			D 0.01	0.549 102.	2.4 2
NA D 0.01 0.092	D 0.01	D 0.01	D 0.01	D 0.01	0.01	0.01	0.01		0.0	72	95	J D	0.01	0.29	96	1	Q	0.01	0.932	95	1	D 0.005	0.992 93	2	D 0.01	0.461 94	4
0.02 0.467 90 3 D 0.01 0.266 90 3 D 0.02 0.097	0.467 90 3 D 0.01 0.266 90 3 D 0.02	90 3 D 0.01 0.266 90 3 D 0.02	D 0.01 0.266 90 3 D 0.02	0.01 0.266 90 3 D 0.02	0.266 90 3 D 0.02	90 3 D 0.02	0.02		0.0	97	06	1 D	0.02	2 0.364	1 95	1	Ω	0.05	0.878	95	1 1	NA			D 0.02	0.623 90	С
0.05 0.45 75.5 2 NA D 0.02 C	0.45 75.5 2 NA D 0.02	75.5 2 NA D 0.02	NA D 0.02	D 0.02	0.02	0.02	0.02		0	0.07	80.4	2 D	0.02	2 0.22	97.2	2	Q	0.02	1.13	134.1	1	NA			D 0.04	0.51 97	0.
٧V					₹ Ζ	₹ Z	√Z V					Ž					ž				_	 ∢ Z			YZ YZ		

APPENDIX 7. Methods used by participants for determining pesticides.

	Method	1	1	1	1	GC	2		2	2	1		1 - 2	2	2	5		1	
hos	% Kecovery	70.0	80.4	77	87	89.1	8		87.6	901	102		118.5	107	94	75.2	110	92	106
*Triazophos	Concentration (mg/kg)	0.389	0.355	0.408	0.667	0.572	0.39		0.58	0.494	0.754		0.429	0.5356	0.232	0.29	0.715	0.438	0.343
Tria	(wð\kð) KF	0.01	0.08	0.01	0.01	0.01	0.01		0.01	0.01	0.01		0.01	0.01	0.01	0.01	0.01	0.01	0.01
*	scope of method	Δ	Δ	Δ	Δ	۵	۵	ž	Δ	Δ	Δ	₹ Z	Δ	Ω	Δ	۵	۵	Δ	۵
	Method				-		ر د		ო		2						5		2
orid	% Kecovery				102		82		85.4	102	85				96		80		84
Slop	Concentration (mg/kg)				1.02		0.928		0.831	0.903	0.755				0.965		0.662		0.915
*Thiacloprid	(wâ\kâ) KF				0.005		0.01		0.01	0.01	0.01				0.01		0.02		0.01
÷	Scope of method	 ₹ Z		 ≰ Z	۵	 ₹		 ≰ Z	۵	Δ		ž	ž	ž	۵	 ₹ Z	۵	 ≰ Z	Δ
	bonteM	_	_	-	2	_		_	-	1	1	_	1	2	2	-	-	2	-
၂ ခု	%											8	.2						9
idor	Кесолегу			4 - 92	88				104.2	06	105	3 70-100	- 6	66 9	2 115	78.3	0 0	8	106
*Procymidone	Concentration (mg/kg)			0.634	0.793		0.785		0.781	0.649	1.4	0.688	0.607	0.815	0.762	0.54	0.780	0.59	0.651
*Pro	(wâ\kâ) KF			0.02	0.005		0.01		0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.003	0.02	0.01	0.01
	scope of method	₹	₹	۵	۵	₹	Δ	¥	۵	۵	۵	Δ	۵	Ω	۵		Ω	۵	Δ
	Wethod	1	-		2	GC	2		2	1	1	-	ı	ı	2	-	-	1	-
ne	% Kecovery	85.0	82.5		18	94.2	85		9/	84	001	70-120	107.4	110	0	79.8	80	96	193
*Phosalone	Concentration (mg/kg)	0.308	.222		0.368	0.219	0.366		.519	0.205	0.502	0.328 7	0.321	0.5046	0.359	0.39	0.394	0.3	0.225
*Pho	(ma\ka)	0.01 0			0.005 0	0.02 0	0.01 0		0.01 0.	10	0.01	0.025 0	0.01 0	0.01 0.0	0.01	0.006	0.03 0	0.01	0.01
^	of method RL	0		 ≰ Z	0.	0 0	О		0		0	O	О О	О	0 0	0.	0	0	0
	Scope	-		_	2		2		2				1	2	_	2	_		_
thyl Sum																			
ethyl	% Kecovery	92.14		52	84		87		70.3	95	75	70-100	104.9	66		77.5	95	88	110
*Parathion-Me	Concentration (mg/kg)			0.283	0.288		0.419		0.128	0.234	0.244	0.128	0.094	0.1213	0.346	0.09	0.240	0.092	0.186
athic	(wð\kð) KF	0.08		0.02	0.005		10.0		0.01	0.01	10.0	0.03	10.0	10.0	0.01	0.01	0.02	0.01	0.01
*Par	scope of method	Q.	₹	۵	۵	ž	۵	¥ Ž	۵	۵	۵	۵	۵	Δ	Δ	۵	۵	Δ	۵
	Wethod						က		ო	2	2						2	5	2
<u></u>	% Kecovery				8		79		18	104	74				92		06	92	78
*Oxamyl	Concentration (mg/kg)				0.253		0.254		0.24	0.236	0.285				0.265		0.194	1.56	0.285
ô *	(wâ\kâ) KF				0.005		0.01		0.01	0.01	0.01				0.01		0.02	900.0	0.01
	Scope of method	ž	₹	₹ Z	۵	ž	Δ	ž	۵	Δ	۵	ž	ž	ž	۵	ž	Δ	۵	Δ
SC	Method		-						2	2	2						2		
phdc	% Keconell		80.53		92		87		88	91	19				06		80		110
*Monocrotophos	Concentration (mg/kg)		0.464		0.487		0.512		0.423	0.344	0.227				0.489		0.331		0.458
ono	(wâ\kâ) BF		0.08		0.005		0.01		0.01	0.01	0.01				0.01		0.02		0.01
*	Scope of method	₹	۵	 ≰ Z	Δ	ž	Δ	ž		Δ	Δ	ž	ž	ž	Δ	ž	Ω	 ≰ Z	Δ
	rap	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145

GENERAL PROTOCOL FOR EU PROFICIENCY TESTS FOR PESTICIDE RESIDUES IN FOOD AND FEED

Introduction

This protocol contains general procedures valid for all European Union proficiency tests (EUPTs) organised on behalf of the European Commission, Health & Consumer Protection Directorate-General (DG-SANCO) by the four Community Reference Laboratories (CRLs) for pesticide residues in food and feed. These EUPTs are directed at all National Reference Laboratories (NRLs) and Official Laboratories (OfLs) in the EU Member States. Laboratories outside this CRL/NRL/OfL-Network⁴ may be permitted to participate on a case-by-case basis after consultation with DG SANCO.

The following four CRLs for pesticides were appointed by DG-SANCO based on regulation 882/2004/EC5:

- CRL for Fruits and Vegetables (CRL-FV),
- CRL for Cereals and Feedingstuff (CRL-CF),
- CRL for Food of Animal Origin and Commodities with high Fat Content (CRL-AO) and
- CRL for Single Residue Methods (CRL-SRM)

NRLs are appointed by the National Food or Feed Authorities based on the provisions of Regulation 882/2004/EC, whereas OfLs are laboratories that are actively involved in providing residue data for the national control programme and/or the co-ordinated multiannual Community control programme.

According to Regulation 396/2005/EC⁶ all laboratories analysing samples for the official controls on pesticide residues shall participate in the Community proficiency test(s) organised by the Commission. The aim of these EUPTs is to obtain information regarding the quality, accuracy and comparability of the pesticide residue data in food and feed sent to the European Commission within the framework of the national control programmes and the co-ordinated multiannual community control programme. Participating laboratories will be provided with an assessment of their analytical performance and the reliability of their data - compared to the other participating laboratories.

EUPT-organisation

EUPTs are organised by individual CRLs or by more than one CRL in cooperation with one another.

For each EUPT an Organising Team is appointed by the CRL(s) that is responsible for the EUPT. This team is then responsible for all administrative and technical matters concerning the organisation of the PT, e.g. PT-announcement, production of the test material, undertaking the homogeneity and stability tests, packing and shipment of test material, and the handling and first assessment of participant's results.

A common Scientific Committee entailing the following two subgroups:

- a) An Advisory Group (AG) and
- b) An independent Quality Control Group (QCG)

-

For more information about the CRL/NRL/OfL-Network please refer to the CRL-Web-portal under: http://www.crl-pesticides.eu

⁵ Regulation (EC) No 882/2004 of the European Parliament and of the Council on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules. Published at OJ of the EU L191 of 28.05.2004

⁶ Regulation (EC) No 396/2005, published at OJ of the EU L70 of 16.03.2005, as last amended by Regulation 839/2008 published at OJ of the EU L234 of 30.08.2008.

consisting of expert scientists with long experience in pesticide residue analysis that have been appointed by the CRLs and approved by the DG-SANCO.

The role of the AG is to help the organisers in making decisions concerning the design of the EUPT: selection of pesticides to be included in the Target Pesticide List (see below), the establishment of the minimum required reporting levels (MRRLs), the evaluation and statistical treatment of the results and the drafting of the protocol and final report. The QCG has the additional function of supervising the quality of the EUPT and to assisting the CRLs with confidential aspects such as the choice of the pesticides, and levels to be present in the test material.

The EUPT-Organising Team, AG and QCG together form the **EUPT-Panel**.

Confidentiality:

In each EUPT the laboratories are given a unique code only known to themselves, the Organisers, and DG-SANCO. In the final EUPT-Report the list of participating laboratories will not be linked to their laboratory codes. It should be noted that the organisers, at the request of the Commission may present the results to the Standing Committee on the Food Chain and Animal Health on a country-to-country basis. It is therefore possible that a link between codes and National Reference Laboratories could be made, especially for those Member States where only one laboratory has participated. The owner of all EUPT data is DG SANCO.

Communication

The official language used in all EUPTs is English.

Communication between participating laboratories during the test on matters concerning this PT exercise is not permitted.

Announcement

The announcement of the individual EUPT will be issued at least 3 months before the test material is distributed to the laboratories. The announcement will be published on the CRL portal and distributed via mail to the NRL/OfL mailing list available to the CRLs. The announcement will contain an invitation letter, details on how to register and where to locate additional related documents, and some preliminary information on the specific protocol such as the tentative calendar, the name of the commodity expected to be used, and the tentative Target Pesticide List.

Specific Protocol

For each PT a Specific Protocol will be published at least 2 weeks before the test material is distributed to the laboratories. This protocol will contain all information the included in the invitation in its final version, information on payment for delivery service and/or participation. Furthermore, it will also include instructions on how to handle the test material upon receipt, on how to submit results, and other relevant information.

General procedures for reporting results

Laboratories are responsible for reporting their results to the Organiser within the stipulated deadlines. Each laboratory must only report one result for each of the pesticides present in the test material, using the analytical procedure(s) that they would routinely use for each compound for monitoring purposes. More than

one method may be used to cover all the compounds to be sought. The results (residue levels of the pesticides detected) must be, expressed in mg/kg.

Correction of results for recovery

According to the Method Validation and Quality Control Procedures for Pesticide Residues Analysis in Food and Feed, (Document SANCO in force each year) residues data should not normally be adjusted for recovery, when the mean recovery is within the range of 70-120%. If residues data are adjusted for recovery, then this must be clearly stated. Therefore laboratories are required to report whether their results were adjusted for recovery and if this was the case, the recovery factor used. No recovery factors are required where recovery adjustments resulted from using the 'standard addition(s)' approach, or from the use of isotopically labelled internal standards (with spiking of the test material at the beginning of the extraction procedures). In this case, the laboratories should report the technique used for calculation of the results instead of the recovery factor.

Evaluation of the Results

The procedures used for the treatment and assessment of results are described below.

False Positives

These are the results that show the apparent presence of pesticides that were listed in the Target Pesticide List, but which were (i) not used in the sample treatment, (ii) and not detected by the organiser, even after a repeat analysis. However, if a number of participants do detect the same additional pesticide, or if the concentration is above the MRRL, then a decision as to whether, or not, this should be considered to be a false positive result will be made on a case-by-case basis. Any results reported that are lower than the MRRL will not be considered as false positives, even though these results should not have been reported.

False Negatives

These are results for pesticides reported by the laboratories as "analysed" but that no numerical values were given, although they were used by the Organiser to treat the test material and were detected by the majority of participants at or above the MRRL.

Estimation of the true concentration (μ)

The "true" concentration will be typically estimated using the median of all the results. Therefore a **median** value for every compound present will be calculated and used as the assigned value. In special justifiable cases, the EUPT Panel may decide to use only part of the population of results to establish the median (e.g. using only results with z-scores ≤ 5.0).

- Establishing the standard deviation of the assigned value (target standard deviation)

The target standard deviation (δ) of the median will be calculated using a Fit-For-Purpose Relative Standard Deviation (FFP-RSD) approach, as follows:

$$\delta = b_i * \mu_i$$
 with $b_i i = FFP-RSD$ (= 0.25)

The percentage FFP-RSD is typically set at 25% based on experience from previous EUPTs. The EUPT-Panel reserves the right to also employ other approaches on a case-by-case basis considering analytical difficulties, and experience gained from previous proficiency tests.

z-scores

This parameter is calculated using the following formula:

$$z_i = (x_i - \mu_i) / \delta_i$$

Where \mathbf{x}_i is the value reported by the laboratory, $\mathbf{\mu}_i$ the assigned value, and $\mathbf{\delta}_i$ the standard deviation at that level for each pesticide (i).

Any z-scores of > 5 will be reported as "+5" particularly where summed z-scores of many pesticides are calculated (see SWZ below).

z-scores will be interpreted in the following way:

 $/z/ \le 2$ Acceptable

 $2 < /z/ \le 3$ Questionable

/z/ > 3 Unacceptable

For results that are considered to be false negatives, z-scores will be calculated using the MRRL or RL (the laboratory's Reporting Limit), if the RL < MRRL.

The EUPT-Panel will consider whether, or not, these values should appear in the z-score histograms.

However, a z-score will not be calculated for any false positive result.

Category A and B classification

The EUPT-Panel will decide whether to classify the laboratories in two groups, A and B. Laboratories that detected a sufficiently high percentage of the pesticides present in the test material (e.g. at least 90%), reported no false positives, and sought all the pesticides on the Target Pesticide List marked with an asterisk that were present in the test material, will have demonstrated 'sufficient scope' and will therefore be classified in Category A.

Combined z-scores

For evaluation of the overall performance of the laboratories within Category A, a ranking according to the sum of weighted z-scores (SWZ) will be calculated.

The sum of weighted z-scores formula uses the z-scores with a fixed maximum value of 5 for individual z-scores, using the following formula:

$$\sum_{i \leq 2}^{i \leq 2} |z| \cdot 1 + \sum_{i \geq 2}^{i \leq 3} |z| \cdot 3 + \sum_{i \geq 3}^{\infty} |z| \cdot 5$$
'Sum of weighted z-scores' (Z) =
$$\frac{\sum_{i=0}^{i \leq 2} |z| \cdot 1 + \sum_{i \geq 2}^{i \leq 3} |z| \cdot 3 + \sum_{i \geq 3}^{\infty} |z| \cdot 5}{n}$$

n = number of reported results

So for each laboratory:

- The first summation is the sum of all their /z-scores/ between zero to two, multiplied by 1.

- The second summation is the sum of all their /z-scores/ greater than two but less than or equal to, three, multiplied by 3.
- The third summation is the sum of all their z-scores greater than three, multiplied by 5.

This SWZ has the following classification similar to the z-score:

 $Z \le 2$ Good 2 < $Z \le 3$ Satisfactory Z > 3 Unsatisfactory

The sum of weighted z-scores is considered to be of lesser importance than the individual z-scores. Therefore the organiser, in agreement with the EUPT-Panel, retains the right not to use them if they are considered to be unhelpful.

Publication of results

The preliminary results from the EUPTs will be published within 2 months from the deadline for result submission.

The final report will be published shortly after the organiser and the EUPT-Panel have discussed the results. Taking into account that the EUPT-Panel normally only meets once a year, the final report may be published up to 8 months after the deadline for results submission.

Disclaimer

The EUPT-Panel retains the right to change any parts of this EUPT - General Protocol based on new scientific or technical information. Any changes will be communicated in due course.

EUPT-FV11 SPECIFIC PROTOCOL

For EU Proficiency Test for Pesticide Residues in Fruit and Vegetables (2009)

Introduction

This protocol is complementary to the General protocol for EU proficiency test for pesticide residues in fruits and vegetables. This Proficiency Test is organised by the CRL for Pesticide Residues in Fruits and Vegetables and covers multi-residue method analysis.

Test material

This proficiency test is based on the pesticide residues analysis of cauliflower. The cauliflowers are grown in Almeria, Spain.

The pesticide treatments will be carried out post-harvest using either commercial formulation in micro-spray solutions or using standard solutions. The test material will be frozen (using liquid nitrogen), chopped, homogenized and sub-sampled into polyethylene bottles that have previously been coded.

Ten of these bottles containing the test material, will be chosen randomly, and analysed to check for homogeneity.

The test material will be stored frozen (–20°C) prior to shipment to participants.

Two bottles, again chosen randomly, will be analysed over a period of time to confirm the stability of the pesticides in the test material (firstly when the test materials are shipped, and then a few days after the deadline for receipt of participants' results). There will be an extra analysis during this period maintaining the sample at room temperature for a few days to see if there is any degradation of any of the pesticides present in the sample.

These results will not be included in the statistical analysis of the proficiency test. The aim is solely to check stability during the shipping process and for the duration of the proficiency test.

After the results have been received from the laboratories, the Organiser will send a vial with the standard solution containing the pesticides that were used to treat the test material to those labs that opted to participate in the ring test.

Steps to follow

This Proficiency Test is made up of the following 7 essential steps:

- 1. To participate, each laboratory must complete the Application Form on-line, available on the CRL-FV Web page, before the deadline stipulated on the Calendar. It is recommended that laboratories download the Target Pesticide List from this web site. Laboratories should carefully read the Target Pesticide List, where important information about the reporting of the results, as well as the MRRLs, is listed. Labs should take note that the pesticide residue definitions within this exercise do not always follow Regulation 396/2005.
- 2. Laboratories will then receive an e-mail confirming their participation in this exercise, assigning them a Laboratory Code and sending the Specific Protocol. Laboratories will be able to access the restricted area containing the Forms (shown in the following steps) using their login information consisting of their laboratory code and their password, as chosen on the application form.
- 3. The payment procedure must have started before the 31st April. An e-mail showing the bank transfer confirmation, or similar, has to be sent beforehand. Payments without a **laboratory code** or **invoice number** to identify them will not be considered paid.
- 4. When the participant laboratories receive the test material (and not before), they must enter the restricted area and submit Form 1 on-line to inform the Organiser that they have accepted the test material. They will then receive a confirmation message. This Form has a deadline that must be met. If no test material has been received by the 8th May, please contact the Organiser by e-mail (pmedina@ual.es)
- 5. The participant laboratories must respect the deadline for submitting the results using Form 2 on-line.
- 6. After the deadline for results' submission has passed, those laboratories that requested the standard solution will be sent an aliquot. Results for the standard solution ring test must also be submitted on-line, using Form 3. Participation in the analysis of the standard solution is optional.
- 7. The Organiser will evaluate the results at the end of the proficiency test, once the deadline for receipt of the results has passed. The Organiser will send a hard copy of the Final Report to each participant laboratory. This report will include information regarding the design of the test, the homogeneity and stability test results, a statistical evaluation of the participant's results as well as graphical displays of the results and conclusions. Any other relevant information considered of value will also be included.

Analytical parameters

The test material contains several pesticides from the Target Pesticide List. Laboratories should carefully read the Target Pesticide List, where important information about the reporting of the results, as well as the Minimum Required Reporting Levels (MRRLs) is given. Where the residue definition includes more than one component, the results for the individual components, as well as the respective sum of components, calculated as stated in the residue definition, are to be reported.

For each pesticide and the relevant compounds included in the residue definitions, MRRL values have been set. The MRRL values will be used to help to identify false negative results and for the calculation of z-scores for false negatives.

Amount of Sample

Participants will receive:

• Approximately 300 g of cauliflower test material with incurred pesticides

• Approximately 300 g of 'blank' cauliflower test material.

Shipment of Samples

All samples will be frozen and packed in polyethylene boxes surrounded with dry ice and packed in boxes.

The shipment of the test materials will be carried out over a one-week period on the 4th May 2009. The Organiser will try to ensure that all the packages arrive at once. An information message will be sent out by email before shipment. Laboratories must make their own arrangements for the reception of the package. They must inform the Organiser of any public holidays in their country/city during the delivery period given in the calendar, as well as make the necessary arrangements to receive the shipment even if the laboratory is closed.

Advice on Sample Handling

Once received, the test material should be stored deep frozen (-18°C or less) before analysis to avoid any deterioration/spoilage of the test material. The test material should be mixed thoroughly (after defrosting), before taking the analytical portion(s).

All participants should use their own routine standard operating procedures for extraction, clean-up and analytical measurement and their own reference standards for identification and quantification.

Sample Receipt and Form 1

Once the laboratory has received the test materials it must be reported to the organiser via Form1 in http://www.eupt.es/crl/ by filling in the date of receipt, the condition of the test material, and its acceptance. The deadline for acceptance, or not, is the 8th May 2009. If the laboratory does not respond before this deadline the organiser will assume that it has received and accepted.

If any laboratory has not received the test material by 8th May, it must inform the Organiser immediately by e-mail (pmedina@ual.es)

Reporting Results and Analytical Methodology: Form 2

Once the laboratory has analysed the test material and is ready to submit their data, they must enter the result using Form 2 on–line in http://www.eupt.es/crl/. Most of the fields are OBLIGATORY and have to be filled in otherwise it will not be possible to submit results. This year, the analytical methods will be described once, and then they will be referred for each of the pesticides or metabolites found.

Before entering the results please read carefully the Target Pesticide List, since the residue definitions are not given on Form 2. For pesticides where the residue definition is a sum of a parent pesticide and other components, results for both the sum and the individual components must be reported.

It should not be assumed that only pesticides registered for use on cauliflowers are present.

All results must be reported on Form 2 by 1st June 2009, at the latest. Any results reported after the deadline will not be included in the statistical treatment, or in the final report.

The results (residue levels of the pesticides detected) must be, expressed in mg/kg.

Significant Figures:

Residue levels <0.010 mg/kg;

- to be expressed to two significant figures (e.g. 0.0058 mg/kg)

Residue levels ≥ 0.010 mg/Kg

- to be expressed to three significant figures (e.g. 0.0792, 0.156, 1.64, 10.3 mg/kg)

According to SANCO2007/3131 where - additional significant figures may be recorded for the purpose of statistical analysis -

Results should not be reported where a pesticide was not detected, was detected below the RL (Reporting Limit) of the laboratory, or below the MRRL. In this case, it should be recorded as 'ND'. The reporting limit will be used for information purposes only. If it was not sought, it should be recorded as 'NA'.

The results/residue levels must be reported as numbers.

Analytical Methodology

All laboratories are requested to provide information on the analytical method(s) they have used. The organiser may request the laboratory the publication reference from where the method has been taken or a brief description if internal country reference is given.

Standard Solutions: Form 3

After the results from the test material analyses have been received from the laboratories, the Organiser will send a vial with the standard solution mixture (containing the pesticides used to treat the test material) to those laboratories that opted to participate in the standard solution ring test on the Application Form. The relevant details of this standard solution are:

- (i) An aliquot of the standard solution (5mL) will be transferred into screw vials and stored at 20°C until shipment. Only two days will elapse between preparation and analysis of the solution and the shipment.
- (ii) The solvent used to prepare the solution will be acetonitrile.
- (iii) The concentration range of each compound present will be in the range 20-90 mg/L. Individual stock solutions in acetonitrile will be prepared by weighing out suitable amounts of each of the reference standards that were freshly procured for this test. Aliquots of these stock solutions of the individual compounds will then be taken and combined to make up a mixed standard stock solution within the range 20-90 mg/L. The results from the standard solution analyses will be statistically assessed by the scientific committee. The Qn RSD and FFP RSD will be calculated. The results will be presented in the Final Report.

CALENDAR

ACTIVITY	DATE
Publishing the Pesticide List and Calendar on the Web page	December 2008
Receiving Application Form from invited laboratories.	13 th March 2009
- Sample distribution.	4 th - 5 th May 2009
- Deadline for receiving sample acceptance: Form 1	9 th May 2009
- Deadline for receiving results: Form 2	9 th June 2009
OPTIONAL PARTICIPATION Standard solution distribution	15 th June 2009
- Deadline for receiving standard solution results: Form 3	6 th July 2009
Preliminary Report: only results, no statistical treatment.	31st July 2009
Final Report to the Laboratories	December 2009

Cost for shipment of the test material

All laboratories will be charged 100€ for cost shipment. For the payment procedures, each laboratory can specify their details and requests for invoice matters when applying for the test.

Contact information

The official organising group details are as follows: Universidad de Almería. Edificio Químicas CITE I Ctra. Sacramento s/n

04120 Almería - Spain Fax No.: +34 950015483

Organising team (e-mail and phone no.):

Amadeo R. Fernández-Alba. CRL-FV amadeo@ual.es +34 950015034 Paula Medina Pastor CRL-FV pmedina@ual.es +34 950015645 Octavio Malato RodríguezCRL-FV omalato@ual.es +34 950015531

Quality Control Group

Dr. Antonio Valverde, Professor University of Almería, Spain.

Mr. Arne Andersson, Head of Division NFA, Uppsala, Sweden.

Advisory Group

- Dr. Miguel Gamón, senior Chemist Laboratorio Agroalimentario, Valencia, Spain.
- Dr. Tuija Pihlström, senior Chemist NFA, Uppsala, Sweden.
- Dr. André de Kok, senior Chemist VWA, Amsterdam, The Netherlands.
- Mr. Stewart Reynolds, senior Chemist FERA, York, United Kingdom.
- Dr. Sonja Masselter, senior Chemist AGES, Innsbruck, Austria
- $\hbox{Dr. Michelangelo Anastassiades, senior Chemist CVUA, Stuttgart, Germany.}$
- Dr. Mette Erecius Poulsen, senior Chemist National Food Institute, Copenhagen, Denmark.
- Dr. Ralf Lippold, senior Chemist CVUA, Freiburg, Germany.

FORM 1

FORM 2

These are the explanations to fill in the tables.

PARAMETER	EXPLANATION
Pesticide	Pesticide Name
Scope of your Method	NA, ND, D
Residue Level	(mg/kg)
Reference Number	Number assigned by the laboratory
Analytical Procedure Used	Table F1
Sample Weight	(g)
Extraction Solvent/s	Table F2
Clean-up step	Table F3
Quantification Using Standards	S or M S: Standard/calibration in pure solvent M: Standard/calibration in matrix extract
Internal Standard	YES or NO
Injection Volume	(µL)
Injection Type	1None; 2Split/Splitless; 3Split; 4PTV, 5On-Column
Determination Technique	GC-ECD,GC-NPD, GC-FPD,GC-Q-MS, GC-QQQ-MS/MS,GC-ITD-MS/MS,GC-TOF/MS, HPLC-FL,HPLC-UV,HPLC-DAD,LC-MS,LC-MS/MS, LC-TOF/MS,
Confirmation Method	Give the confirmation technique used if any. e.g. GC-ECD,GC-NPD, GC-FPD,GC-Q-MS, GC-QQQ-MS/MS,GC-ITD-MS/MS,GC-TOF/MS, HPLC-FL,HPLC-UV,HPLC-DAD,LC-MS,LC-MS/MS, LC-TOF/MS
RL	(mg/Kg) RL: Reporting Level must be given for all pesticides. For pesticides with metabolites/degradation products, give it for the full residue definition of the pesticide as well as for individual compounds when required.
Was your result adjusted for recovery?	YES or NO In general, results are not adjusted for recovery, when the mean recovery is in the range 70-110%. If your results have been adjusted for recovery, then please report the Recovery Factor that you used Reference: METHOD VALIDATION AND QUALITY CONTROL PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED Document No. SANCO/2007/3131
Recovery	%
Recovery	Write "1" if recoveries reported originated from experiments performed at the same time as the test and write "2" if recoveries reported have been originated from validation data

Table F1.- Reference Methods

Number	Reference
1	§ 64 LFGB Nr. L 00.00-34 (DFG-Method) S 19, former § 35 LMBG Nr. L 00.00-34
2	Analytical Methods for Pesticide Residues in Foodstuffs. Ministry of Welfare, health and cultural affairs, Netherlands, Multiresidue Method 1, 3.1.2, 6th Ed, 1996
3	Fillion et al. Journal of AOAC International 78-5-1995
4	Specht W, Pelz S, Gilsbach W. Fresenius J Anal Chem. (1995) 353: 183 - 190
5	Gilvydis Dm Walters SM (1990) JAOA Chem. 73
6	Janson et al. Journal of Chromatography A 1023 (2004,9, 93-104
7	Klein, J., Alder, L. JAOAC 86, 1015 (2003); prEN 15637, ChemElut-method
8	Leothay, S. Et al. JAOAC 88 (2005)
9	LUKE, M.A., FROBERG, J.E., DOOSE, G.M., MASUMOTO, H.T. (1981); J. Assoc. Off. Anal. Chem. 64(5); 1187-1195
10	M. Anastassiades et al JAOAC 86 (2003) original QuEChERS-method
11	prEN 15662, citrate-buffered QuEChERS-method
12	Official Method of Analysis (1990) 15th Ed., 985.22 AOAC Arlington VA
13	Internal Method (specify the reference) OBLIGATORY

Table F2.- Extraction Solvents

Number	Denoted as				
1	ethyl acetate				
2	acetone followed by cyclohexane and ethyl acetate				
3	acetone followed by dichloromethane				
4	etone followed by dichloromethane and petroleum ether				
5	acetonitrile				
6	methanol				
7	dichloromethane				
8	other (specify which)				

Table F3.- Clean Up Steps

Clean Up Steps				
GPC	Gel permeation chromatography			
SPE	olid phase extraction			
DSPE	Dispersive Solid Phase Extraction			
LL	Liquid-liquid partition			
NO	No clean-up			
O	Other			

FORM 3 STANDARD SOLUTION EUPT-FV-11

TARGET PESTICIDE LIST FOR THE CRL-EUPT-FV 11

The meaning of the asterisk is that to be in Category A, the laboratory must not report a false positive and analyse 90% of the pesticides present in the sample, but also have to analyse 100% of the marked pesticides

Pesticide	MRRL (mg/Kg)
* Acephate	0.01
* Acetamiprid	0.01
Acrinathrin	0.01
* Aldicarb (sum of aldicarb + aldicarb sulfoxide + aldicarb sulfone expressed as aldicarb)	0.01
Aldicarb	
Aldicarb sulfoxide	
Aldicarb sulfone	0.01
* Azinphos-methyl	0.01
* Azoxystrobin	0.01
* Bifenthrin	0.01
Bromopropylate	0.01
Boscalid	0.01
Bupirimate	0.01
Buprofezin	0.01
Cadusafos	0.01
* Captan	0.01
* Carbaryl	0.01
* Carbendazim (sum of benomyl and carbendazim expressed as carbendazim)	0.01
Carbofuran (sum of carbofuran and 3-hydroxy-carbofuran expressed as carbofuran)	0.01
Carbofuran	
3-hydroxy-carbofuran	
Clofentezine	0.01
Chlorfenvinphos	0.01
* Chlorothalonil	0.01
Chlorpropham (only parent compound)	0.01
* Chlorpyrifos	0.01
* Chlorpyrifos-methyl	0.01
Cyfluthrin (Cyfluthrin incl. other mixtures of constituent isomers (sum of isomers))	0.01
* Cypermethrin	0.01
Cyproconazole	0.01
Cyprodinil	0.01
* Deltamethrin	0.01
Fenhexamid	0.01
* Fenitrothion	0.01
Fenoxycarb	0.01
Fenpropathrin	0.01
Fludioxonil	0.01
*Flufenoxuron	0.01
Flusilazole	0.01
* Folpet	0.01
Hexaconazole	0.01
Hexythiazox	0.01
* Imazalil	0.01
* Imidacloprid	0.01
ndoxacarb (Indoxacarb as sum of the isomers S and R)	0.01
* Iprodione	0.01
provalicarb	0.01
sofenphos-methyl	0.01
Kresoxim-methyl	0.01
* Lambda-Cyhalothrin	0.01
Linuron	0.01
* Malathion (sum of malathion and malaoxon expressed as malathion)	0.01
Malathion	
Malaoxon	
Mepanipyrim (only parent compound)	0.01
* Metalaxyl and metalaxyl-M	0.01
* Methamidophos	0.01
* Methidathion	0.01
* Methiocarb (sum of methiocarb + methiocarb sulfone + methiocarb sulfoxide expressed as methiocarb)	0.01
Methiocarb	
Methiocarb sulfone	
Methiocarb sulfoxide	
Methomyl and Thiodicarb (sum of methomyl and thiodicarb expressed as methomyl)	0.01

ANNEX 1. Protocol and Instructions. List of pesticides to be sought.

	pean Proficiency Test FV-11
Pesticide	MRRL (mg/Kg)
Thiodicarb	
* Monocrotophos	0.01
Myclobutanil	0.01
* Oxamyl	0.01
* Oxydemeton-methyl (sum of oxydemeton-methyl and demeton-S-methylsulfone expressed as oxydemeton-methyl)	0.01
Oxydemeton-methyl	
Demeton-S-methylsulfone	
* Parathion	0.01
* Parathion-methyl (sum of parathion-methyl and paraoxon-methyl expressed as parathion-methyl)	0.01
Parathion-methyl	
Paraoxon-methy	
Penconazole	0.01
Pendimethalin	0.01
* Phosalone	0.01
Phosmet (phosmet and phosmet-oxon expr. as phosmet)	0.01
Phosmet	
Phosmet-oxon	
* Pirimicarb (sum of pirimicarb and desmethyl pirimicarb expr. as pirimicarb)	0.01
Pirimicarb	
Desmethyl-pirimicarb	
* Pirimiphos-methyl	0.01
* Prochloraz (only parent compound)	0.01
* Procymidone	0.01
Profenofos	0.01
Proparaite	0.01
* Propiconazole	0.01
* Pyrimethanil	0.01
Pyriproxyfen	0.01
Quinoxyfen	0.01
Spinosad (sum of Spinosyn A and Spinosyn D, expr. as Spinosad)	0.01
Spiroxamine	0.01
* Tebuconazole	0.01
Tebufenozide	0.01
Tebufenpyrad	0.01
Teflubenzuron	0.01
Tetraconazole	0.01
* Thiabendazole	0.01
*Thiacloprid	0.01
* Thiophanate-methyl	0.01
Tolclofos-methyl	0.01
* Tolylfluanid (only parent compound)	0.01
* Triadimefon and Triadimenol (sum of triadimefon and triadimenol)	0.01
Triadimefon	
Triadimenol	
Triazophos	0.01
Trifloxystrobin	0.01
Trifluralin	0.01
* Vinclozolin (only parent compound)	0.01

COUNTRY LABORATORY NAME		CITY	REPORTED RESULTS	
AUSTRIA	Competence Centre for Residue Analysis, Austrian Agency for Health and Food Safety	Wien	YES	
AUSTRIA	AGES Competence Center for Residues of Plant Protection Products, Innsbruck, Austria	Innsbruck	YES	
BELGIUM	Fytolab	Zwijnaarde	YES	
BELGIUM	Scientific Institute of Public Health	Bruxelles	YES	
BELGIUM	LOVAP	Geel	YES	
BELGIUM	Eurofins Belgium NV	Oostkamp	YES	
BULGARIA	Central Laboratory for Chemical Testing and Control	Sofia	YES	
BULGARIA	Laboratory Analysis Directorate - Regional Inspectorate for Public Health Protection and Control - Pleven	Pleven	YES	
BULGARIA	Regional Inspectorate for Puplic Healt Protection and Control, Directorate Laboratory Analysis	Sofia	YES	
BULGARIA	Regional Inspectorate for Public Health Protection and Control - Veliko Tarnovo	Veliko Tarnovo	YES	
BULGARIA	RIOKOZ - Plovdiv	Plovdiv	YES	
BULGARIA	RIOKOZ - Varna	Varna	YES	
CYPRUS	Pesticide Residues Laboratory of the State General Laboratory	Nicosia	YES	
CZECH REPUBLIC	Institute of Chemical Technology, Prague	Prague	YES	
CZECH REPUBLIC	Czech Agriculture and Food Inspection Authority	Praha	YES	
DENMARK	Danish Vet, and Food Adm. Region East	Denmark	YES	
DENMARK	National Food Institute, DTU	Soeborg	YES	
EGYPT	Central Lab of Residue Analysis of Pesticides and Heavy Metals in Foods	Giza	YES	
ESTONIA	Laboratory for Residues and Contaminants, Agricultural Research Centre	Saku	YES	
ESTONIA	Tartu Laboratory of Health Protection Inspectorate	Tartu	YES	
FINLAND	Finnish Customs Laboratory	Espoo	YES	
FINLAND	MetropoliLab	Helsinki	YES	
FRANCE	Laboratoire du SCL de Montpellier	Montpellier	YES	
FRANCE	SCL - Laboratoire de d'Ile de France Massy	Massy Cedex	YES	
FRANCE	Laboratoire Départemantal de la Sarthe	Le Mans	YES	
FRANCE	SCL - Rennes	Rennes	YES	
FRANCE	SCL - Pessac	Pessac	YES	
FRANCE	SCL - Strasbourg	Illkirch	YES	
GERMANY	Landesamt für Soziales, Gesundheit und Verbraucherschutz	Saarbrücken	NO	
GERMANY	Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen (LUA) Sachsen		YES	
GERMANY	CVUA Stuttgart	Fellbach	YES	
GERMANY	Landeslabor Berlin-Brandenburg, FB II-3	Berlin	YES	

ANNEX 2. List of laboratories that agreed to participate in PT11.

COUNTRY	COUNTRY LABORATORY NAME		REPORTED RESULTS	
GERMANY	Landesbetrieb Hessisches Landeslabor	Kassel	YES	
GERMANY	Landesuntersuchungsamt für Chemie, Hygiene und Veterinärmedizin Bremen	Bremen	YES	
GERMANY	Niedersaechsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit	Oldenburg	YES	
GERMANY	LAV Sachsen-Anhalt	Halle/Saale	YES	
GERMANY	Thueringer Landesamt fuer Lebensmittelsicherheit und Verbraucherschutz	Bad Langensalza	YES	
GERMANY	Institut für Hygiene und Umwelt	Hamburg	YES	
GERMANY	Federal Office of Consumer Protection and Food Safety (BVL)	Berlin	YES	
GERMANY	CVUA-RRW-Standort Essen	Essen	YES	
GERMANY	Chemisches Landes- und staatliches Veterniaer Untersuchungsamt Muenster	Muenster	YES	
GERMANY	Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit	Erlangen	YES	
GERMANY	Chemisches u. Lebensmitteluntersuchungsamt der Stadt Dortmund	Dortmund	YES	
GERMANY	Chemisches und Veterinäruntersuchungsamt Ostwestfalen- Lippe - CVUA-OWL	Bielefeld	YES	
GERMANY	Landesuntersuchungsamt Rheinland-Pfalz	Speyer	YES	
GERMANY	Landeslabor Berlin-Brandenburg Fachbereich II-2	Frankfurt(Oder)	YES	
GERMANY	Amt für Umwelt, Verbraucherschutz und Lokale Agenda der Stadt Bonn	Bonn	YES	
GERMANY	LUFA-ITL GMBH	Kiel	YES	
GERMANY	Landeslabor Schleswig Holstein	Neumünster	YES	
GERMANY	Amt für Verbraucherschutz Düsseldorf - Abt. 39/2 Chemische und Lebensmitteluntersuchung		YES	
GERMANY	Landesamt für Landwirtschaft, Lebensmittelsicherheit und Fischerei Mecklenburg-Vorpommern	Rostock	NO	
GREECE	Benaki Phytopathological Institute	Kifissia	YES	
GREECE	Ministry of Rural Development & Food, Regional Centre of Plant Protection & Quality Control of Ioannina Laboratory of pesticide analysis	Ioannina	YES	
GREECE	Peripheral Center of Plant Protection and Quality Control of Kavala - Ministry of Rural Development and Food	Kavala	YES	
GREECE	Regional Center of Plant Protection and Quality Control. Laboratory of Pesticide Residues	Thessaloniki	YES	
GREECE	Regional Center of Plant Protection and Quality Control of Magnesia, Laboratory of Pesticides Residue Analysis	Volos	YES	
GREECE	General Chemical State Laboratory, Pesticide Residues Laboratory	Athens	YES	
GREECE	Laboratory of Pesticide Residues of Nafplio	Nafplio	YES	
GREECE	Pesticide Residue Laboratory of Regional Center of Plant Protection & Quality Control of Piraeus	Athens	YES	
GREECE	Regional Centre of Plant Protection & Q. Control of Heraklio - Crete - Greece	Heraklio - Crete	YES	

ANNEX 2. List of laboratories that agreed to participate in PT11.

COUNTRY	LABORATORY NAME	CITY	REPORTED RESULTS	
HUNGARY	Agricultural Office of BAZ. County Plant Protection and Soil Conservation Directorate Pesticide Residue Analytical Laboratory	Miskolc	YES	
HUNGARY	Agricultural Office of Somogy County; Pesticide Residue Analytical Laboratory	Kaposvár	YES	
HUNGARY	Agricultural Office of County Fejer, PPSCD Pesticide Residue Analytical Lab	Velence	YES	
HUNGARY	Agricultural Office of Vas County,Plant Protection and Soil Conservation Directorate Pesticide Residue Analytical Laboratory	Tanakajd	YES	
HUNGARY	Agricultural Office of County Csongrád, Directorate of Plant Protection and Soil Conservation, Pesticide Residue Analytical Laboratory	Hodmezovasarhely	YES	
HUNGARY	Plant Protection and Soil Conservation Directorate of Jasz- Nagykun-Szolnok County	Szolnok	YES	
ICELAND	Matis ohf	Akureyri	YES	
IRELAND	Pesticide Control Laboratoy	Celbridge, Co. Kildare	YES	
ITALY	APPA Trento	Trento	YES	
ITALY	ARPA Piemonte Polo Regionale Alimenti	La Loggia	YES	
ITALY	Laboratorio Di Sanita Pubblica	Bergamo	YES	
ITALY	ARPA Puglia - Dipartimento di Bari -	Bari	YES	
ITALY	Arpa Emilia-Romagna RAR Fitofarmaci (Ex. Eccellenza Fitofarmaci)	Ferrara	YES	
ITALY	A.S.L. della Provincia di Varese - U.O. Laboratorio Chimico	Varese	YES	
ITALY	ARPAL Laboratorio "Centro Regionale Pesticidi"	La Spezia	YES	
ITALY	ARPA - VENETO - DIP.REG.LAB S.L.	Verona	YES	
ITALY	A.R.P.A.TDipartimento di Arezzo	Arezzo	YES	
ITALY	ARPA Friuli Venezia Giulia Dipartimento Di Pordenone	Pordenone	YES	
ITALY	arpa valle d'aosta	Saint Christophe	YES	
ITALY	Agentur für Umwelt - Labor für Luft- und Lärmanalysen	Bozen	YES	
ITALY	Laboratorio specializzato fitofarmaci- Dipartimento Tecnico di Napoli- ARPACampania	Naples	YES	
ITALY	Istituto Superiore di Sanità - Dip. AMPP - Reparto Antiparassitari	Roma	YES	
ITALY	Arpa Sardegna - Dipartimento di Cagliari	Cagliari	YES	
ITALY	ARPACAL - Dipartimento Di Reggio Calabria	Reggio Calabria	YES	
ITALY	auls n.7 ARPA sicilia dap ragusa	Ragusa	YES	
ITALY	ARPAM-DIP Macerata	Macerata	YES	
LATVIA	National Diagnostic Centre	Riga	YES	
LITHUANIA	National Food and Veterinary Risk Assessment Institute	Vilnius	YES	
NORWAY	Bioforsk, Plant Health and Plant Protection, Pesticide Chemistry	Aas	YES	
POLAND	Wojewódzka Stacja Sanitarno-Epidemiologiczna - Dział Laboratoryjny	Lublin	YES	
POLAND	Wojewódzka Stacja Sanitarno-Epidemiologiczna w Łodzi	Łódź	YES	

ANNEX 2. List of laboratories that agreed to participate in PT11.

COUNTRY	LABORATORY NAME	СІТҮ	REPORTED RESULTS
POLAND	Laboratory of Warsaw Voivodeship Sanitary-Epidemiological Station	Warsaw	YES
POLAND	Main Inspectorate of Plant Health and Seed Inspection, Central Laboratory	Torun	YES
POLAND	Department of Pesticide Residue Research, Institute of Plant Protection	Poznan	YES
POLAND	Institute of Plant Protection - National Research Institute Sosnicowice Branch	Sosnicowice	YES
POLAND	Laboratory of Department of Environmental Toxicology, National Institute of Public Health-National Institute of Hygiene	Warsaw	YES
POLAND	Institute of Plant Protection - National Research Institute	Rzeszow	YES
POLAND	Voivodeship Epidemiological and Sanitary Station	Gorzów Wielkopolski	YES
POLAND	Instytut Ochrony Roślin Terenowa Stacja Doświadczalna	Trzebnica	YES
POLAND	Wojewodzka Stacja Sanitarno-Epidemiologiczna Olsztyn	Olsztyn	YES
POLAND	Wojewódzka Stacja Sanitarno Epidemiologiczna w Bydgoszczy	Bydgoszcz	YES
POLAND	Wojewodzka Stacja Sanitarno-Epidemiologiczna w Kielcach	Kielce	YES
POLAND	Wojewodzka Stacja Sanitarno-Epidemiologiczna we Wrocławiu, Dzial Laboratoryjny	Wroclaw	YES
POLAND	Wojewodzka Stacja Sanitarno - Epidemiologiczna Lab. Badania Zywnosci I Przedmiotow Uzytku	Poznan	YES
POLAND	Wojewódzka Stacja Sanitarno-Epidemiologiczna w Opolu	Opole	YES
POLAND	Food Safety Laboratory, Research Institute of Pomology & Floriculture	Skierniewice	YES
POLAND	Wojewódzka Stacja Sanitarno-Epidemiologiczna (WSSE) Katowice Pracownia Chromatografii Cieczowej	Katowice	YES
POLAND	Wojewódzka Stacja Sanitarno-Epidemiologiczna, Pracownia Chromatografii Gazowej	Katowice	YES
POLAND	Wojewódzka Stacja Sanitarno - Epidemiologiczna W Gdańsku Laboratorium Badania Żywności I Żywienia	Gdańsk	YES
POLAND	Powiatowa Stacja Sanitarno-Epidemiologiczna w Częstochowie	Częstochowa	YES
POLAND	WSSE w Białymstoku	Białystok	YES
POLAND	Laboratorium Badania Pozostalosci Srodkow Ochrony Roslin w Bialymstoku	Bialystok	YES
POLAND	Poland: Voievodship Sanitary- Epidemiological Station in Szczecin, Laboratory of the Hygiene of Food, Nutrition and Articles of Common Use (WSSE Szczecin)	Szczecin	YES
POLAND	Wojewodzka Stacja Sanitarno-Epidemiologiczna w Rzeszowie	Rzeszow	YES
PORTUGAL	Laboratório de Qualidade Alimentar da DRAPN	Senhora Da Hora	YES
PORTUGAL	L-INIA - Laboratório de Resíduos de Pesticidas	Oeiras	YES
PORTUGAL	Laboratório Regional de Veterinária e Segurança Alimentar - Divisão de Análise de Resíduos	Funchal, Madeira Island	YES
ROMANIA	Central Laboratory for Pesticides Residues Control in Plants and Vegetables - LCCRPPPV	Bucharest	YES
ROMANIA	Sanitary Veterinary and Food Safety Directorate	Bucharest	YES

ANNEX 2. List of laboratories that agreed to participate in PT11.

COUNTRY	LABORATORY NAME	СІТҮ	REPORTED RESULTS	
SLOVAKIA	State Veterinary and Food Institute Bratislava	Bratislava	YES	
SLOVAKIA	SLOVAKIA National reference centre for pesticide residues, Public helath authority of the Slovak republic		YES	
SLOVENIA	Institute of Public Health of Maribor	Maribor	YES	
SLOVENIA	Institute of Public Health of Republic of Slovenia	Ljubljana	YES	
SLOVENIA	Agricultural Institute of Slovenia	Ljubljana	YES	
SLOVENIA	Institute of Public Health of Kranj	Kranj	NO	
SPAIN	Laboratorio Provincial de Salud Pública de Almería	Almería	YES	
SPAIN	Arbitral Agroalimentario	Madrid	YES	
SPAIN	Laboratorio Agroalimentario de la Generalitat Valenciana	Burjassot, Valencia	YES	
SPAIN	Laboratorio Regional CCAA La Rioja	Logroño	YES	
SPAIN	Laboratorio de Produccion y Sanidad Vegetal de Almería	La Mojonera	YES	
SPAIN	Laboratorio Agrario Regional. Junta de Castilla y León	Burgos	YES	
SPAIN	Laboratorio Agroalimentario y de Sanidad Animal	El Palmar, Murcia	YES	
SPAIN	Laboratori Agroalimentari -DAR	Cabrils, Barcelona	YES	
SPAIN	-		YES	
SPAIN	SPAIN INGACAL (Laboratorio Agrario y Fitopatológico de Galicia)		YES	
SPAIN Laboratorio Produccion y Sanidad Vegetal de Jaén		Jaén	YES	
SPAIN Centro Nacional Alimentacion, AESAN		Majadahonda- Madrid	YES	
SPAIN	Laboratorio Agroalimentario. Gobierno de Aragón	Zaragoza	YES	
SPAIN	Instituto Tecnológico de Canarias	Santa Lucia de Tirajana	YES	
SWEDEN	Eurofins Food - Agro Sweden AB	Lidköping	YES	
SWEDEN	National Food Administration - Chemistry Division 1	Uppsala	YES	
SWITZERLAND	Kantonales Labor Zurich	Zurich	YES	
SWITZERLAND	Service de la Consommation et des Affaires Vétérinaires (SCAV)	Genève	YES	
THE NETHERLANDS	VWA - Food and Consumer Product Safety Authority	Amsterdam	YES	
TURKEY	TURKEY The Ministry of Agriculture and Rural Affairs Directorate of Adana Provincial Control Laboratory		YES	
TURKEY	MSM Food Control Laboratories Inc.	Mersin	YES	
UNITED KINGDOM	Laboratory of the Government Chemist	Teddington	YES	
UNITED KINGDOM	SASA	Edinburgh	YES	
UNITED KINGDOM	Eurofins Laboratories Ltd.	Wolverhampton	YES	
UNITED KINGDOM The Food and Environment Research Agency		York	YES	
URUGUAY	Pharmacognosy & Natural Products Department	Montevideo	YES	

Introduction

Proficiency Tests can play a very important role in detecting both performance problems and errors in routine analytical procedures. Therefore, their role in analytical quality control is of paramount importance. A comprehensive evaluation of an unsatisfactory result obtained in a Proficiency Test can lead to the detection of an inappropriate analytical standard solution, problems in the extraction procedure, etc. However, the reasons for inaccurate results cannot always be easily identified due to the many possible sources of error and their relative contributions. For this reason, the committee decided to once more organise a separate Ring Test using standard solutions. The objective of this Ring Test was to find out the between laboratory variability associated with their analytical standard solutions and to establish the contribution to the overall variability in EUPT-FV-11.

An additional benefit is to help laboratories to detect any possible inaccuracies with their standards and/or related working solutions.

A vial containing a solution of the pesticides present in the previously dispatched treated cauliflower test material was sent to the laboratories that participated in EUPT-FV-11, and had also agreed to voluntarily take part in this Ring Test. The intention being that laboratories should determine the concentrations of the compounds in the standard solution using their own standard solutions as were used by them in EUPT-FV-11.

Laboratories that agreed to participate in this Ring Test received the standard solutions soon after the deadline for submission of results for EUPT-FV-11 had passed.

The relevant details that were provided to the participants were:

- (i) the volume of standard solution supplied (5mL)
- (ii) the solvent used to prepare the solution (acetonitrile)
- (iii) the concentration range of each compound present (20-90 mg/L).

Laboratories were asked to use the same determination techniques as they used in EUPT-FV-11

The timetable for the Ring Test was as follows:

Deadline for submission of the application form accepting their participation
 13th March 2009

Distribution of standard solutions by courier

15th June 2009

Deadline for submission of results on-line (Form 3)

6th July 2009

Standard Solution Preparation

Individual stock solutions in acetonitrile were prepared by weighing out suitable amounts of each of the reference standards. Aliquots of these stock solutions of the individual compounds were then taken to make up a mixed standard stock solution. This procedure was performed by three analysts, independently. From each mixed solution dilutions were prepared at concentrations within the working range of the appropriate detection system in order to measure the relative responses. The RSD of the average response from the three independent solutions had to be <10% for the standard solutions to be approved. All three mixed stock standard solutions were

 $5~\mathrm{mL}$ aliquots of the mixed standard solution (20-90 mg/L) were transferred into screw cap vials and stored at -20°C until shipment. Only two days had elapsed between the preparation and analysis of the solutions, and their shipment.

Results and Discussion

The main reason for sending the standard solutions to the EUPT FV-11 participants was to compare the results from the standard solutions with the results from the cauliflower matrix.

Table 1 shows the medians, the results given by the laboratories and the z-scores achieved by the laboratories for each compound.

The median values for all compounds were the same (<10% difference) as the theoretical concentration, except for isofenphos-methyl which was higher.

For most compounds, the same percentage of laboratories reported results for the standard solutions as were reported for the cauliflower test material.

Six laboratories reported false positive result, i.e. a pesticide that was not present in the standard solution:

Laboratory Code	Pesticide	Concentration (mg/kg)	Determination Technique	Solvent Exchange (if any)
Lab5	* Acephate	0.01	GC-ECD	No
Lab66	* Acephate	40.4	GC-QQQ-MS/MS	Matrix
Lab46	* Carbaryl	1.05	GC-Q-MS	no
Lab27	* Carbendazim	0.365	LC-MS/MS	No
Lab4	* Chlorpyrifos	22.6	GC-Q-MS	Cyclohexane
Lab114	Tolclofos-methyl	41.1	GC-ECD	Toluene/ acetone

z-Score caculations were done only for metabolites or individual contribution.

The determination techniques used are presented in Table 2 and the participants list in Table 3. The same laboratory codes as for the cauliflower test material, have been used for this standard solution ring test.

Conclusions

Following on from last year's experience, a ring test for standard solutions was once again organised following the FV-11 Proficiency Test.

One hundred and twenty-two laboratories volunteered to participate from the one hundred and fifty-one that participated in the cauliflower matrix sample. Out of these, ninenty-seven reported results.

The aim was to establish those errors actually associated with the analytical standard solutions used, and to estimate the contribution that these errors made to the overall results of the laboratories participating in EUPT FV-11.

No clear correlation was observed between the errors occurring in the standard solution ring test, and the errors in the actual cauliflower test material. For this reason, the Organiser declines to perform this ring test again next year.

ANNEX 3. Standards Solution Ring Test. Results and Participants.

Table 1: Median, individual results (mg/L) and z-scores.

Lab Code	Aldicarb	z-Score (FFP RSD 25%)	Aldicarb sulfoxide	z-Score (FFP RSD 25%)	*Azinphos-methyl	z-Score (FFP RSD 25%)	Boscalid	z-Score (FFP RSD 25%)	
MRRL	0.01	RS RS	0.01	RS S	0.01	RS	0.01	RS RS	
Median	20.7	S. F	20.7	S-S-	37.9	-Sc FFP	58.8	-Sc FFP	
(mg/L)	20.7	,	20.7			, , , , , , , , , , , , ,	30.0	~ ~	
Lab001			I		cipation				
Lab002	21.5	0.2	22.3	0.3	40.1	0.2	55.6	-0.2	
Lab003	20.9	0.0	23.6	0.6	42	0.4	63	0.3	
Lab004	29	1.6	21	0.1	37.6	0.0			
Lab005									
Lab006	22.5	0.3	29.8	1.8	48.7	1.1	86.5	1.9	
Lab007	18.6	-0.4	18.3	-0.5	37.9	0.0	55.5	-0.2	
Lab008				No results	reported				
Lab009	20.7	0.0	20.2	-0.1			42	-1.1	
Lab010									
Lab011	22.7	0.4	29.2	1.6	40.6	0.3	67.8	0.6	
Lab012	16.5	-0.8	16.5	-0.8					
Lab013					44.3	0.7	55.6	-0.2	
Lab014					51.6	1.4			
Lab015	20.8	0.0	21.6	0.2	38.2	0.0	56.6	-0.1	
Lab016	28.5	1.5	22.8	0.4	25.7	-1.3			
Lab017	28.9	1.6	23.6	0.6	30.3	-0.8	85.9	1.8	
Lab018	No results reported								
Lab019	22.1	0.3	19.9	-0.1	31	-0.7	54.8	-0.3	
Lab020	17.4	-0.6	18.6	-0.4	37.8	0.0	68.3	0.6	
Lab021				No Parti	cipation				
Lab022									
Lab023	23.8	0.6	18.3	-0.5	41.2	0.3	66.3	0.5	
Lab024	20	-0.1	20	-0.1	40	0.2	58.7	0.0	
Lab025					44	0.6	74	1.0	
Lab026				No Parti	cipation				
Lab027			1.83	-3.6	4.67	-3.5	7.3	-3.5	
Lab028				No results	reported				
Lab029	20.9	0.0	23.2	0.5	32.6	-0.6	50.5	-0.6	
Lab030	20.5	0.0	17.3	-0.6	42.4	0.5	57.7	-0.1	
Lab031					reported				
Lab032	20	-0.1	16.8	-0.7	34.7	-0.3	54.1	-0.3	
Lab033					42.5	0.5	70.5	0.8	
Lab034	18.3	-0.5			37.8	0.0	58.9	0.0	
Lab035	21.5	0.2	20.7	0.0	44.1	0.7	64.1	0.4	
Lab036	21	0.1	21	0.1	39	0.1	53	-0.4	
Lab037					reported				
Lab038					cipation				
Lab039	23	0.4	15	-1.1	37	-0.1	59	0.0	
Lab040	19.7	-0.2	19.2	-0.3	11	-2.8	68	0.6	
Lab041		, ,,_			cipation	_,			
Lab042	20.5	0.0	20.6	0.0	34.4	-0.4	58.3	0.0	
Lab043	20.0				reported	0.7	00.0	0.0	
Lab043	17.9	-0.5	14.7	-1.2	42.4	0.5	63.9	0.3	
Lab045	17.7	0.0	1 1.7		cipation	0.0	00.7	0.0	
	1			110 1 0111					

ANNEX 3. Standard Solution Ringtest. Results and Participants.

ope	d'r.		Aldicarb sulfoxide		*Azinphos-methyl		pili	
Lab Code	Aldicarb	z-Score (FFP RSD 25%)	Aldico	z-Score (FFP RSD 25%)	*Azinķ	z-Score (FFP RSD 25%)	Boscalid	z-Score (FFP RSD 25%)
MRRL	0.01	core RS	0.01	Core	0.01	z-Score (FFP RSD	0.01	z-Score (FFP RSD
Median	20.7	z-S FF	20.7	Z-S	37.9	z-S FF	58.8	z-Se
(mg/L) Lab046	NA		NA		0.05		NA	
Lab047	22.4	0.3	23	0.5	37.3	-0.1	65.9	0.5
Lab048		0.0			cipation	011	00.7	0.0
Lab049					cipation			
Lab050	24	0.6	23.7	0.6	8.6	-3.1	86	1.9
Lab051	17	-0.7	20	-0.1	51	1.4	60	0.1
Lab052	21.9	0.2	20.4	0.0	26.4	-1.2	40.4	-1.3
Lab053								
Lab054	27.3	1.3	16.2	-0.9	35.3	-0.3	61.9	0.2
Lab055				No results	reported			
Lab056				1	reported			
Lab057	18.8	-0.4	23.2	0.5	39.5	0.2	53.4	-0.4
Lab058			Г		cipation		Г	
Lab059	22.5	0.3	23.9	0.6	32.1	-0.6	55.8	-0.2
Lab060	18.8	-0.4	20.8	0.0	92.2	5.0	51.8	-0.5
Lab061					reported			
Lab062	20	-0.1	20.5	0.0	37.9	0.0	56	-0.2
Lab063	16.6	-0.8	17.4	-0.6	41.2	0.3	56.2	-0.2
Lab064	18.5	-0.4	73.4	10.2	20.6 27.6	-1.8	52.7	-0.4
Lab065 Lab066	15.8	-0.9	21.2	0.1	39.6	-1.1 0.2	46.3	-0.9
Lab066	13.0	-0.7	21.2		cipation	0.2	40.3	-0.7
Lab068				NOTGIT				
Lab069	22.5	0.3	21.1	0.1	51.1	1.4	60.6	0.1
Lab070	22.0	0.0	21.1		cipation	1	00.0	0.1
Lab071	19.4	-0.3	36	3.0	37.4	-0.1	53.2	-0.4
Lab072					39	0.1	52.6	-0.4
Lab073				No result:	reported			
Lab074							53	-0.4
Lab075				No Part	cipation			
Lab076	61.7	5.0	31.2	2.0	48.5	1.1	69.8	0.7
Lab077					40.3	0.3	63.7	0.3
Lab078	20.2	-0.1	5.95	-2.8				
Lab079	20.7	0.0	20.2	-0.1	39.3	0.1	58.7	0.0
Lab080					cipation			
Lab081					reported			
Lab082	20.4	-0.1	20	-0.1	36.3	-0.2	62.5	0.3
Lab083				No Part	cipation I			
Lab084	20.7	0.0	07.1	1.0				
Lab085	20.7	0.0	27.1	1.2			40.4	0.2
Lab086 Lab087				No Dort	<u>l</u> cipation		62.4	0.2
Lab087				NO FOIL	31.4	-0.7		
Lab088	17.8	-0.6	21.7	0.2	36.6	-0.7	46.8	-0.8
Lab099	17.0	-0.8	18.8	-0.4	37.9	0.0	55.2	-0.6
Lab091	25.2	0.9	21.1	0.1	37.6	0.0	63.7	0.3
Lab092	20.2	0.7			reported	0.0	, 00.7	0.0

ANNEX 3. Standards Solution Ring Test. Results and Participants.

Lab Code	arb	0	Aldicarb sulfoxide	0	*Azinphos-methyl	0	alid	0		
ab (Aldicarb	25%	Aldio	25%	Azin	25%	Boscalid	25%		
MRRL	0.01	z-Score (FFP RSD 25%)	0.01	z-Score (FFP RSD 25%)	0.01	z-Score (FFP RSD 25%)	0.01	z-Score (FFP RSD 25%)		
Median (mg/L)	20.7	z-So (FFP	20.7	z-Sc (FFP	37.9	z-Sc (FFP	58.8	z-Sc (FFP		
Lab093	19.1	-0.3	21.6	0.2	46.1	0.9	59	0.0		
Lab094					20.8	-1.8	51.4	-0.5		
Lab095		'		No results	reported					
Lab096	22.4	0.3	55.2	6.7	36.4	-0.2	55.2	-0.2		
Lab097		,			reported					
Lab098					56.5	2.0	61.9	0.2		
Lab099					00.0	2.0	0.17	0.2		
Lab100				No results	reported					
Lab101				110100011	43	0.5				
Lab102						0.0	61	0.1		
Lab103			<u> </u>	No Parti	icipation		<u> </u>			
Lab104	16	-0.9		1101 am	26	-1.3				
Lab105		1 0,,	<u> </u>	No results	reported	7.0				
Lab106	24.8	0.8		110103011	34.8	-0.3	68.6	0.7		
Lab107	20.3	-0.1	19.9	-0.1	19	-2.0	00.0	0.7		
Lab108	20.0	0.1	17.7			2.0				
Lab109		No results reported No results reported								
Lab110		No results reported								
Lab111				140 1030113	Геропеа					
Lab112										
Lab113				No results	reported					
Lab114				140 1030113	40.1	0.2				
Lab115				No Parti	icipation	0.2				
Lab116					reported					
Lab117					icipation					
Lab118				140 T GITI	91.5	5.7				
Lab119	19.5	-0.2	19.4	-0.2	53.7	1.7	64.2	0.4		
Lab120	20	-0.2	20.5	0.0	43.7	0.6	66.1	0.5		
Lab121	22.4	0.3	16	-0.9	42.5	0.5	47.4	-0.8		
Lab121		0.0	10		reported	0.0	47.4	-0.0		
Lab123				140 1030113			57.6	-0.1		
Lab124	21.2	0.1	22.6	0.4	50.8	1.4	60.4	0.1		
Lab125	24.8	0.1	19.7	-0.2	36.9	-0.1	74.1	1.0		
Lab126	27.0	0.0	17.7		icipation	0,1	/ 7.1	1.0		
Lab127					icipation					
Lab128					icipation					
Lab128				INO FUITI						
Lab130					41.1	0.3				
Lab131			<u> </u>	No Parti	icipation	0.5	<u> </u>			
Lab131				140 F GITI	42.2	0.5				
Lab133					37.8	0.5	52.3	-0.4		
			<u> </u>	No Dort		0.0	JZ.3	-0.4		
Lab134	20	0.1	20		icipation	0.0	90 7	1 5		
Lab135		-0.1	20	-0.1	35.9	-0.2	80.7	1.5		
Lab136	21.6	0.2	21	0.1	43.9	0.6	67.7	0.6		
Lab137	22.7	0.4	21.6	0.2	25.3	-1.3				
Lab138				N- D "	7.19	-3.2	<u> </u>			
Lab139				No Parti	icipation					

ANNEX 3. Standard Solution Ringtest. Results and Participants.

Lab Code	Aldicarb	z-Score (FFP RSD 25%)	Aldicarb sulfoxide	D 25%)	*Azinphos-methyl	D 25%)	Boscalid	D 25%)
MRRL	0.01	core RS	0.01	core RS	0.01	core RSD	0.01	core RSD
Median (mg/L)	20.7	z-S. (FFI	20.7	z-Score (FFP RSD.)	37.9	z-Score (FFP RSD	58.8	z-Score (FFP RSD
Lab140				No Parti	cipation			
Lab141							53	-0.4
Lab142					37	-0.1		
Lab143				No Parti	cipation			
Lab144				No Parti	cipation			
Lab145				No results	reported			
Lab146					reported			
Lab147				No results	reported			
Lab148	16	-0.9	20.7	0.0			104	3.1
Lab149				No Parti	cipation			
Lab150	NA		NA		22	-1.7	25	-2.3
Lab151				No Parti	cipation			

ANNEX 3. Standards Solution Ring Test. Results and Participants.

P C C C C C C C C C C C C C C C C C C C	0.00	z-Score (FFP RSD 25%)	Cadusafos U.0.0	z-Score (FFP RSD 25%)	Carbofuran	z-Score (FFP RSD 25%)	3-hydroxy-carbofuran	z-Score (FFP RSD 25%)
Median		-Sc FF		-Sc.		-Sc FF		-Sc FF
(mg/L)	19.9	χ̈́	41.8		38.6	άĐ	12.6	χ̈́
Lab001				No Parti	cipation			
Lab002	24.6	1.0	46.1	0.4	40.8	0.2	15	0.8
Lab003	20.1	0.0	46	0.4	44.2	0.6	14	0.4
Lab004								
Lab005								
Lab006	12.8	-1.4	62.8	2.0	52.8	1.5	12	-0.2
Lab007	19.6	-0.1	43.3	0.1	36.8	-0.2	11.3	-0.4
Lab008				No results	reported			
Lab009	15.7	-0.8	43.5	0.2	44.2	0.6	12.7	0.0
Lab010								
Lab011	23.1	0.7	43.4	0.2	11.3	-2.8	18.5	1.9
Lab012					31.7	-0.7	9.38	-1.0
Lab013	20.4	0.1	31.2	-1.0				
Lab014					56.9	1.9		
Lab015	21.2	0.3	45.6	0.4	40.7	0.2	11.9	-0.2
Lab016	24.9	1.0			38.3	0.0		
Lab017	16.9	-0.6	42.3	0.0	44.7	0.6	13.9	0.4
Lab018				No results	reported			
Lab019	18.5	-0.3	37.9	-0.4	18.5	-2.1	13.7	0.3
Lab020	16.7	-0.6			38.6	0.0	12.3	-0.1
Lab021				No Parti				
Lab022								
Lab023	24.7	1.0	44.5	0.3	45.3	0.7	13.2	0.2
Lab024	20	0.0			41	0.2		
Lab025	19	-0.2	35	-0.7	34	-0.5		
Lab026					cipation			
Lab027	9.13	-2.2	14.5	-2.6	9.15	-3.1		
Lab028					reported			
Lab029	20.9	0.2	46.8	0.5	37.8	-0.1	10.1	-0.8
Lab030	34.2	2.9			44.2	0.6	14.3	0.5
Lab031				No results	reported			
Lab032	14.5	-1.1	23.1	-1.8	34.9	-0.4	10.1	-0.8
Lab033	19.8	0.0	53	1.1	26.2	-1.3	10.3	-0.7
Lab034	18	-0.4			25.1	-1.4		
Lab035	21.4	0.3	43.1	0.1	41.2	0.3	10.9	-0.5
Lab036	19	-0.2			40	0.1	12	-0.2
Lab037				No results	reported		•	
Lab038				No Parti				
Lab039	23	0.6	47	0.5	55	1.7	15	0.8
Lab040	19	-0.2	·		33	-0.6	10	-0.8
Lab041				No Parti	cipation		· · · · ·	
Lab042	21.7	0.4	43.2	0.1	43.4	0.5	11.6	-0.3
Lab043					reported			
Lab044	18.5	-0.3	44	0.2	43.7	0.5		
Lab045					cipation			

ANNEX 3. Standard Solution Ringtest. Results and Participants.

Lab Code	Buprofezin	z-Score (FFP RSD 25%)	Cadusafos	z-Score (FFP RSD 25%)	Carbofuran	z-Score (FFP RSD 25%)	3-hydroxy-carbofuran	z-Score (FFP RSD 25%)
<u></u>		e SD 2		e 80 2	_	e SD 2		e SD 2
MRRL	0.01	C O C	0.01	2 G G	0.01	20 P	0.01	C O P
Median (mg/L)	19.9	Z-S 干)	41.8	2.5 ∓)	38.6	Z-S 干)	12.6	S-2 F)
Lab046	NA		NA		34.3	-0.4	NA	
Lab047	20.3	0.1	44.5	0.3	41.2	0.3	11.7	-0.3
Lab048					cipation			
Lab049					cipation			
Lab050	24.5	0.9	37.9	-0.4	45.7	0.7	< RL	
Lab051	23.2	0.7	45.7	0.4	33	-0.6	11.5	-0.3
Lab052	19.6	-0.1	42.2	0.0	38.3	0.0	14.6	0.6
Lab053								
Lab054	24.4	0.9	33.6	-0.8	30.6	-0.8		
Lab055				No results	reported			
Lab056					reported			
Lab057	20.2	0.1	39.1	-0.3	49.3	1.1	13.9	0.4
Lab058				No Parti	cipation			
Lab059	21.7	0.4	42.5	0.1	39	0.0	12.9	0.1
Lab060	17	-0.6			35.5	-0.3	14.5	0.6
Lab061				No results	reported			
Lab062	22.1	0.4	49.1	0.7	36.6	-0.2	12.6	0.0
Lab063	17.2	-0.5	39.4	-0.2	25	-1.4	12.8	0.1
Lab064	21.7	0.4			32.5	-0.6		
Lab065	19.3	-0.1						
Lab066	17.5	-0.5	30.2	-1.1	28.5	-1.0	6.2	-2.0
Lab067				No Parti	cipation			
Lab068	25.8	1.2	20.9	-2.0				
Lab069	27.8	1.6	39.5	-0.2	51.4	1.3	13.4	0.3
Lab070				No Parti	cipation			
Lab071	21.6	0.3	39.4	-0.2	36.1	-0.3	12.4	-0.1
Lab072	18.5	-0.3	45.7	0.4	44.2	0.6		
Lab073				No results	reported			
Lab074	27	1.4			58	2.0		
Lab075				No Parti	cipation		Г	
Lab076	21.3	0.3	41.4	0.0	51.5	1.3	18.7	1.9
Lab077	19.2	-0.1			44.7	0.6		
Lab078	25.2	1.1	55.7	1.3				
Lab079	21.7	0.4	45.1	0.3	40.3	0.2	11.5	-0.3
Lab080					reported			
Lab081					<u>cipation</u>		I	
Lab082	24.4	0.9	40.5	-0.1	37.1	-0.2	11	-0.5
Lab083				No Parti	cipation		<u> </u>	
Lab084								
Lab085					40.1	0.2	14.3	0.5
Lab086	19	-0.2						
Lab087				No Parti	cipation		<u> </u>	
Lab088								
Lab089	16.9	-0.6	23.3	-1.8	34	-0.5		
Lab090	19.4	-0.1	37.7	-0.4	35.1	-0.4	4.12	-2.7
Lab091	19.4	-0.1	54.4	1.2	41.4	0.3	11.8	-0.3

ANNEX 3. Standards Solution Ring Test. Results and Participants.

							3-hydroxy-carbofuran		
Lab Code	Buprofezin	z-Score (FFP RSD 25%)	Cadusafos	z-Score (FFP RSD 25%)	Carbofuran	z-Score (FFP RSD 25%)	3-hydroxy.	z-Score (FFP RSD 25%)	
MRRL	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD	0.01	ore RSD	
Median (mg/L)	19.9	z-Sc (FFP	41.8	z-Sc (FFP	38.6	z-Sc (FFP	12.6	z-Sc (FFP	
Lab092					reported				
Lab093	19	-0.2	41.2	-0.1	38.6	0.0	11.2	-0.4	
Lab094	20.4	0.1	44.2	0.2	35.6	-0.3			
Lab095				No results	reported				
Lab096	21.6	0.3	37.1	-0.4	56.2	1.8	14.7	0.7	
Lab097				No results	reported				
Lab098	27.5	1.5			62	2.4			
Lab099									
Lab100				No results	reported		T		
<u>Lab101</u>	20	0.0							
Lab102	28	1.6			58	2.0			
Lab103				No Parti	cipation				
Lab104	25	1.0		<u> </u>	<u> </u>				
Lab105	00	0.0	40.7		reported	0.7	00	0.0	
Lab106	20	0.0	42.7	0.1	45.1 40.6	0.7	20	2.3	
Lab107 Lab108	13.2	-1.3		No results		0.2	12.8	0.1	
Lab109		No results reported No results reported							
Lab110					reported				
Lab111	0.62	-3.9							
Lab112	66.7	9.4							
Lab113				No results	reported				
Lab114									
Lab115				No Parti	cipation				
Lab116				No results	reported				
Lab117				No Parti	cipation				
Lab118									
Lab119	17	-0.6	41.1	-0.1	38.5	0.0	10.8	-0.6	
Lab120	21	0.2	40.5	-0.1	37.5	-0.1	10.5	-0.7	
Lab121	13.7	-1.2	39	-0.3	30.7	-0.8	13	0.1	
Lab122				No results	reported				
Lab123	10.2	0.3			44.4	0.7	10.7	0.0	
Lab124	18.3	-0.3			44.4 39	0.6	12.7	0.0	
Lab125 Lab126	17.9	-0.4		No Parti	icipation	0.0			
Lab128					cipation				
Lab127					cipation				
Lab129									
Lab130									
Lab131				No Parti	cipation		•		
Lab132									
Lab133	23.3	0.7	33.4	-0.8					
Lab134				No Parti	cipation				
Lab135	17.8	-0.4	34.4	-0.7	35.6	-0.3			
Lab136	19.5	-0.1	36.5	-0.5	35.3	-0.3	12.2	-0.1	
Lab137	18	-0.4			29.6	-0.9	12.8	0.1	

ANNEX 3. Standard Solution Ringtest. Results and Participants.

Lab Code	Buprofezin	b 25%)	Cadusafos	ore RSD 25%)	Carbofuran	b 25%)	3-hydroxy-carbofuran	ore RSD 25%)
MRRL	0.01	core RS	0.01	core RS	0.01	z-Score (FFP RSD	0.01	core RS
Median (mg/L)	19.9	z-Score (FFP RSD 2	41.8	z-Score (FFP RSD	38.6	z-Se (FFF	12.6	z-Score (FFP RSD
Lab138	14.1	-1.2			21.3	-1.8		
Lab139				No Parti	cipation			
Lab140				No Parti	cipation			
Lab141	19.7	0.0	40.6	-0.1				
Lab142								
Lab143				No Parti	cipation			
Lab144				No Parti	cipation			
Lab145				No results	reported			
Lab146					reported			
Lab147				No results	reported			
Lab148	10.6	-1.9			43.9	0.5	12.8	0.1
Lab149				No Parti	cipation			
Lab150	13.3	-1.3	NA		10.8	-2.9		
Lab151				No Parti	cipation			

ANNEX 3. Standards Solution Ring Test. Results and Participants.

MRRL Median	*Deltamethrin	z-Score (FFP RSD 25%)	*Diazinon	z-Score (FFP RSD 25%)	10.01 Isofenphos-methyl	z-Score (FFP RSD 25%)	*Lambda-cyhalothrin	z-Score (FFP RSD 25%)
(mg/L)	57.7	χ̈́	60.5	άŪ	67.1	άÜ	22.6	άŪ
Lab001				No Parti	cipation			
Lab002	61.9	0.3	96	2.3	75.8	0.5	20.7	-0.3
Lab003	63.8	0.4	60.3	0.0	66.6	0.0	23	0.1
Lab004	54.5	-0.2	64.6	0.3			63.5	7.2
Lab005								
Lab006	49	-0.6	53.5	-0.5	56.3	-0.6	18.2	-0.8
Lab007	46.9	-0.7	79.1	1.2	83	0.9	25.3	0.5
Lab008				No results	reported			
Lab009	42.4	-1.1	74.4	0.9	78.3	0.7	13	-1.7
Lab010	65.1	0.5	67.7	0.5	69.6	0.1	25.3	0.5
Lab011	32.5	-1.7	55	-0.4	74.3	0.4	25.5	0.5
Lab012			39.2	-1.4				
Lab013	53.4	-0.3	67.4	0.5			24	0.2
Lab014	78.9	1.5	63	0.2			24.5	0.3
Lab015	42.5	-1.1	66.1	0.4	74.1	0.4	20.7	-0.3
Lab016	53.7	-0.3	61.1	0.0	64.9	-0.1	21.5	-0.2
Lab017	16	-2.9	49.7	-0.7	64.1	-0.2	11.4	-2.0
Lab018				No results	reported			
Lab019	36.4	-1.5	56.7	-0.3	64.9	-0.1	13.6	-1.6
Lab020	43.9	-1.0	54.9	-0.4	54.2	-0.8	16.4	-1.1
Lab021				No Parti	cipation			
Lab022	57.7	0.0	52.1	-0.6			17.9	-0.8
Lab023	63	0.4	66.1	0.4	71.3	0.3	23.4	0.1
Lab024	65.3	0.5	62.2	0.1	50	-1.0	24.2	0.3
Lab025	61	0.2	59	-0.1	71	0.2	31	1.5
Lab026				No Parti	cipation			
Lab027	0.22	-4.0	41.4	-1.3			0.18	-4.0
Lab028				No results	reported			
Lab029	57.8	0.0	56.8	-0.2	61.8	-0.3	21.9	-0.1
Lab030	54	-0.3	74.3	0.9	58.4	-0.5	25.6	0.5
Lab031				No results	reported			
Lab032	56	-0.1	49.8	-0.7	88.8	1.3	18.6	-0.7
Lab033	67.5	0.7	81.5	1.4	74.5	0.4		
Lab034			64.8	0.3	68.6	0.1		
Lab035	60.1	0.2	65.8	0.4	73.9	0.4	20.8	-0.3
Lab036	62	0.3	62	0.1	71	0.2	22	-0.1
Lab037				No results	reported			
Lab038				No Parti	cipation			
Lab039	67	0.6	67	0.4	76	0.5	20	-0.5
Lab040	42	-1.1	63	0.2	72	0.3	22	-0.1
Lab041				No Parti	cipation			
Lab042	58.1	0.0	66.1	0.4	64.5	-0.2	26.3	0.7
Lab043				No results	reported			
Lab044	61.9	0.3	56.3	-0.3	68.6	0.1	25.5	0.5
Lab045				No Parti	cipation			

ANNEX 3. Standard Solution Ringtest. Results and Participants.

Lab Code	*Deltamethrin		*Diazinon		lsofenphos-methyl		*Lambda-cyhalothrin	
<u> </u>	e j	2%)iaz	2%	ofer	2%	Ē	2%
2	*	z-Score (FFP RSD 25%)	*	z-Score (FFP RSD 25%)	<u> </u>	z-Score (FFP RSD 25%)	*	z-Score (FFP RSD 25%)
MRRL	0.01	C O C	0.01	r CO.	0.01	CO.	0.01	C O C
Median (mg/L)	57.7	z-S (FF	60.5	2-5 ∓)	67.1	S-5 E)	22.6	Z-S 干)
Lab046	18.9	-2.7	52.4	-0.5	NA		NA	
Lab047	65.7	0.6	59.8	0.0	74.1	0.4	21.7	-0.2
Lab048				No Parti	cipation			
Lab049					cipation			
Lab050	30.8	-1.9	67.8	0.5	ND		12.5	-1.8
Lab051	61	0.2	59.3	-0.1	57.5	-0.6	22	-0.1
Lab052	43.8	-1.0	45.7	-1.0	42	-1.5	36.4	2.4
Lab053	19.2	-2.7	116	3.6			76.8	9.6
Lab054	45	-0.9	56.9	-0.2	148	4.8	26	0.6
Lab055				No results	reported			
Lab056				No results	reported			
Lab057	47.8	-0.7	60.1	0.0	62.7	-0.3	23.8	0.2
Lab058				No Parti	cipation			
Lab059	74.5	1.2	60.5	0.0	67.5	0.0	25.5	0.5
Lab060	52.7	-0.3	32.2	-1.9	65.2	-0.1	31.9	1.6
Lab061				No results	reported			
Lab062	49.5	-0.6	64.8	0.3	58.7	-0.5	23.6	0.2
Lab063	55.7	-0.1	66.3	0.4	67.1	0.0	19.3	-0.6
Lab064	61.8	0.3	52.7	-0.5			14.4	-1.5
Lab065	56	-0.1	65.5	0.3			19.5	-0.5
Lab066	68.9	0.8	63	0.2	64.6	-0.1		
Lab067				No Parti	cipation			
Lab068			50.2	-0.7	65.6	-0.1		
Lab069	57.6	0.0	75.9	1.0	74.6	0.4	25.8	0.6
Lab070				No Parti	cipation			
Lab071	59	0.1	73.4	0.9	68.8	0.1	24.6	0.4
Lab072	62.9	0.4	58.9	-0.1	71.8	0.3	18.9	-0.7
Lab073					reported		ı	
Lab074	58	0.0	60	0.0			27	0.8
Lab075					cipation -		I	
Lab076	57.9	0.0	71.9	0.8	80.6	0.8	26.3	0.7
Lab077	55.5	-0.2	73.3	0.8			18	-0.8
Lab078	65.6	0.5	70.2	0.6			25.4	0.5
Lab079	52.1	-0.4	67.3	0.4	74.9	0.5	29.6	1.2
Lab080					reported			
Lab081	7.5		- · ·		cipation 70.5	0.	10.5	0.5
Lab082	74.5	1.2	56.4	-0.3	73.5	0.4	19.9	-0.5
Lab083	/0	0.0		NO Parti	cipation 			
Lab084	60	0.2						
Lab085			'00	0.0			01.0	0.0
Lab086			63.2	0.2	_ :		21.2	-0.2
Lab087	(1.0	0.0	/O F	No Parti	cipation		00.4	0.0
Lab088	61.2	0.2	60.5	0.0	/ / 0	0.1	22.4	0.0
Lab089	48.1	-0.7	49.2	-0.7	64.8	-0.1	16.9	-1.0
Lab090	68.1	0.7	64	0.2	77.0	0.7	23.1	0.1
Lab091	59.9	0.2	69.3	0.6	77.2	0.6	29.6	1.2

ANNEX 3. Standards Solution Ring Test. Results and Participants.

							_		
Lab Code	*Deltamethrin	z-Score (FFP RSD 25%)	*Diazinon	z-Score (FFP RSD 25%)	Isofenphos-methyl	z-Score (FFP RSD 25%)	*Lambda-cyhalothrin	z-Score (FFP RSD 25%)	
MRRL	0.01	COre	0.01	COTO P RS	0.01	COre	0.01	COre	
Median (mg/L)	57.7	z-S (FF	60.5	z-S (FF	67.1	z-S (FF	22.6	z-S (FF	
Lab092				No results	reported				
Lab093	60	0.2	61.2	0.0	63.5	-0.2	22.4	0.0	
Lab094	49.4	-0.6	83.9	1.5	87	1.2	20.7	-0.3	
Lab095				No results	reported				
Lab096	84.5	1.9	63.7	0.2	60	-0.4	31.6	1.6	
Lab097				No results	reported				
Lab098	65.7	0.6	56.8	-0.2			33.5	1.9	
Lab099							27.2	0.8	
Lab100				No results	reported				
Lab101	58.6	0.1	69.4	0.6			30.3	1.4	
Lab102	64	0.4	59	-0.1			32	1.7	
Lab103				No Parti	cipation				
Lab104	53	-0.3	67	0.4	62	-0.3	24	0.2	
Lab105				No results	reported				
Lab106	77.6	1.4	70.6	0.7	63.8	-0.2	27.3	0.8	
Lab107	50.1	-0.5	41	-1.3	46	-1.3	13.9	-1.5	
Lab108				No results	reported				
Lab109		No results reported							
Lab110				No results	reported				
Lab111	0.04	-4.0	0.42	-4.0			0.2	-4.0	
Lab112			63.2	0.2			24.7	0.4	
Lab113					reported				
Lab114	53.6	-0.3	41.6	-1.2			22.5	0.0	
Lab115	00.0	0.0			cipation			1 0.0	
Lab116					reported				
Lab117					cipation				
Lab118	80.8	1.6	65.1	0.3			25.7	0.5	
Lab119	48	-0.7	54.1	-0.4	67.7	0.0	20.2	-0.4	
Lab120	63.3	0.4	55.2	-0.4	60.3	-0.4	22.3	-0.4	
Lab121	39.1	-1.3	49.2	-0.7	65.2	-0.4	13.1	-1.7	
Lab121	07.1	1.0	77.4	•	reported	0.1	10.1	1./	
Lab123	66	0.6	65	0.3	, roported		22.3	-0.1	
Lab124	41.3	-1.1	31.9	-1.9			15.2	-1.3	
	60.8	0.2	59.6	-0.1	59.7	-0.4	21.2	-0.2	
Lab125	0.00	0.2	J7.0		cipation	-∪.4	<u> </u>	-0.2	
Lab126									
Lab127 Lab128					cipation cipation				
				INO PUITI					
Lab129	77	1.3	64	0.2			20 /	1.1	
Lab130	77	1.3	04	•	cination		28.6	1.1	
Lab131	40.0	1 1	E0 0		cipation I		10.1	1.0	
Lab132	42.3	-1.1	58.8	-0.1			12.1	-1.9	
Lab133	56.6	-0.1	61.4	0.1	l oin ation		24.8	0.4	
Lab134	70.0	1 1	50.0		cipation	0.0	04.0	0.7	
Lab135	72.9	1.1	52.9	-0.5	71.9	0.3	26.8	0.7	
Lab136	56.1	-0.1	54.1	-0.4	59.2	-0.5	31	1.5	
Lab137	40.4	-1.2	35.3	-1.7	96.7	1.8	15.9	-1.2	

ANNEX 3. Standard Solution Ringtest. Results and Participants.

Lab Code	*Deltamethrin	b 25%)	*Diazinon	b 25%)	Isofenphos-methyl	b 25%)	*Lambda-cyhalothrin	ore RSD 25%)
MRRL	0.01	z-Score (FFP RSD	0.01	core RSD	0.01	core RSD	0.01	core RS
Median (mg/L)	57.7	z-Sc (FFF	60.5	z-Score (FFP RSD	67.1	z-Score (FFP RSD	22.6	z-Score (FFP RSD
Lab138			35.1	-1.7				
Lab139				No Parti	cipation			
Lab140				No Parti	cipation			
Lab141	57.7	0.0	56.7	-0.3	57.3	-0.6	22.7	0.0
Lab142	72	1.0	60	0.0			24	0.2
Lab143				No Parti	cipation			
Lab144				No Parti	cipation			
Lab145				No results	reported			
Lab146				No results	reported			
Lab147				No results	reported			
Lab148	87.3	2.1	23.4	-2.5	33.2	-2.0	17.4	-0.9
Lab149				No Parti	cipation			
Lab150	25	-2.3	50.3	-0.7	40	-1.6	9	-2.4
Lab151				No Parti	cipation			

ANNEX 3. Standards Solution Ring Test. Results and Participants.

Lab Code	*Metalaxyl sum	z-Score (FFP RSD 25%)	*Methamidophos	z-Score (FFP RSD 25%)	*Methidathion	z-Score (FFP RSD 25%)	Methomyl	z-Score (FFP RSD 25%)
MRRL	0.01	RSI	0.01	z-Score (FFP RSE	0.01	z-Score (FFP RSD	0.01	z-Score (FFP RSD
Median	23.7	Z-Sc FFP	41.1	2-Sc FF)	53.2	Z-Sc- FFP	61.2	z-Sc FFP
(mg/L) Lab001					cipation			., -
Lab002	24	0.1	34.5	-0.6	53	0.0	61.8	0.0
Lab003	25.8	0.1	43.5	0.2	58.1	0.4	64.4	0.0
Lab003	11.6	-2.0	30.8	-1.0	39.3	-1.0	04.4	0.2
Lab005	11.0	2.0	30.0	1.0	37.5	1.0		
Lab006	20.5	-0.5	48	0.7	45.2	-0.6	78.5	1.1
Lab007	22.5	-0.2	36.8	-0.4	55.8	0.2	52	-0.6
Lab008	22.0	0.2			reported	0.2	<u> </u>	0.0
Lab009	32.6	1.5	40.5	-0.1	55.7	0.2	61.8	0.0
Lab010	21.3	-0.4	40.0	0.1	00.7	0.2	01.0	0.0
Lab011	31.7	1.4	47.1	0.6	63.1	0.7	77	1.0
Lab012	01.7	17	77.1	0.0	00.1	0.7	46.2	-1.0
Lab013	34	1.7	43.1	0.2	53.3	0.0	70.2	1.0
Lab014	21	-0.5	44.4	0.3	81.5	2.1		
Lab015	22.6	-0.2	31.8	-0.9	55.2	0.2	65.5	0.3
Lab016	30.3	1.1	44	0.3	38.2	-1.1	68.5	0.5
Lab017	26.1	0.4	46	0.5	48.5	-0.4	86.2	1.6
Lab017	20.1	0.4	1 40		reported	J 0.4	00.2	1.0
Lab019	23.7	0.0	37.2	-0.4	48.2	-0.4	54	-0.5
Lab020	23.3	-0.1	15.6	-2.5	10.5	-3.2	58.1	-0.2
Lab021	20.0	0.1	10.0		cipation	0.2	00.1	0.2
Lab022	26.3	0.4	48.4	0.7	65.5	0.9		
Lab023	26	0.4	41.1	0.0	57.5	0.3	71.5	0.7
Lab024	24.9	0.2	39.5	-0.2	55.6	0.2	70	0.6
Lab025	30	1.1	49	0.8	48	-0.4	, , ,	0.0
Lab026		1.1	1 47		cipation	0.4		
Lab027	5.9	-3.0	34.5	-0.6			3.98	-3.7
Lab028		1 0.0	0	•	reported		0.70	1 011
Lab029	21.3	-0.4	36.3	-0.5	48	-0.4	65	0.2
Lab030	24.9	0.2	22	-1.9	46.3	-0.5	61.2	0.0
Lab031					reported	, ,,,,		,
Lab032	21.7	-0.3	37.1	-0.4	41.1	-0.9	56.5	-0.3
Lab033	26	0.4	48	0.7	53	0.0	65.2	0.3
Lab034	28.2	0.8			53.9	0.1	58.4	-0.2
Lab035	26.2	0.4	43.1	0.2	57.4	0.3	66.1	0.3
Lab036	24	0.1	37	-0.4	38	-1.1	64	0.2
Lab037			•		reported			
Lab038					cipation			
Lab039	26	0.4	40	-0.1	57	0.3	56	-0.3
Lab040	23	-0.1	46.2	0.5	33	-1.5	66.9	0.4
Lab041			-		cipation			
Lab042	24.8	0.2	38.6	-0.2	46.8	-0.5	46.5	-1.0
Lab043				•	reported			
Lab044	19.5	-0.7	47.3	0.6	54.9	0.1	49.8	-0.7
Lab045			-		cipation			
Lab046	<0.01		<0.01		39.7	-1.0	NA	
Lab047	28.1	0.7	43.6	0.2	57.1	0.3	63.5	0.2

ANNEX 3. Standard Solution Ringtest. Results and Participants.

Lab Code	*Metalaxyl sum	z-Score (FFP RSD 25%)	*Methamidophos	z-Score (FFP RSD 25%)	*Methidathion	z-Score (FFP RSD 25%)	Methomyl	z-Score (FFP RSD 25%)
MRRL	0.01	z-Score (FFP RSD	0.01	Z-Score (FFP RSD	0.01	z-Score (FFP RSD	0.01	z-Score (FFP RSD
Median (mg/L)	23.7	z-S	41.1	Z-S FF	53.2	Z-S FF	61.2	2.2 F.
Lab048				No Parti	icipation			
Lab049			I	No Parti	icipation			
Lab050	29.3	0.9	34.6	-0.6	38.1	-1.1	85.6	1.6
Lab051	32	1.4	41	0.0	51	-0.2	56	-0.3
Lab052	25.2	0.3	47.9	0.7	36.4	-1.3	65.9	0.3
Lab053 Lab054	25.1	0.2	28.6	-1.2	37.9 49.5	-1.2 -0.3	65.1	0.3
Lab055	23.1	0.2	20.0		reported	-0.5	05.1	0.5
Lab055					reported			
Lab057	22.8	-0.2	41.8	0.1	53.2	0.0	53.4	-0.5
Lab058		0.2	1110		icipation	0.0		0.0
Lab059	23.5	0.0	40.9	0.0	46.5	-0.5	65.9	0.3
Lab060	21	-0.5	53.5	1.2	58.8	0.4	55.3	-0.4
Lab061				No results	reported			
Lab062	23.1	-0.1	37.8	-0.3	48	-0.4	57.9	-0.2
Lab063	20.1	-0.6	28.2	-1.3	47.1	-0.5	45.4	-1.0
Lab064	20.2	-0.6	33.7	-0.7	40.6	-0.9	56.4	-0.3
Lab065	25.8	0.4	30.8	-1.0	48	-0.4	40.1	-1.4
Lab066	11.7	-2.0	40.4	-0.1	53.1	0.0	49.3	-0.8
Lab067				No Parti	icipation	0.0		
Lab068	30.0	1.2	41.7	0.1	52.7	0.0	/ / 0	0.0
Lab069	30.9	1.2	41./		61.4 icipation	0.6	64.8	0.2
Lab070 Lab071	22.6	-0.2	38.3	-0.3	52.7	0.0	41.7	-1.3
Lab071	22.7	-0.2	30.3	-0.5	57.4	0.3	41.7	-1.0
Lab073	22.7	0.2		No results	reported	0.0		
Lab074	19	-0.8		1101000	59	0.4		
Lab075								
Lab076	28.6	0.8	45.8	0.5	59.2	0.5	82.5	1.4
Lab077	22.2	-0.3	42.9	0.2	68.8	1.2	24	-2.4
Lab078					65.2	0.9	58.8	-0.2
Lab079	26.3	0.4	42.6	0.2	57.1	0.3	61.2	0.0
Lab080					reported			
Lab081	0 : 5	0.1	7	1	icipation	0.7	5/5	0.1
Lab082	24.5	0.1	74.4	3.2	62.4	0.7	54.5	-0.4
Lab083				No Parti	icipation 			
Lab084 Lab085			33.5	-0.7			61.6	0.0
Lab086	27	0.6	33.3	-0.7	62.1	0.7	01.0	0.0
Lab087		0.0	I	No Parti	icipation	0.7	I	
Lab088					53.4	0.0		
Lab089	19.6	-0.7	40.3	-0.1	50.5	-0.2	42	-1.3
Lab090	21.4	-0.4	40.8	0.0	49.8	-0.3	59.1	-0.1
Lab091	24.9	0.2	44.7	0.4	57	0.3	62.7	0.1
Lab092					reported			
Lab093	21.7	-0.3	42.8	0.2	56	0.2	53.9	-0.5
Lab094	23.7	0.0	22.4	-1.8	50.2	-0.2		
Lab095				No results	reported			

ANNEX 3. Standards Solution Ring Test. Results and Participants.

40	yl sum		idophos		thion		-	
Lab Code	*Metalaxyl sum	z-Score (FFP RSD 25%)	*Methamidophos	z-Score (FFP RSD 25%)	*Methidathion	z-Score (FFP RSD 25%)	Methomyl	z-Score (FFP RSD 25%)
MRRL	0.01	core RSI	0.01	Core	0.01	z-Score (FFP RSD	0.01	z-Score (FFP RSD
Median (mg/L)	23.7	z-Sc FF	41.1	Z-S FF	53.2	z-Sc (FFF	61.2	z-Sc FFF
Lab096	27	0.6	53.6	1.2	54.2	0.1	58.2	-0.2
Lab097				No results	reported			
Lab098	24.7	0.2			59.7	0.5		
Lab099								
Lab100			T	No results	reported	I	ı	
Lab101					65	0.9		
Lab102	23	-0.1			58	0.4		
Lab103	00	0.7	40		cipation 50	0.4	10	2.0
Lab104	28	0.7	40	-0.1	58	0.4	13	-3.2
Lab105	24.0	0.0	50.4		reported	٥٢		
Lab106 Lab107	24.8 15.9	0.2 -1.3	52.4 32.9	1.1 -0.8	59.5 34.3	0.5 -1.4	64.2	0.2
Lab107	13.7	-1.3	32.7		reported	-1.4	04.2	0.2
Lab109					reported			
Lab110					reported			
Lab111	0.36	-3.9		. 10 1000	1000.100			
Lab112	31.5	1.3			60.3	0.5		
Lab113				No results	reported			
Lab114			33	-0.8	46	-0.5		
Lab115								
Lab116				No results	reported			
Lab117				No Parti	cipation			
Lab118					74.2	1.6		
Lab119	20	-0.6	68.1	2.6	58.9	0.4	53.2	-0.5
Lab120	20.5	-0.5	45.5	0.4	57.5	0.3	52.7	-0.6
Lab121	20.5	-0.5	35	-0.6	38	-1.1	71.2	0.7
Lab122			T	No results	reported	I	ı	
Lab123					52	-0.1		
Lab124	18.3	-0.9	89.1	4.7	54.9	0.1	62.9	0.1
Lab125	23.3	-0.1	43.6	0.2	53.6	0.0	64.4	0.2
Lab126					cipation			
Lab127					cipation			
Lab128 Lab129				NO Parti	cipation			
Lab129	24.3	0.1	43.6	0.2	60.5	0.5		
Lab131	27.0	0.1	10.0		cipation	0.0	<u> </u>	
Lab132				110 1 0111	58.8	0.4		
Lab133	32.8	1.5	48.1	0.7	52.3	-0.1		
Lab134	52.5				cipation		1	
Lab135	20.7	-0.5	62.9	2.1	45.9	-0.5	35.5	-1.7
Lab136	24.5	0.1	40.4	-0.1	46.3	-0.5	63.2	0.1
Lab137	22.6	-0.2	7.5	-3.3	13.1	-3.0	66.8	0.4
Lab138								
Lab139				No Parti	cipation			
Lab140				No Parti	cipation			
Lab141	24.6	0.2			48.6	-0.3		
Lab142			44	0.3	58	0.4		
Lab143				No Parti	cipation			

ANNEX 3. Standard Solution Ringtest. Results and Participants.

Lab Code	*Metalaxyl sum	b 25%)	*Methamidophos	b 25%)	*Methidathion	b 25%)	Methomyl	b 25%)
MRRL	0.01	core RSI	0.01	core RSI	0.01	core RSI	0.01	core RSI
Median (mg/L)	23.7	z-Score (FFP RSD	41.1	z-Score (FFP RSD	53.2	z-Score (FFP RSD	61.2	z-Score (FFP RSD
Lab144				No Parti	cipation			
Lab145				No results	reported			
Lab146				No results	reported			
Lab147				No results	reported			
Lab148	15.6	-1.4	32.7	-0.8	35.9	-1.3	24.9	-2.4
Lab149				No Parti	cipation			
Lab150	15	-1.5	45	0.4	40	-1.0		
Lab151				No Parti	cipation	·		

ANNEX 3. Standards Solution Ring Test. Results and Participants.

Code Code	z-Score (FFP RSD 25%)
MRRL 0.01 <th< th=""><th>z-Score (FFP RSC</th></th<>	z-Score (FFP RSC
Median 43.8 70.7 70.7 43.8 3	8.5 z- -8
(mg/L) 43.0 NO Participation	., -
	1.6 0.3
	36 -0.3
Laboud 45.5 0.2 73.5 0.2 22.7 -1.9	0.5
Labous 40.5 0.2 75.5 0.2 22.7 1.7	
	8.2 2.0
	3.7 0.5
Labous No results reported	0.7
	2.8 -0.6
Lab010 42.1 -0.2	2.0
	43 0.5
Lab012 52.3 -1.0	
	7.2 0.9
	5.4 0.7
	7.9 -1.1
Lab016 76.3 3.0 85.5 0.8 36.7 -0.6	
Lab017 88.4 1.0 41.6 -0.2	
Lab018 No results reported	
	34 -0.5
	.88 -3.1
Lab021 No Participation	100 011
Lab022 66 2.0	
	4.5 0.6
	4.2 -0.4
	34 -0.5
Lab026 No Participation	,
Lab027 5.35 -3.5 5.47 -3.7 0.18 -4.0	
Lab028 No results reported	
	4.3 -0.4
Lab030 40.7 -0.3 66.8 -0.2 45.2 0.1 3	4.6 -0.4
Lab031 No results reported	
	9.1 -2.0
Lab033 44.5 0.1 68.4 -0.1 47.8 0.4	
Lab034	
Lab035 46.8 0.3 71.5 0.0 42.3 -0.1 4	2.1 0.4
Lab036 46 0.2 76 0.3 34 -0.9	41 0.3
Lab037 No results reported	
Lab038 No Participation	
	39 0.1
Lab040 43.9 0.0 78.6 0.4 15 -2.6	23 -1.6
Lab041 No Participation	
Lab042 44.6 0.1 73.3 0.1 40.4 -0.3 3	5.9 -0.3
Lab043 No results reported	
Lab044 67 2.1 60.1 -0.6 42.1 -0.2 4	9.2 1.1
Lab045 No Participation	
Lab046 28.5 -1.4 NA 22.4 -2.0 N	NA A
Lab047 46.8 0.3 85.8 0.9 44.3 0.0 4	0.7 0.2

ANNEX 3. Standard Solution Ringtest. Results and Participants.

Lab Code	*Monocrotophos	z-Score (FFP RSD 25%)	*Oxamyl	z-Score (FFP RSD 25%)	Parathion-methyl	z-Score (FFP RSD 25%)	Paraoxon-methyl	z-Score (FFP RSD 25%)
MRRL	0.01	z-Score (FFP RSD	0.01	z-Score (FFP RSD	0.01	z-Score (FFP RSD	0.01	z-Score (FFP RSD
Median (mg/L)	43.8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	70.7	₹.E.	43.8	3, E	38.5	2-2 F)
Lab048				No Parti	cipation			
Lab049					cipation		I	
Lab050	46.8	0.3	85.1	0.8	28.8	-1.4	43.9	0.6
Lab051	40	-0.3	72.5	0.1	48	0.4	41	0.3
Lab052	38.2	-0.5	77.9	0.4	29.4	-1.3	33.4	-0.5
Lab053					46.3	0.2		
Lab054	31.4	-1.1	66.3	-0.2	23.2	-1.9	28.2	-1.1
Lab055					reported			
Lab056	46.3	0.2	67.7	No results	reported 41.9	-0.2	42.2	0.4
Lab057 Lab058	46.3	0.2	0/./		cipation	-0.2	42.2	0.4
Lab058	50.8	0.6	63.5	-0.4	46.5	0.2	50	1.2
Lab060	39.5	-0.4	59.5	-0.4	44.5	0.2	42	0.4
Lab061	37.5	0.4	37.5		reported	0.1	ΤΖ	0.4
Lab062	45.8	0.2	52.3	-1.0	42.1	-0.2	31.1	-0.8
Lab063	31.6	-1.1	50.7	-1.1	45	0.1	35.6	-0.3
Lab064	45.1	0.1	73.4	0.2			39.7	0.1
Lab065	42.1	-0.2			42.8	-0.1		
Lab066	30.8	-1.2	65.8	-0.3	40.8	-0.3	30.9	-0.8
Lab067			•	No Parti	cipation			
Lab068					41.8	-0.2		
Lab069	51.1	0.7	79.7	0.5	47	0.3	44.1	0.6
Lab070				No Parti	cipation			
Lab071	39.2	-0.4	59.3	-0.6	43.8	0.0	57.5	2.0
Lab072	37.7	-0.6			34.8	-0.8	35.5	-0.3
Lab073			T	No results	reported		ı	
Lab074					50	0.6		
Lab075					cipation		Ι	
Lab076	59.9	1.5	115	2.5	46.7	0.3	77.3	4.0
Lab077	56.5	1.2			36.7	-0.7	91.7	5.5
Lab078	47.0	0.0	66.3	-0.3	54.2	1.0	49.2	1.1
Lab079	46.3	0.2	77.5	0.4	45	0.1	42.3	0.4
Lab080					reported			
Lab081 Lab082	42.5	-0.1	69.4	-0.1	cipation 50.5	0.6		
Lab082 Lab083	42.3	-0.1	07.4		cipation	0.6	<u> </u>	
Lab083				NO FUITI				
Lab085	42	-0.2	73.5	0.2				
Lab086	74	0.2	, , , , ,	0.2				
Lab087			1	No Parti	cipation		ı	
Lab088					37.6	-0.6		
Lab089	35.9	-0.7	71	0.0	35.6	-0.8	31.1	-0.8
Lab090	42.5	-0.1	58.4	-0.7	45.3	0.1	37.4	-0.1
Lab091	43.7	0.0	74.8	0.2	54.7	1.0	62	2.4
Lab092					reported			
Lab093	43.1	-0.1	64.4	-0.4	51.3	0.7		
Lab094					48.3	0.4	19.6	-2.0
Lab095				No results	reported			

ANNEX 3. Standards Solution Ring Test. Results and Participants.

<u>a</u>	*Monocrotophos		-		Parathion-methyl		Paraoxon-methyl	
Lab Code	*Monoc	z-Score (FFP RSD 25%)	*Oxamyl	z-Score (FFP RSD 25%)	Parathio	z-Score (FFP RSD 25%)	Paraoxo	z-Score (FFP RSD 25%)
MRRL	0.01	core	0.01	core	0.01	z-Score (FFP RSD	0.01	z-Score (FFP RSD
Median (mg/L)	43.8	z-Sc (FFF	70.7	z-Se (FFF	43.8	z-Sc (FFF	38.5	z-Se (FFF
Lab096	43.7	0.0	69.9	0.0	45.8	0.2	39.5	0.1
Lab097				No results	reported			
Lab098					47.1	0.3		
Lab099								
Lab100			Γ	No results	reported			
Lab101					62.1	1.7	38.4	0.0
Lab102				N. D. D.	50	0.6		
Lab103	47	0.3		No Part	icipation 44	0.0		
Lab104 Lab105	4/	0.3		No regult		0.0		
Lab105	44.9	0.1	61.1	-0.5	reported 44.8	0.1	47.6	0.9
Lab107	44.7	0.1	71.6	0.1	31.2	-1.2	47.0	0.7
Lab108			71.0		reported	1.2	l .	
Lab109					reported			
Lab110					reported			
Lab111					0.05	-4.0		
Lab112								
Lab113				No result:	reported			
Lab114					37	-0.6		
Lab115					icipation			
Lab116					reported			
Lab117			1	No Part	icipation		ı	
Lab118					46	0.2		
Lab119	59.6	1.4	70.5	0.0	47.6	0.3	00.5	0.0
Lab120	41	-0.3	64.5	-0.4	54.5	1.0	38.5	0.0
Lab121	39.4	-0.4	79.1	0.5	33	-1.0	25.3	-1.4
Lab122 Lab123				No resuit	reported 46.3	0.2		
Lab124					40.5	0.2	35	-0.4
Lab125	47.7	0.4	70.9	0.0	43.6	0.0		-0.4
Lab126	17.7	· · · ·	, , , , , ,		icipation		ı	
Lab127					icipation			
Lab128					icipation			
Lab129								
Lab130					52.3	0.8	33.6	-0.5
Lab131				No Part	icipation			
Lab132								
Lab133	47	0.3			41.5	-0.2	41.2	0.3
Lab134			ı		icipation		ı	
Lab135	41.6	-0.2	48.6	-1.3	35.9	-0.7		
Lab136	44.4	0.1	73.8	0.2	40.6	-0.3	24.8	-1.4
Lab137	39.1	-0.4	59	-0.7	14.9	-2.6	5.12	-3.5
Lab138				NI- D. II	28.9	-1.4		
Lab139					icipation			
Lab140				No Part	icipation	1 1		
Lab141					32.3 55	-1.1		
Lab142 Lab143				No Port	ı <u> </u>	1.0	<u> </u>	
LUD 143				NO FUIT	CIPUIION			

ANNEX 3. Standard Solution Ringtest. Results and Participants.

Lab Code	*Monocrotophos	b 25%)	*Oxamyl	b 25%)	Parathion-methyl	b 25%)	Paraoxon-methyl	b 25%)
MRRL	0.01	core RSI	0.01	Sore RSI	0.01	core RSD	0.01	Sore RSI
Median (mg/L)	43.8	z-Score (FFP RSD	70.7	z-Score (FFP RSD	43.8	z-Score (FFP RSD	38.5	z-Score (FFP RSD
Lab144				No Parti	cipation			
Lab145				No results	reported			
Lab146				No results	reported			
Lab147				No results	reported			
Lab148	9.54	-3.1	66.5	-0.2	30.6	-1.2	30.1	-0.9
Lab149				No Parti	cipation			
Lab150					35	-0.8		
Lab151			·	No Parti	cipation	·		

ANNEX 3. Standards Solution Ring Test. Results and Participants.

Lab Code	*Phosalone	z-Score (FFP RSD 25%)	*Procymidone	z-Score (FFP RSD 25%)	*Thiacloprid	z-Score (FFP RSD 25%)	Triazofos	z-Score (FFP RSD 25%)
MRRL	0.01	RS	0.01	RS	0.01	RS	0.01	RS
Median (mg/L)	76.9	z-Sc (FFP	21.7	z-Sc (FFP	37.8	z-Sc (FFP	29.7	z-Sc (FFP
Lab001				No Parti	cipation			
Lab002	80	0.2	20.3	-0.3	37.4	0.0	28.1	-0.2
Lab003	86.3	0.5	25	0.6	41.2	0.4	33	0.4
Lab004	75.3	-0.1	21.9	0.0	36.5	-0.1		
Lab005								
Lab006	65.8	-0.6	17.5	-0.8	53.2	1.6	27.8	-0.3
Lab007	79.1	0.1	23.2	0.3	35.1	-0.3	38.7	1.2
Lab008				No results	reported			
Lab009	65.8	-0.6	15.9	-1.1	33	-0.5	13	-2.2
Lab010	66	-0.6	21	-0.1				
Lab011	100	1.2	25.9	0.8	58.1	2.2	24.5	-0.7
Lab012			0.48	-3.9				
Lab013	90	0.7	22.1	0.1			34.3	0.6
Lab014	86.7	0.5	20.9	-0.1			40.1	1.4
Lab015	62.9	-0.7	22.4	0.1	42.1	0.5	36.3	0.9
Lab016	56.9	-1.0	19.3	-0.4			32.4	0.4
Lab017	47.6	-1.5	18.7	-0.6	42.5	0.5	24.5	-0.7
Lab018				No results	reported			
Lab019	66.4	-0.5	21	-0.1	34.9	-0.3	29.2	-0.1
Lab020	25.1	-2.7	19.7	-0.4	41.6	0.4	12.6	-2.3
Lab021				No Parti	cipation			
Lab022	101	1.3	20.1	-0.3			42	1.7
Lab023	85.3	0.4	22.2	0.1	47.8	1.1	32.6	0.4
Lab024	84.2	0.4	26.9	1.0	33.5	-0.5	29.2	-0.1
Lab025	72	-0.3	21	-0.1			33	0.4
Lab026				No Parti	cipation			
Lab027	3.36	-3.8	10.1	-2.1	3.58	-3.6	12.6	-2.3
Lab028				No results	reported			
Lab029	67.5	-0.5	24.6	0.5	34.1	-0.4	23.7	-0.8
Lab030	76	0.0	25.1	0.6	37.8	0.0	39.9	1.4
Lab031				No results	reported			
Lab032	68.9	-0.4	18.3	-0.6	34	-0.4	24.7	-0.7
Lab033	90.3	0.7	23.3	0.3	23.5	-1.5	55	3.4
Lab034	88.8	0.6	29.9	1.5	35.3	-0.3		
Lab035	79.4	0.1	21.5	0.0	40	0.2	34.6	0.7
Lab036	67	-0.5	22	0.1	36	-0.2	28	-0.2
Lab037					reported			
Lab038					cipation			
Lab039	82	0.3	21	-0.1	38	0.0	34	0.6
Lab040	66	-0.6	23	0.2	38.8	0.1	17	-1.7
Lab041					cipation			
Lab042	78.1	0.1	21.3	-0.1	36	-0.2	28.8	-0.1
Lab043					reported			
Lab044	85.9	0.5	26.4	0.9	36.7	-0.1	40.6	1.5
Lab045				1	cipation I			
Lab046	87.3	0.5	17.2	-0.8	NA		30.6	0.1
Lab047	72.8	-0.2	21.6	0.0	41	0.3	30.9	0.2

ANNEX 3. Standard Solution Ringtest. Results and Participants.

Lab Code	*Phosalone	(%	*Procymidone	(%	*Thiacloprid	%)	friazofos	%)
Lak	*Ph	25	*Pro	25	¥ F	25	Trio	25
MRRL	0.01	z-Score (FFP RSD 25%)	0.01	z-Score (FFP RSD 25%)	0.01	z-Score (FFP RSD 25%)	0.01	z-Score (FFP RSD 25%)
Median	76.9	Z-S.	21.7	S-S	37.8	S-S	29.7	2-S
(mg/L)					L cipation			
Lab048 Lab049					cipation			
Lab050	58.9	-0.9	21.6	0.0	45.7	0.8	22.7	-0.9
Lab050	84	0.4	20	-0.3	32.3	-0.6	27	-0.7
Lab051	68.3	-0.4	22.6	0.2	38.1	0.0	20	-1.3
Lab052	00.0	-0.4	22.0	0.2	30.1	0.0	20	-1.5
Lab053	82.2	0.3	33	2.1	37.4	0.0	23	-0.9
Lab055	02.2	0.0			reported	0.0	20	0.7
Lab055					reported			
Lab057	69.6	-0.4	22.6	0.2	38.7	0.1	27.5	-0.3
Lab058	07.0	0.4	22.0		cipation	0.1	27.0	0.0
Lab059	94.8	0.9	23.7	0.4	38.9	0.1	43.5	1.9
Lab060	79.8	0.2	20.7	0.4	33	-0.5	29.7	0.0
Lab061	77.0	0.2		No results	reported	0.5	27.7	0.0
Lab062	72.5	-0.2	21.7	0.0	36.3	-0.2	28.3	-0.2
Lab063	80.3	0.2	19.3	-0.4	35.4	-0.3	29.4	0.0
Lab064	74.2	-0.1	15.9	-1.1	37.3	-0.1	16.6	-1.8
Lab065	72.9	-0.2	19.7	-0.4	07.0	0.1	27.4	-0.3
Lab066	80	0.2	19.6	-0.4	33.3	-0.5	24.6	-0.7
Lab067	- 00	0.2	17.0		cipation	0.0	24.0	0.7
Lab068			19.3	-0.4			29.8	0.0
Lab069	68.7	-0.4	21.9	0.0	47.1	1.0	37.9	1.1
Lab070	00.7	0.1	21.7		cipation	1.0	07.7	
Lab071	79.8	0.2	20.3	-0.3			36.2	0.9
Lab072	37.4	-2.1	19.1	-0.5			31.9	0.3
Lab073					reported			
Lab074	88	0.6	20	-0.3	10001100		30	0.0
Lab075		1 2.2			cipation			1 2.2
Lab076	95.6	1.0	23.7	0.4	51.7	1.5	31.2	0.2
Lab077	83	0.3	20.5	-0.2	0		29.5	0.0
Lab078	83.3	0.3	23.7	0.4				
Lab079	81.4	0.2	20.8	-0.2	39.2	0.1	30.7	0.1
Lab080				•	reported			
Lab081					cipation			
Lab082	84.5	0.4	24	0.4	42.5	0.5	31.6	0.3
Lab083					cipation			
Lab084			23	0.2				
Lab085					47	1.0	28.1	-0.2
Lab086	90.2	0.7	21.7	0.0			22.2	-1.0
Lab087					cipation		•	
Lab088	79.2	0.1	22.5	0.1			26.2	-0.5
Lab089	67.5	-0.5	21.8	0.0	32.5	-0.6	22.5	-1.0
Lab090			24.3	0.5	38.4	0.1	32.4	0.4
Lab091	88.9	0.6	29.1	1.4	42.1	0.5	32.1	0.3
Lab092			·		reported			
Lab093	76.9	0.0	23.4	0.3	35.1	-0.3	30.2	0.1
Lab094	75.7	-0.1	23.2	0.3			24	-0.8
Lab095				No results	reported			

ANNEX 3. Standards Solution Ring Test. Results and Participants.

Lab Code	*Phosalone	(2	*Procymidone	(2	*Thiacloprid	(2	Triazofos	(2
g	Pho	25%	P.	25%	Thick	25%	riaz	25%
MRRL	0.01	z-Score (FFP RSD 25%)	0.01	z-Score (FFP RSD 25%)	0.01	z-Score (FFP RSD 25%)	0.01	z-Score (FFP RSD 25%)
Median		-Sc F		- Sc F		- Sc.		-Sc F
(mg/L)	76.9		21.7		37.8		29.7	
Lab096	72.7	-0.2	29	1.3	36.4	-0.1	30.5	0.1
Lab097	100	1.0	00.1		reported		0.4.1	0.4
Lab098 Lab099	102	1.3	22.1	0.1			34.1	0.6
Lab100			22.3		reported			
Lab101	84.6	0.4	25.4	0.7	Геропеа		30	0.0
Lab102	100	1.2	21	-0.1			33	0.4
Lab103				No Parti	cipation			
Lab104	83	0.3	23	0.2	20	-1.9	38	1.1
Lab105				No results	reported			
Lab106	83	0.3	24.6	0.5	44.6	0.7	47.9	2.5
Lab107	48	-1.5	18	-0.7			16	-1.8
Lab108				No results				
Lab109 Lab110					reported			
Lab111	0.1		0.8	-3.9	reported		0.3	-4.0
Lab112	0.1		19.4	-0.4			0.5	-4.0
Lab113			.,,,,		reported			
Lab114	66.5	-0.5	19.8	-0.3			26.2	-0.5
Lab115				No Parti	cipation			
Lab116				No results	reported			
Lab117					cipation			
Lab118			25.7	0.7			30.8	0.1
Lab119	76	0.0	23.6	0.4	34.6	-0.3	36.1	0.9
Lab120	80.3 53.7	0.2	22.4	0.1	31.6	-0.7	32.3	0.4
Lab121	53.7	-1.2	19	-0.5	52.5	1.6	16	-1.8
Lab122			00.0		reported			
Lab123			22.8	0.2	_			
Lab124	89.2	0.6	17.3	-0.8	42.5	0.5	16.3	-1.8
Lab125	85.4	0.4	20.2	-0.3			30.7	0.1
Lab126					cipation			
Lab127					cipation			
Lab128		0.0		No Parti	cipation I			
Lab129	80	0.2						
Lab130			23.6	0.4			30.3	0.1
Lab131				No Parti	cipation I			
Lab132	57.4	-1.0					23.6	-0.8
Lab133	56.9	-1.0	22.7	0.2			43.4	1.8
Lab134					cipation			
Lab135	66.7	-0.5	20.2	-0.3	32.9	-0.5	20.3	-1.3
Lab136	75.8	-0.1	18.5	-0.6	42.2	0.5	23.7	-0.8
Lab137	27.2	-2.6	19	-0.5	40.1	0.2	14.2	-2.1
Lab138	35.3	-2.2						
Lab139				No Parti	ı cipation			
Lab140					cipation			
Lab141	62.3	-0.8	20.5	-0.2				

ANNEX 3. Standard Solution Ringtest. Results and Participants.

Lab Code	*Phosalone	0 25%)	*Procymidone	5 25%)	*Thiacloprid	5 25%)	Triazofos	5 25%)
MRRL	0.01	z-Score (FFP RSD	0.01	z-Score (FFP RSD	0.01	z-Score (FFP RSD	0.01	z-Score (FFP RSD
Median (mg/L)	76.9	z-Sc (FFF	21.7	z-Sc (FFF	37.8	z-Sc (FFF	29.7	z-Sc (FFF
Lab142	79	0.1	23	0.2			21	-1.2
Lab143				No Parti	cipation			
Lab144				No Parti	cipation			
Lab145				No results	reported			
Lab146				No results	reported			
Lab147				No results	reported			
Lab148	56	-1.1	23.6	0.3	59.4	2.3	22.6	-1.0
Lab149				No Parti	cipation			
Lab150	44	-1.7	15.6	-1.1			33	0.4
Lab151				No Parti	cipation			

ANNEX 3. Standards Solution Ring Test. Results and Participants.

Table 2. The techniques used by participating laboratories.

	1None; 2Split/Splitless;
Injection Type	3Split;
	4PTV,
	5On-Column

	Aldicarb									
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?			
002	21.5	LC-MS/MS	LC-MS/MS	No	1	5	Yes			
003	20.9	LC-MS/MS	No	No	5	5	Yes			
004	29.0	LC-MS/MS	LC-MS/MS	No	50	2	Yes			
006	22.5	LC-MS/MS	LC-MS/MS	No	10	5	No			
007	18.6	LC-MS/MS	LC-MS/MS	No	5	5	Yes			
009	20.7	HPLC-FL	No	СН3ОН	10	5	Yes			
011	22.7	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No			
012	16.54	HPLC-FL	No	No	10	2	Yes			
015	20.8	LC-MS/MS	No	No	20	5	Yes			
016	28.5	LC-MS/MS	LC-MS/MS	Yes	6	1	Yes			
017	28.9	LC-MS/MS	LC-MS/MS	No	10	2	Yes			
019	22.1	LC-MS/MS	LC-MS/MS	No	5	5	Yes			
020	17.43	LC-MS/MS	LC-MS/MS	ACN:H2O 1:3	7	1	No			
023	23.8	LC-MS/MS	LC-MS/MS	No	10	2	No			
024	20	LC-MS/MS	No	No	3	5	Yes			
029	20.9	LC-MS/MS	LC-MS/MS	No	5	1	Yes			
030	20.45	LC-MS	LC-MS/MS	No	5	5	Yes			
032	19.98	LC-MS/MS	LC-MS/MS	No	3	1	Yes			
034	18.3	LC-MS/MS	LC-MS/MS	No	5	1	Yes			
035	21.5	LC-MS/MS	No	none	3	1	Yes			
036	21	LC-MS/MS	LC-MS/MS	No	10	1	Yes			
039	23	LC-MS/MS	LC-MS/MS	No	1	5	No			
040	19.7	LC-MS/MS	No	/	25	5	Yes			
042	20.5	LC-MS/MS	LC-MS/MS	-	20	5	No			
044	17.9	LC-MS/MS	LC-MS/MS	water/methanol	10	5	Yes			
046	NA	GC-Q-MS	GC-Q-MS	No	1	2	Yes			
047	22.4	LC-MS/MS	LC-MS/MS	No	3	1	Yes			
050	24.0	LC-MS/MS	LC-MS/MS	Yes	3	5	Yes			
051	17.0	LC-MS/MS	LC-MS/MS	No	20	5	No			
052	21.9	LC-MS/MS	LC-MS/MS	No	20	2	Yes			
054	27.3	GC-NPD	LC-MS/MS	solvent exchange	1	2	Yes			
057	18.8	LC-MS/MS	No	No	55	5	No			

ANNEX 3. Standard Solution Ringtest. Results and Participants.

				Aldicarb			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µI)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
059	22.5	LC-MS/MS	LC-MS/MS	methanol	4	5	Yes
060	18.8	LC-MS/MS	LC-MS/MS	No	8	1	Yes
062	20.0	LC-MS/MS	No	No	5	5	Yes
063	16.6	LC-MS/MS	No	No	10	5	No
064	18.5	LC-MS/MS	LC-MS/MS	Yes	10	2	Yes
066	15.8	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes
069	22.5	LC-MS/MS	LC-MS/MS	MeOH	5	1	Yes
071	19.4	LC-MS/MS	LC-MS/MS	No	10	1	Yes
076	61.7	LC-MS/MS	LC-MS/MS	Acetonitril	1	1	Yes
078	20.2	HPLC-FL	No	acetonitrile	100	5	Yes
079	20.7	LC-MS/MS	LC-MS/MS	No	10	5	No
082	20.4	HPLC-UV	HPLC-DAD	Yes	20	5	Yes
085	20.67	LC-MS/MS	LC-MS/MS	methanol	5	5	Yes
089	17.82	LC-MS/MS	LC-MS/MS	No	10	1	Yes
090	19.072	LC-MS/MS	LC-MS/MS	No	20	1	Yes
091	25.2	LC-MS/MS	LC-MS/MS	No	5	5	Yes
093	19.1	LC-MS/MS	No	No	10	5	Yes
096	22.4	LC-MS/MS	No	No	5	1	Yes
104	16	LC-MS/MS	LC-MS/MS	ACN	15	1	No
106	24.8	LC-MS/MS	No	No	15	4	Yes
107	20.3	HPLC-FL	HPLC-FL	acididied water	200	1	Yes
119	19.50	LC-MS	No	Yes	20	5	Yes
120	20.0	HPLC-DAD	HPLC-DAD	No	20	2	Yes
121	22.380	LC-MS/MS	LC-MS/MS	No	6	2	Yes
125	24.8	LC-MS/MS	LC-MS/MS	No	5	1	Yes
135	20.0	HPLC-DAD	HPLC-DAD	No	20	5	Yes
136	21.6	LC-MS/MS	LC-MS/MS	No	20	2	Yes
137	22.7	LC-MS/MS	LC-MS/MS	Acetonitrilo	10	5	Yes
148	15.95	LC-MS/MS	LC-MS/MS	No	10	5	Yes
150	NA	GC-ECD	GC-ECD	Isohexane	2	1	Yes

			Aldic	arb sulfoxide	<u> </u>		
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
002	22.3	LC-MS/MS	LC-MS/MS	No	1	5	Yes
003	23.6	LC-MS/MS	No	No	5	5	Yes
004	21	LC-MS/MS	LC-MS/MS	No	50	2	Yes
006	29.8	LC-MS/MS	LC-MS/MS	No	10	5	No
007	18.3	LC-MS/MS	LC-MS/MS	No	5	5	Yes
009	20.2	HPLC-FL	No	СНЗОН	10	5	Yes
011	29.15	LC-MS/MS	LC-MS/MS	Yes	10	5	No
012	16.50	HPLC-FL	No	No	10	2	Yes
015	21.6	LC-MS/MS	No	No	20	5	Yes
016	22.8	LC-MS/MS	LC-MS/MS	Yes	6	1	Yes
017	23.6	LC-MS/MS	LC-MS/MS	No	10	2	Yes
019	19.9	LC-MS/MS	LC-MS/MS	No	5	5	Yes
020	18.55	LC-MS/MS	LC-MS/MS	ACN:H2O 1:3	7	1	No
023	18.3	LC-MS/MS	LC-MS/MS	No	10	2	No
024	20	LC-MS/MS	No	No	3	5	Yes
027	1.83	LC-MS/MS	LC-MS/MS	No	15	5	No
029	23.2	LC-MS/MS	LC-MS/MS	No	5	1	Yes
030	17.34	LC-MS/MS	LC-MS/MS	No	5	5	Yes
032	16.83	LC-MS/MS	LC-MS/MS	No	3	1	Yes
035	20.7	LC-MS/MS	No	none	3	1	Yes
036	21	LC-MS/MS	LC-MS/MS	No	10	1	Yes
039	15	LC-MS/MS	LC-MS/MS	No	1	5	No
040	19.2	LC-MS/MS	No	/	25	5	Yes
042	20.6	LC-MS/MS	LC-MS	-	20	5	No
044	14.7	LC-MS/MS	LC-MS/MS	water/methanol	10	5	Yes
046	NA	GC-Q-MS	GC-Q-MS	No	1	2	Yes
047	23.0	LC-MS/MS	LC-MS/MS	No	3	1	Yes
050	23.7	LC-MS/MS	LC-MS/MS	Yes	3	5	Yes
051	20.0	LC-MS/MS	LC-MS/MS	No	20	5	No
052	20.4	LC-MS/MS	LC-MS/MS	No	20	2	Yes
054	16.2	LC-MS/MS	LC-MS/MS	solvent exchange	1	2	Yes
057	23.2	LC-MS/MS	No	No	55	5	No
059	23.9	LC-MS/MS	LC-MS/MS	methanol	4	5	Yes
060	20.8	LC-MS/MS	LC-MS/MS	No	8	1	Yes
062	20.5	LC-MS/MS	No	No	5	5	Yes
063	17.4	LC-MS/MS	No	No	10	5	No
064	73.4	LC-MS/MS	LC-MS/MS	Yes	10	2	Yes
066	21.2	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes

ANNEX 3. Standard Solution Ringtest. Results and Participants.

	Aldicarb sulfoxide										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
069	21.1	LC-MS/MS	LC-MS/MS	MeOH	5	1	Yes				
071	36.0	LC-MS/MS	LC-MS/MS	No	10	1	No				
076	31.2	LC-MS/MS	LC-MS/MS	Acetonitril	1	1	Yes				
078	5.95	HPLC-FL	No	acetonitrile	100	5	Yes				
079	20.2	LC-MS/MS	LC-MS/MS	No	10	5	No				
082	20.0	HPLC-UV	HPLC-DAD	Yes	20	5	Yes				
085	27.10	LC-MS/MS	LC-MS/MS	methanol	5	5	Yes				
089	21.72	LC-MS/MS	LC-MS/MS	No	10	1	Yes				
090	18.793	LC-MS/MS	LC-MS/MS	No	20	1	Yes				
091	21.1	LC-MS/MS	LC-MS/MS	No	5	5	Yes				
093	21.6	LC-MS/MS	No	No	10	5	Yes				
096	55.2	LC-MS/MS	No	No	5	1	Yes				
107	19.9	HPLC-FL	HPLC-FL	acidified water	200	1	Yes				
119	19.38	LC-MS	No	Yes	20	5	Yes				
120	20.5	HPLC-DAD	HPLC-DAD	No	20	5	Yes				
121	16.010	LC-MS/MS	LC-MS/MS	No	6	1	Yes				
124	22.6	LC-MS/MS	HPLC-DAD	No	5	5	Yes				
125	19.7	LC-MS/MS	LC-MS/MS	No	5	1	Yes				
135	20.0	HPLC-DAD	GC-ECD	No	20	5	Yes				
136	21.0	LC-MS/MS	LC-MS/MS	No	20	2	Yes				
137	21.59	LC-MS/MS	LC-MS/MS	Acetonitrilo	10	5	Yes				
148	20.65	LC-MS/MS	LC-MS/MS	No	10	5	Yes				
150	NA	GC-ECD	GC-ECD	isohexane	2	1	Yes				

	*Azinphos-methyl									
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µI)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?			
002	40.1	GC-NPD	GC-Q-MS	No	1	2	Yes			
003	42.0	LC-MS/MS	No	No	5	5	Yes			
004	37.6	LC-MS/MS	LC-MS/MS	No	50	2	Yes			
006	48.7	LC-MS/MS	LC-MS/MS	No	10	5	No			
007	37.9	LC-MS/MS	LC-MS/MS	No	5	5	Yes			
011	40.64	LC-MS/MS	LC-MS/MS	Yes	10	5	No			
013	44.3	GC-NPD	GC-Q-MS	isooctane	1	2	Yes			
014	51.6	GC-NPD	GC-Q-MS	isottano	3	2	Yes			
015	38.2	GC-QQQ-MS/MS	No	No	3	4	Yes			
016	25.7	GC-NPD	GC-NPD	Yes	2	2	Yes			
017	30.3	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	4	4	Yes			
019	31.0	LC-MS/MS	LC-MS/MS	No	5	5	Yes			
020	37.84	LC-MS/MS	LC-MS/MS	ACN:H2O 1:3	7	1	No			
023	41.2	GC-Q-MS	GC-Q-MS	No	2	2	Yes			
024	40	GC-ITD-MS/MS	LC-MS/MS	toluene	1	2	Yes			
025	44	GC-NPD	GC-ITD-MS/MS	isottane	2	3	Yes			
027	4.67	LC-MS/MS	LC-MS/MS	No	15	5	No			
029	32.6	LC-MS/MS	LC-MS/MS	No	5	1	Yes			
030	42.37	LC-MS/MS	LC-MS/MS	No	5	5	Yes			
032	34.65	LC-MS/MS	LC-MS/MS	No	3	1	Yes			
033	42.50	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes			
034	37.8	GC-Q-MS	GC-Q-MS	Yes	2	2	Yes			
035	44.1	LC-MS/MS	No	none	3	1	Yes			
036	39	GC-Q-MS	GC-Q-MS	Yes	10	4	Yes			
039	37	GC-Q-MS	GC-Q-MS	No	5	1	No			
040	11	GC-Q-MS	No	/	1	2	Yes			
042	34.4	GC-Q-MS	GC-Q-MS	-	4	3	No			
044	42.4	GC-ITD-MS/MS	GC-FPD	ethyl acetate	1	5	Yes			
046	0.045	GC-Q-MS	GC-Q-MS	No	1	2	Yes			
047	37.3	GC-TOF/MS	GC-TOF/MS	No	3	3	Yes			
050	8.6	LC-MS/MS	LC-MS/MS	Yes	3	5	Yes			
051	51.0	GC-NPD	GC-ECD	Ethylacetat	1	1	Yes			
052	26.4	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	1	2	Yes			
054	35.3	GC-NPD	GC-NPD	solvent exchange	1	2	Yes			
57	39.5	GC-Q-MS	LC-MS/MS	No	5	3	No			
59	32.1	GC-Q-MS	ECD/GC.NPD/GC	acetone	2	2	Yes			
60	92.2	GC-Q-MS	GC-Q-MS	No	3	3	Yes			
62	37.9	LC-MS/MS	No	No	5	5	Yes			

ANNEX 3. Standard Solution Ringtest. Results and Participants.

			*Azir	nphos-methyl			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
63	41.2	LC-MS/MS	GC-Q-MS	No	10	5	No
64	20.6	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes
65	27.6	GC-Q-MS	GC-Q-MS	-	2	2	Yes
66	39.6	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Salad matrix	5	3	Yes
69	51.1	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Ethylacetate/cyclohexane	2	2	Yes
71	37.4	LC-MS/MS	LC-MS/MS	No	10	1	Yes
72	39	GC-ITD-MS/MS	GC-ITD-MS/MS	No	1	5	Yes
76	48.5	LC-MS/MS	LC-MS/MS	Acetonitril	1	1	Yes
77	40.33	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes
79	39.3	LC-MS/MS	LC-MS/MS	No	10	5	No
82	36.3	GC-FPD	GC-ITD-MS/MS	Yes	2	3	Yes
88	31.42	GC-NPD	GC-NPD	isooctane/toluene 90/10	1	5	No
89	36.64	GC-IT/MS	GC-IT/MS	No	1	2	Yes
90	37.879	LC-MS/MS	LC-MS/MS	No	20	1	Yes
91	37.6	LC-MS/MS	LC-MS/MS	No	5	5	Yes
93	46.1	GC-ECD	GC-ITD-MS/MS	isooctan	1	5	Yes
94	20.82	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes
96	36.4	LC-MS/MS	No	No	5	1	Yes
98	56.5	GC-ECD	GC-ECD	Yes	2	2	No
101	43	GC-ITD-MS/MS	GC-NPD	Ethyle Acetate	1	2	Yes
104	26	LC-MS/MS	LC-MS/MS	ACN	15	1	No
106	34.8	GC-ECD	LC-MS/MS	Isooctan	1	2	Yes
107	19.0	GC-TOF/MS	GC-TOF/MS	ethyl acetate	1	2	Yes
114	40.14	GC-NPD	GC-NPD	ethyl acetate	5	2	Yes
118	91.5	GC-NPD	No	acn	5	3	No
119	53.70	GC-NPD	No	Yes	1	2	Yes
120	43.7	GC-NPD	GC-ITD-MS/MS	Yes	1	2	Yes
121	42.480	GC-Q-MS	GC-FPD	No	5	1	Yes
124	50.8	GC-Q-MS	No	No	2	2	Yes
125	36.9	LC-MS/MS	LC-MS/MS	No	5	1	Yes
130	41.1	GC-ECD	GC-ECD	heksane/acetone	2	1	Yes
132	42.24	GC-FPD	No	acetone	1	5	Yes
133	37.8	GC-NPD	GC-Q-MS	ethyl acetate	1	2	Yes

ANNEX 3. Standards Solution Ring Test. Results and Participants.

	*Azinphos-methyl									
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?			
135	35.9	GC-NPD	GC-NPD	aceton	1	1	Yes			
136	43.9	LC-MS/MS	LC-MS/MS	No	20	2	Yes			
137	25.27	LC-MS/MS	LC-MS/MS	Acetonitrilo	10	5	Yes			
138	7.19	GC-MS	No	Acetone	1	2	Yes			
142	37	GC-NPD	GC-NPD	ethyl acetate	5	2	Yes			
150	22	GC-FPD	GC-Q-MS	isohexane	2	1	Yes			

			E	Boscalid			
<u>Lab</u>	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
002	55.6	GC-ECD	GC-Q-MS	No	1	2	Yes
003	63.0	LC-MS/MS	No	No	5	5	Yes
006	86.5	LC-MS/MS	LC-MS/MS	No	10	5	No
007	55.5	LC-MS/MS	LC-MS/MS	No	5	5	Yes
009	42	GC-Q-MS	GC-ITD-MS/MS	No	2	2	Yes
011	67.8	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No
013	55.6	GC-ECD	GC-Q-MS	isooctane	1	2	Yes
015	56.6	GC-QQQ-MS/MS	No	No	3	4	Yes
017	85.9	LC-MS/MS	LC-MS/MS	No	10	2	Yes
019	54.8	LC-MS/MS	LC-MS/MS	No	5	5	Yes
020	68.28	LC-MS/MS	LC-MS/MS	ACN:H2O 1:3	7	1	No
023	66.3	LC-MS/MS	GC-Q-MS	No	10	2	No
024	58.7	GC-ITD-MS/MS	GC-NPD	toluene	2	3	Yes
025	74	GC-ITD-MS/MS	GC-ITD-MS/MS	isottane	2	3	Yes
027	7.3	LC-MS/MS	LC-MS/MS	No	15	5	No
029	50.5	LC-MS/MS	LC-MS/MS	No	5	1	Yes
030	57.74	LC-MS/MS	LC-MS/MS	No	5	5	Yes
032	54.10	LC-MS/MS	LC-MS/MS	No	3	1	Yes
033	70.50	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes
034	58.9	LC-MS/MS	LC-MS/MS	No	5	1	Yes
035	64.1	LC-MS/MS	No	none	3	1	Yes
036	53	GC-Q-MS	GC-Q-MS	Yes	10	4	Yes
039	59	LC-MS/MS	LC-MS/MS	No	1	5	No
040	68	GC-Q-MS	No	/	1	2	Yes
042	58.3	GC-Q-MS	GC-Q-MS	-	4	3	No
044	63.9	GC-ITD-MS/MS	GC-ECD	ethyl acetate	1	5	Yes
046	NA	GC-Q-MS	GC-ECD	No	1	2	Yes
047	65.9	LC-MS/MS	LC-MS/MS	No	3	1	Yes
050	86.0	LC-MS/MS	LC-MS/MS	Yes	3	5	Yes
051	60	GC-ECD	No	Ethylacetat	1	1	Yes
052	40.4	GC-QQQ-MS/MS	GC-QQQ-M\$/M\$	No	1	2	Yes
054	61.9	LC-MS/MS	LC-MS/MS	solvent exchange	1	2	Yes
057	53.4	LC-MS/MS	GC-Q-MS	No	55	5	Yes
059	55.8	GC-Q-MS	GC/ECD.GC/NPD	acetone	2	2	Yes
060	51.8	LC-MS/MS	LC-MS/MS	No	8	1	Yes
062	56.0	GC-Q-MS	GC-Q-MS	No	10	3	Yes
063	56.2	LC-MS/MS	No	No	10	5	No
064	52.7	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes

ANNEX 3. Standards Solution Ring Test. Results and Participants.

				Boscalid			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
066	46.3	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes
069	60.6	LC-MS/MS	LC-MS/MS	MeOH	5	1	Yes
071	53.2	LC-MS/MS	LC-MS/MS	No	10	1	Yes
072	52.6	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes
074	53	GC-ECD	GC-NPD	No	2	2	No
076	69.8	GC-Q-MS	GC-ECD	Acetonitril	1	2	Yes
077	63.67	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes
079	58.7	LC-MS/MS	LC-MS/MS	No	10	5	No
082	62.5	GC-ECD	GC-ITD-MS/MS	Yes	2	3	Yes
086	62.4	GC-Q-MS	GC-Q-MS	Acetonitril	2	2	No
089	46.81	LC-MS/MS	LC-MS/MS	No	10	1	Yes
090	55.243	LC-MS/MS	LC-MS/MS	No	20	1	Yes
091	63.7	LC-MS/MS	LC-MS/MS	No	5	5	Yes
093	59.0	GC-ECD	GC-NPD	isooctan	1	2	Yes
094	51.36	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes
096	55.2	LC-MS/MS	No	No	5	1	Yes
098	61.9	GC-ECD	GC-ECD	Yes	2	2	No
102	61	GC-ECD	GC-ECD	Yes	2	2	No
106	68.6	GC-ECD	GC-Q-MS	Isooctan	1	2	Yes
119	64.20	GC-ECD	No	Yes	1	2	Yes
120	66.1	GC-ECD	GC-ITD-MS/MS	n-hexane	1	2	Yes
121	47.368	GC-Q-MS	GC-Q-MS	No	5	1	Yes
123	57.6	GC-ECD	GC-ECD	Yes	2	2	Yes
124	60.4	LC-MS/MS	HPLC-DAD	No	5	5	Yes
125	74.1	GC-ITD-MS	GC-ITD-M\$	No	5	4	No
133	52.3	GC-ECD	GC-Q-MS	ethyl acetate	1	2	Yes
135	80.7	GC-ECD	GC-ECD	aceton	1	2	Yes
136	67.7	LC-MS/MS	LC-MS/MS	No	20	2	Yes
141	53.0	GC-Q-MS	GC-Q-MS	No	4	3	No
148	104.2	LC-MS/MS	LC-MS/MS	No	10	5	Yes
150	25	GC-ECD	GC-Q-MS	isohexane	2	3	Yes

			В	uprofezin			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
002	24.6	GC-ECD	GC-Q-MS	No	1	2	Yes
003	20.1	LC-MS/MS	No	No	5	5	Yes
006	12.8	GC-Q-MS	GC-ITD-MS/MS	cyclohexane	2	2	No
007	19.6	LC-MS/MS	LC-MS/MS	No	5	5	Yes
009	15.7	GC-Q-MS	GC-Q-MS	No	2	2	Yes
011	23.11	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No
013	20.4	GC-NPD	GC-Q-MS	isooctane	1	2	Yes
015	21.2	LC-MS/MS	GC-QQQ-MS/MS	No	20	5	Yes
016	24.9	LC-MS/MS	LC-MS/MS	Yes	6	1	Yes
017	16.9	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	4	4	Yes
019	18.5	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Yes	1	2	Yes
020	16.72	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt:C6H12 1:9	10	4	No
023	24.7	GC-Q-MS	LC-MS/MS	No	2	2	Yes
024	20	GC-ITD-MS/MS	GC-NPD	toluene	2	3	Yes
025	19	GC-ITD-MS/MS	GC-ITD-MS/MS	isottane	2	3	Yes
027	9.13	LC-MS/MS	LC-MS/MS	No	15	5	No
029	20.9	LC-MS/MS	LC-MS/MS	No	5	1	Yes
030	34.2	GC-NPD	GC-NPD	Yes	1	2	Yes
032	14.53	GC-Q-MS	GC-Q-MS	Yes	0.8	2	Yes
033	19.75	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes
034	18.0	GC-Q-MS	GC-Q-MS	Yes	2	2	Yes
035	21.4	GC-QQQ-MS/MS	LC-MS/MS	none	3	3	Yes
036	19	GC-Q-MS	GC-Q-MS	Yes	10	4	Yes
039	23	LC-MS/MS	LC-MS/MS	No	1	5	No
040	19	GC-Q-MS	No	/	1	2	Yes
042	21.7	GC-Q-MS	GC-Q-MS	-	4	3	No
044	18.5	GC-ITD-MS/MS	GC-ITD-MS/MS	ethyl acetate	1	5	Yes
046	NA	GC-Q-MS	GC-Q-MS	No	1	2	Yes
047	20.3	GC-TOF/MS	GC-TOF/MS	No	3	3	Yes
050	24.5	LC-MS/MS	LC-MS/MS	Yes	3	5	Yes
051	23.2	GC-ECD	GC-NPD	Ethylacetat	1	1	Yes
052	19.6	GC-NPD	GC-QQQ-MS/MS	No	1	2	Yes
054	24.4	GC-NPD	GC-NPD	solvent exchange	1	2	Yes
057	20.2	GC-Q-MS	No	No	5	3	No
059	21.7	GC-Q-MS	GC/ECD.GC/NPD	acetone	2	2	Yes
060	17.0	LC-MS/MS	LC-MS/MS	No	8	1	Yes
062	22.1	GC-Q-MS	GC-Q-MS	No	10	3	Yes
063	17.2	LC-MS/MS	No	No	10	5	No

ANNEX 3. Standards Solution Ring Test. Results and Participants.

			В	profezin			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
064	21.7	LC-MS/MS	LC-MS/MS	Yes	10	2	Yes
065	19.3	GC-Q-MS	GC-Q-MS	-	2	2	Yes
066	17.5	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes
068	25.8	GC-NPD	GC-QQQ-MS/MS	Yes	4	2	Yes
069	27.8	LC-MS/MS	LC-MS/MS	МеОН	5	1	Yes
071	21.6	GC-Q-MS	GC-Q-MS	Isooctan	3	3	Yes
072	18.5	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes
074	27	GC-ECD	GC-NPD	No	2	2	No
076	21.3	GC-Q-MS	GC-Q-MS	Acetonitril	1	2	Yes
077	19.17	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes
078	25.21	GC-ECD	GC-ITD-MS/MS	ethyl acetate	1	3	Yes
079	21.7	LC-MS/MS	LC-MS/MS	No	10	5	No
082	24.4	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	2	3	Yes
086	19	GC-Q-MS	GC-Q-MS	Acetonitril	2	2	No
089	16.93	LC-MS/MS	LC-MS/MS	No	10	1	Yes
090	19.380	LC-MS/MS	LC-MS/MS	No	20	1	Yes
091	19.4	LC-MS/MS	LC-MS/MS	No	5	5	Yes
093	19.0	LC-MS/MS	No	No	10	5	Yes
094	20.44	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes
096	21.6	LC-MS/MS	No	No	5	1	Yes
098	27.5	GC-NPD	GC-NPD	Yes	2	2	No
101	20	GC-NPD	GC-ITD-MS/MS	Ethyle Acetate	4	3	Yes
102	28	GC-ECD	GC-ECD	Yes	2	2	No
104	25	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt	10	3	Yes
106	20.0	GC-Q-MS	LC-MS/MS	Aceton	1	2	Yes
107	13.2	GC-TOF/MS	GC-TOF/MS	ethyl acetate	1	2	Yes
111	0.62	GC-Q-MS	GC-Q-MS	acetonitrile	5	2	Yes
112	66.714	GC-Q-MS	GC-Q-MS	Acetonitril	2.0	2	Yes
119	17.00	LC-MS	No	Yes	20	5	Yes
120	21.0	GC-ECD	GC-ITD-MS/MS	Yes	1	2	Yes
121	13.696	GC-Q-MS	GC-Q-MS	No	5	1	Yes
124	18.3	GC-Q-MS	No	No	8	4	Yes
125	17.9	GC-ITD-MS	GC-ITD-MS	No	5	4	No
133	23.3	GC-ECD	GC-ECD	ethyl acetate	1	2	Yes
135	17.8	HPLC-DAD	HPLC-DAD	No	20	5	Yes
136	19.5	GC-Q-MS	GC-Q-MS	No	3	2	Yes
137	17.98	GC-ITD-MS/MS	GC-ITD-MS/MS	Acetonitrilo	10	3	Yes
138	14.07	GC-MS	No	Acetone	1	2	Yes

ANNEX 3. Standard Solution Ringtest. Results and Participants.

	Buprofezin										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
141	19.7	GC-Q-MS	GC-Q-MS	No	4	3	No				
148	10.58	GC/MS scan	GC/MS scan	No	1	2	Yes				
150	13.3	GC-Q-MS	GC-Q-MS	isohexane	2	1	Yes				

	Cadusafos										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
002	46.1	LC-MS/MS	LC-MS/MS	No	1	5	Yes				
003	46.0	LC-MS/MS	No	No	5	5	Yes				
006	62.8	LC-MS/MS	LC-MS/MS	No	10	5	No				
007	43.3	LC-MS/MS	LC-MS/MS	No	5	5	Yes				
009	43.5	GC-Q-MS	GC-ITD-MS/MS	No	2	2	Yes				
011	43.4	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No				
013	31.2	GC-NPD	GC-Q-MS	isooctane	1	2	Yes				
015	45.6	GC-QQQ-MS/MS	No	No	3	4	Yes				
017	42.3	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	4	4	Yes				
019	37.9	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Yes	1	2	Yes				
023	44.5	GC-Q-MS	GC-Q-MS	No	2	2	Yes				
025	35	GC-NPD	GC-ITD-MS/MS	isottane	2	3	Yes				
027	14.5	GC-Q-MS	GC-Q-MS	No	1	2	No				
029	46.8	GC-Q-MS	GC-Q-MS	Yes	1	1	Yes				
032	23.11	LC-MS/MS	LC-MS/MS	No	3	1	Yes				
033	53.00	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes				
035	43.1	LC-MS/MS	No	none	3	1	Yes				
039	47	LC-MS/MS	LC-MS/MS	No	1	5	No				
042	43.2	GC-Q-MS	GC-Q-MS	-	4	3	No				
044	44.0	GC-ITD-MS/MS	GC-FPD	ethyl acetate	1	5	Yes				
046	NA	GC-Q-MS	GC-Q-MS	No	1	2	Yes				
047	44.5	LC-MS/MS	LC-MS/MS	No	3	1	Yes				
050	37.9	GC-Q-MS	GC-Q-MS	No	10	4	Yes				
051	45.7	GC-ECD	GC-NPD	Ethylacetat	1	1	Yes				
052	42.2	LC-MS/MS	LC-MS/MS	No	20	2	Yes				
054	33.55	GC-NPD	GC-MS	solvent exchange	1	2	Yes				
057	39.1	GC-Q-MS	LC-MS/MS	No	5	3	No				
059	42.5	GC-Q-MS	GC/ECD.GC/NPD	acetone	2	2	Yes				
062	49.1	GC-Q-MS	GC-Q-MS	No	10	3	Yes				
063	39.4	LC-MS/MS	GC-Q-MS	No	10	5	No				
066	30.2	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes				
068	20.9	GC-NPD	GC-QQQ-MS/MS	Yes	4	2	Yes				
069	39.5	GC-QQQ-MS/MS	GC-QQQ-MS/MS	EtOAc/ch	2	2	Yes				
071	39.4	LC-MS/MS	LC-MS/MS	No	10	1	Yes				
072	45.7	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes				
076	41.4	GC-Q-MS	GC-Q-MS	Acetonitril	1	2	Yes				
078	55.67	GC-ECD	No	ethyl acetate	1	3	No				
079	45.1	GC-NPD	LC-MS/MS	No	10	5	No				

ANNEX 3. Standard Solution Ringtest. Results and Participants.

	Cadusafos									
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?			
082	40.5	GC-FPD	GC-ITD-MS/MS	Yes	2	3	Yes			
089	23.27	GC-IT/MS	GC-IT/MS	No	1	2	Yes			
090	37.66	LC-MS/MS	LC-MS/MS	No	20	1	Yes			
091	54.4	GC-ITD-MS/MS	GC-ITD-MS/MS	No	5	4	Yes			
093	41.2	GC-ECD	GC-NPD	isooctan	1	5	Yes			
094	44.16	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes			
096	37.1	LC-MS/MS	No	No	5	1	Yes			
106	42.7	GC-ECD	GC-Q-MS	Isooctan	1	2	Yes			
119	41.10	GC-NPD	No	Yes	1	2	Yes			
120	40.5	GC-NPD	GC-ITD-MS/MS	Yes	1	2	Yes			
121	39.049	GC-Q-MS	GC-FPD	No	5	1	Yes			
133	33.4	GC-ECD	GC-Q-MS	ethyl acetate	1	2	Yes			
135	34.4	GC-NPD	GC-NPD	aceton	1	1	Yes			
136	36.5	GC-Q-MS	GC-Q-MS	No	3	2	Yes			
141	40.6	GC-Q-MS	GC-Q-MS	No	4	3	No			
150	NA	GC-ECD	GC-ECD	isohexane	2	1	Yes			

	Carbofuran										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
002	40.8	LC-MS/MS	LC-MS/MS	No	1	5	Yes				
003	44.2	LC-MS/MS	No	No	5	5	Yes				
006	52.8	LC-MS/MS	LC-MS/MS	No	10	5	No				
007	36.8	LC-MS/MS	LC-MS/MS	No	5	5	Yes				
009	44.2	HPLC-FL	GC-Q-MS	СНЗОН	10	5	Yes				
011	11.32	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No				
012	31.71	HPLC-FL	GC-ITD-MS/MS	No	10	2	Yes				
014	56.9	GC-NPD	GC-Q-MS	isottano	3	2	Yes				
015	40.7	GC-QQQ-MS/MS	LC-MS/MS	No	3	4	Yes				
016	38.3	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	3	Yes				
017	44.7	GC-QQQ-MS/MS	GC-QQQ- MS/MS	No	4	4	Yes				
019	18.5	LC-MS/MS	LC-MS/MS	No	5	5	Yes				
020	38.59	LC-MS/MS	LC-MS/MS	ACN:H2O 1:3	7	1	No				
023	45.3	GC-Q-MS	LC-MS/MS	No	2	2	Yes				
024	41	GC-ITD-MS/MS	GC-NPD	toluene	2	3	Yes				
025	34	GC-ITD-MS/MS	GC-ITD-MS/MS	isottane	2	3	Yes				
027	9.15	LC-MS/MS	LC-MS/MS	No	15	5	No				
029	37.8	LC-MS/MS	LC-MS/MS	No	5	1	Yes				
030	44.20	LC-MS/MS	LC-MS/MS	No	5	5	Yes				
032	34.92	LC-MS/MS	LC-MS/MS	No	3	1	Yes				
033	26.2	LC-MS/MS	LC-MS/MS	No	10	5	Yes				
034	25.1	LC-MS/MS	LC-MS/MS	No	5	1	Yes				
035	41.2	LC-MS/MS	No	none	3	1	Yes				
036	40	LC-MS/MS	LC-MS/MS	No	10	1	Yes				
039	55	LC-MS/MS	LC-MS/MS	No	1	5	No				
040	33	GC-Q-MS	No	/	1	2	Yes				
042	43.4	LC-MS/MS	LC-MS/MS	-	20	5	No				
044	43.7	LC-MS/MS	LC-MS/MS	water/methanol	10	5	Yes				
046	34.34	GC-Q-MS	GC-Q-MS	No	1	2	Yes				
047	41.2	LC-MS/MS	LC-MS/MS	No	3	1	Yes				
050	45.7	LC-MS/MS	LC-MS/MS	Yes	3	5	Yes				
051	33.0	LC-MS/MS	LC-MS/MS	No	20	5	No				
052	38.3	LC-MS/MS	LC-MS/MS	No	20	2	Yes				
054	30.6	GC-NPD	LC-MS/MS	solvent exchange	1	2	Yes				
057	49.3	LC-MS/MS	No	No	55	5	No				
059	39.0	LC-MS/MS	LC-MS/MS	methanol	4	5	Yes				
060	35.5	LC-MS/MS	LC-MS/MS	No	8	1	Yes				

ANNEX 3. Standard Solution Ringtest. Results and Participants.

			С	arbofuran			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
062	36.6	LC-MS/MS	No	No	5	5	Yes
063	25.0	LC-MS/MS	No	No	10	5	No
064	32.5	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes
066	28.5	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes
069	51.4	LC-MS/MS	LC-MS/MS	MeOH	5	1	Yes
071	36.1	LC-MS/MS	LC-MS/MS	No	10	1	Yes
072	44.2	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	1	Yes
074	58	GC-NPD	No	No	2	2	No
076	51.5	LC-MS/MS	LC-MS/MS	Acetonitril	1	1	Yes
077	44.67	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes
079	40.3	LC-MS/MS	LC-MS/MS	No	10	5	No
082	37.1	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	2	3	Yes
085	40.07	LC-MS/MS	LC-MS/MS	methanol	5	5	Yes
089	33.95	LC-MS/MS	LC-MS/MS	No	10	1	Yes
090	35.078	LC-MS/MS	LC-MS/MS	No	20	1	Yes
091	41.4	LC-MS/MS	LC-MS/MS	No	5	5	Yes
093	38.6	LC-MS/MS	No	No	10	5	Yes
094	35.62	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes
096	56.2	LC-MS/MS	No	No	5	1	Yes
098	62.0	GC-NPD	GC-NPD	Yes	2	2	No
102	58	GC-NPD	GC-ECD	Yes	2	2	No
106	45.1	LC-MS/MS	No	No	15	4	Yes
107	40.6	HPLC-FL	GC-TOF/MS	acidified water	200	1	Yes
119	38.48	LC-MS	No	Yes	20	5	Yes
120	37.5	HPLC-DAD	HPLC-DAD	No	20	5	Yes
121	30.667	GC-Q-MS	GC-Q-MS	No	5	1	Yes
124	44.4	LC-MS/MS	HPLC-DAD	No	5	5	Yes
125	39	LC-MS/MS	LC-MS/MS	No	5	1	Yes
135	35.6	GC-NPD	GC-NPD	aceton	1	1	Yes
136	35.3	GC-Q-MS	GC-Q-MS	No	3	2	Yes
137	29.63	LC-MS/MS	LC-MS/MS	Acetonitrilo	10	5	Yes
138	21.27	GC-MS	No	Acetone	1	2	Yes
148	43.9	LC-MS/MS	LC-MS/MS	No	10	5	Yes
150	10.8	GC-Q-MS	GC-Q-MS	isohexane	2	3	Yes

	3-hydroxy-carbofuran										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
002	15.0	LC-MS/MS	LC-MS/MS	No	1	5	Yes				
003	14.0	LC-MS/MS	No	No	5	5	Yes				
006	12.0	LC-MS/MS	LC-MS/MS	No	10	5	No				
007	11.3	LC-MS/MS	LC-MS/MS	No	5	5	Yes				
009	12.7	HPLC-FL	No	СНЗОН	10	5	Yes				
011	18.49	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No				
012	9.38	HPLC-FL	No	No	10	2	Yes				
015	11.9	GC-QQQ-MS/MS	LC-MS/MS	No	3	4	Yes				
017	13.9	LC-MS/MS	LC-MS/MS	No	10	2	Yes				
019	13.7	LC-MS/MS	LC-MS/MS	No	5	5	Yes				
020	12.29	LC-MS/MS	LC-MS/MS	ACN:H2O 1:3	7	1	No				
023	13.2	LC-MS/MS	LC-MS/MS	No	10	2	No				
029	10.1	LC-MS/MS	LC-MS/MS	No	5	1	Yes				
030	14.26	LC-MS/MS	LC-MS/MS	No	5	1	Yes				
032	10.09	LC-MS/MS	LC-MS/MS	No	3	1	Yes				
033	10.3	LC-MS/MS	LC-MS/MS	No	10	5	Yes				
035	10.9	LC-MS/MS	No	none	3	1	Yes				
036	12	LC-MS/MS	LC-MS/MS	No	10	1	Yes				
039	15	LC-MS/MS	LC-MS/MS	No	1	5	No				
040	10	GC-Q-MS	No	/	1	2	Yes				
042	11.6	LC-MS/MS	LC-MS/MS	-	20	5	No				
046	NA	GC-Q-MS	GC-Q-MS	No	1	2	Yes				
047	11.7	LC-MS/MS	LC-MS/MS	No	3	1	Yes				
050	below the RL	LC-MS/MS	LC-MS/MS	Yes	3	5	No				
051	11.5	LC-MS/MS	LC-MS/MS	No	20	5	No				
052	14.6	LC-MS/MS	LC-MS/MS	No	20	2	Yes				
057	13.9	GC-Q-MS	No	No	55	5	No				
059	12.9	LC-MS/MS	LC-MS/MS	methanol	4	5	Yes				
060	14.5	LC-MS/MS	LC-MS/MS	No	8	1	Yes				
062	12.6	LC-MS/MS	No	No	5	5	Yes				
063	12.8	LC-MS/MS	No	No	10	5	No				
066	6.2	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes				
069	13.4	LC-MS/MS	LC-MS/MS	MeOH	5	1	Yes				
071	12.4	LC-MS/MS	LC-MS/MS	No	10	1	Yes				
076	18.7	LC-MS/MS	LC-MS/MS	Acetonitril	1	1	Yes				
079	11.5	LC-MS/MS	LC-MS/MS	No	10	5	No				
082	11	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	2	3	Yes				

ANNEX 3. Standard Solution Ringtest. Results and Participants.

	3-hydroxy-carbofuran										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
085	14.31	LC-MS/MS	LC-MS/MS	methanol	5	5	Yes				
090	4.115	LC-MS/MS	LC-MS/MS	No	20	1	Yes				
091	11.8	LC-MS/MS	LC-MS/MS	No	5	5	Yes				
093	11.2	LC-MS/MS	No	No	10	5	Yes				
096	14.7	LC-MS/MS	No	No	5	1	Yes				
106	20.0	LC-MS/MS	No	No	15	4	Yes				
107	12.8	HPLC-FL	GC-TOF/MS	acidified water	200	1	Yes				
119	10.80	LC-MS	No	Yes	20	5	Yes				
120	10.5	HPLC-DAD	HPLC-DAD	No	20	5	Yes				
121	13.008	LC-MS/MS	LC-MS/MS	No	6	2	Yes				
124	12.7	LC-MS/MS	HPLC-DAD	No	5	5	Yes				
136	12.2	LC-MS/MS	LC-MS/MS	No	20	2	Yes				
137	12.84	GC-ITD-MS/MS	LC-MS/MS	Acetonitrilo	10	5	Yes				
148	12.81	LC-MS/MS	LC-MS/MS	No	10	5	Yes				

Determination Technique Confirmation Technique Technique		*Deltamethrin										
003 63.8 LC-MS/MS No No 5 5 Yes 004 54.5 GC-Q-MS GC-Q-MS cyclohexane 1 1 Yes 006 49.0 GC-Q-MS GC-ITD-MS/MS cyclohexane 2 2 No 007 46.9 LC-MS/MS LC-MS/MS No 5 5 Yes 009 42.4 GC-Q-MS GC-ITD-MS/MS No 2 2 Yes 010 65.1 GC-ITD-MS/MS No 5 4 Yes 011 32.5 GC-ECD GC-ECD Yes 1 2 No 013 53.4 GC-ECD GC-ECD GC-Q-MS isotatone 1 2 Yes 014 78.9 GC-ECD GC-ECD Yes 1 2 Yes 015 42.5 GC-GCQ-MS/MS No No 3 4 Yes 016 53.7 GC-ECD GC-ECD	Lab	Concentration (mg/L)				Inyection Volume (µl)	Inyection Type (if applicable)	Standard solution to quantify EUPT-FV matrix than to cuantify				
004 54.5 GC-Q-MS Cyclohexane 1 1 Yes 006 49.0 GC-Q-MS GC-ITD-MS/MS cyclohexane 2 2 No 007 46.9 LC-MS/MS LC-MS/MS No 5 5 Yes 009 42.4 GC-Q-MS GC-ITD-MS/MS No 2 2 Yes 010 65.1 GC-ITD-MS/MS No 5 4 Yes 011 32.5 GC-ECD GC-ECD Yes 1 2 No 013 53.4 GC-ECD GC-GCD-MS isoctone 1 2 Yes 014 78.9 GC-ECD GC-GC-MS isottono 3 2 Yes 014 78.9 GC-ECD GC-GCD-MS isottono 3 2 Yes 014 78.9 GC-GCD GC-GCD-MS isottono 3 2 Yes 015 42.5 GC-QC-MS/MS No No	002	61.9	GC-ECD	GC-Q-MS	No	1	2	Yes				
006 49.0 GC-Q-MS GC-ITD-MS/MS cyclohexane 2 2 No 007 46.9 LC-MS/MS LC-MS/MS No 5 5 Yes 009 42.4 GC-Q-MS GC-ITD-MS/MS No 2 2 Yes 010 65.1 GC-ITD-MS/MS GC-ECD Yes 1 2 No 011 32.5 GC-ECD GC-ECD Yes 1 2 No 013 53.4 GC-ECD GC-Q-MS isoctane 1 2 Yes 014 78.9 GC-ECD GC-Q-MS isottano 3 2 Yes 015 42.5 GC-QQ-MS/MS No No 3 4 Yes 016 53.7 GC-ECD GC-ECD Yes 2 2 Yes 017 16.0 GC-QQ-MS/MS/MS GC-Q-ECD Yes 1 2 Yes 017 36.4 GC-QQ-MS/MS GC	003	63.8	LC-MS/MS	No	No	5	5	Yes				
007 46.9 LC-MS/MS LC-MS/MS No 5 5 Yes 009 42.4 GC-Q-MS GC-ITD-MS/MS No 2 2 Yes 010 65.1 GC-ITD-MS/MS GC-ECD Yes 1 2 No 011 32.5 GC-ECD GC-ECD Yes 1 2 No 013 53.4 GC-ECD GC-Q-MS isoctane 1 2 Yes 014 78.9 GC-ECD GC-Q-MS isottano 3 2 Yes 015 42.5 GC-QCQ-MS/MS No No 3 4 Yes 016 53.7 GC-ECD GC-ECD Yes 2 2 Yes 017 16.0 GC-Q-Q-MS/MS GC-Q-Q-MS/MS No 4 4 Yes 019 36.4 GC-Q-Q-MS/MS GC-Q-Q-MS/MS Yes 1 2 Yes 019 43.92 GC-ITD-MS/MS	004	54.5	GC-Q-MS	GC-Q-MS	cyclohexane	1	1	Yes				
009 42.4 GC-Q-MS GC-ITD-MS/MS No 2 2 Yes 010 65.1 GC-ITD-MS/MS GC-ITD-MS/MS No 5 4 Yes 011 32.5 GC-ECD GC-ECD Yes 1 2 No 013 53.4 GC-ECD GC-Q-MS isooctane 1 2 Yes 014 78.9 GC-ECD GC-Q-MS isottano 3 2 Yes 015 42.5 GC-QQ-MS/MS No No 3 4 Yes 016 53.7 GC-ECD GC-ECD Yes 2 2 Yes 017 16.0 GC-QQ-MS/MS CC-QQQ-MS/MS No 4 4 Yes 019 36.4 GC-QQQ-MS/MS GC-QQQ-MS/MS Yes 1 2 Yes 020 43.92 GC-ITD-MS/MS GC-ITD-MS/MS AcOEH:C6H121:9 10 4 No 022 57.7 GC-Q-	006	49.0	GC-Q-MS	GC-ITD-MS/MS	cyclohexane	2	2	No				
O10 65.1 GC-ITD-MS/MS GC-ITD-MS/MS No 5 4 Yes	007	46.9	LC-MS/MS	LC-MS/MS	No	5	5	Yes				
011 32.5 GC-ECD GC-ECD Yes 1 2 No 013 53.4 GC-ECD GC-Q-MS isooctane 1 2 Yes 014 78.9 GC-ECD GC-Q-MS isottano 3 2 Yes 015 42.5 GC-QQQ-MS/MS No No 3 4 Yes 016 53.7 GC-ECD GC-ECD Yes 2 2 Yes 017 16.0 GC-QQQ-MS/MS GC-QQQ-MS/MS No 4 4 Yes 019 36.4 GC-QQQ-MS/MS GC-QQQ-MS/MS Yes 1 2 Yes 019 36.4 GC-QQQ-MS/MS GC-QQQ-MS/MS Yes 1 2 Yes 019 36.4 GC-QQQ-MS/MS GC-QQQ-MS/MS Yes 1 2 Yes 020 43.92 GC-IID-MS/MS GC-Q-MS ACDETCGHI219 10 4 No 022 57.7 GC-	009	42.4	GC-Q-MS	GC-ITD-MS/MS	No	2	2	Yes				
013 53.4 GC-ECD GC-Q-MS isooctane 1 2 Yes 014 78.9 GC-ECD GC-Q-MS isottano 3 2 Yes 015 42.5 GC-QQQ-MS/MS No No 3 4 Yes 016 53.7 GC-ECD GC-ECD Yes 2 2 Yes 017 16.0 GC-QQQ-MS/MS No 4 4 Yes 019 36.4 GC-QQQ-MS/MS GC-QQQ-MS/MS Yes 1 2 Yes 020 43.92 GC-ITD-MS/MS GC-Q-MS/MS ACOEt:C6H12 1:9 10 4 No 022 57.7 GC-Q-MS GC-Q-MS acetatoetilo-ciclohexano-ciclohexano-ciclohexano-ciclohexano-ciclohexano 10 2 Yes 023 63.0 GC-Q-MS GC-Q-MS No 2 2 Yes 024 65.3 GC-ITD-MS/MS GC-ECD toluene 2 3 Yes 025	010	65.1	GC-ITD-MS/MS	GC-ITD-MS/MS	No	5	4	Yes				
014 78.9 GC-ECD GC-Q-MS isottano 3 2 Yes 015 42.5 GC-QQQ-MS/MS No No 3 4 Yes 016 53.7 GC-ECD GC-ECD Yes 2 2 Yes 017 16.0 GC-QQQ-MS/MS GC-QQQ-MS/MS No 4 4 Yes 019 36.4 GC-QQQ-MS/MS GC-QQQ-MS/MS Yes 1 2 Yes 020 43.92 GC-ITD-MS/MS GC-ITD-MS/MS AcOEt:C6H121:9 10 4 No 022 57.7 GC-Q-MS GC-Q-MS acetatoetilo-ciclohexano 10 2 Yes 023 63.0 GC-Q-MS GC-Q-MS No 2 2 Yes 024 65.3 GC-ITD-MS/MS GC-ECD toluene 2 3 Yes 025 61 GC-ITD-MS/MS GC-ITD-MS/MS No 15 5 No 027 0.22	011	32.5	GC-ECD	GC-ECD	Yes	1	2	No				
015 42.5 GC-QQQ-MS/MS No No 3 4 Yes 016 53.7 GC-ECD GC-ECD Yes 2 2 Yes 017 16.0 GC-QQQ-MS/MS GC-QQQ-MS/MS No 4 4 Yes 019 36.4 GC-QQQ-MS/MS GC-QQQ-MS/MS Yes 1 2 Yes 020 43.92 GC-ITD-MS/MS GC-ITD-MS/MS AcOEt:C6H121:9 10 4 No 022 57.7 GC-Q-MS GC-Q-MS acetatoetilociclohexano 10 2 Yes 023 63.0 GC-Q-MS GC-Q-MS No 2 2 Yes 024 65.3 GC-ITD-MS/MS GC-ECD toluene 2 3 Yes 025 61 GC-ITD-MS/MS GC-ITD-MS/MS isottane 2 3 Yes 027 0.221 LC-MS/MS LC-MS/MS No 15 5 No 029 5	013	53.4	GC-ECD	GC-Q-MS	isooctane	1	2	Yes				
016 53.7 GC-ECD GC-ECD Yes 2 2 Yes 017 16.0 GC-QQQ-MS/MS GC-QQQ-MS/MS No 4 4 Yes 019 36.4 GC-QQQ-MS/MS GC-QQQ-MS/MS Yes 1 2 Yes 020 43.92 GC-ITD-MS/MS GC-ITD-MS/MS AcOEt:C6H12 1:9 10 4 No 022 57.7 GC-Q-MS GC-Q-MS acetatoefilociclohexanno 10 2 Yes 023 63.0 GC-Q-MS GC-ECD toluene 2 3 Yes 024 65.3 GC-ITD-MS/MS GC-ECD toluene 2 3 Yes 025 61 GC-ITD-MS/MS GC-ITD-MS/MS isottane 2 3 Yes 027 0.221 LC-MS/MS No 15 5 No 029 57.8 LC-MS/MS No 5 1 Yes 030 54.0 GC-ECD <td< td=""><td>014</td><td>78.9</td><td>GC-ECD</td><td>GC-Q-MS</td><td>isottano</td><td>3</td><td>2</td><td>Yes</td></td<>	014	78.9	GC-ECD	GC-Q-MS	isottano	3	2	Yes				
017 16.0 GC-QQQ-MS/MS GC-QQQ-MS/MS No 4 4 Yes 019 36.4 GC-QQQ-MS/MS GC-QQQ-MS/MS Yes 1 2 Yes 020 43.92 GC-ITD-MS/MS GC-ITD-MS/MS AcOEt:C6H12 1:9 10 4 No 022 57.7 GC-Q-MS GC-Q-MS acetatoefilociclohexano 10 2 Yes 023 63.0 GC-Q-MS GC-Q-MS No 2 2 Yes 024 65.3 GC-ITD-MS/MS GC-ECD foluene 2 3 Yes 025 61 GC-ITD-MS/MS GC-ITD-MS/MS isottane 2 3 Yes 027 0.221 LC-MS/MS LC-MS/MS No 15 5 No 029 57.8 LC-MS/MS LC-MS/MS No 5 1 Yes 030 54.0 GC-ECD GC-ECD Yes 1 2 Yes 032 <t< td=""><td>015</td><td>42.5</td><td>GC-QQQ-MS/MS</td><td>No</td><td>No</td><td>3</td><td>4</td><td>Yes</td></t<>	015	42.5	GC-QQQ-MS/MS	No	No	3	4	Yes				
019 36.4 GC-QQQ-MS/MS GC-QQQ-MS/MS Yes 1 2 Yes 020 43.92 GC-ITD-MS/MS GC-ITD-MS/MS AcOEt:C6H121:9 10 4 No 022 57.7 GC-Q-MS GC-Q-MS acetatotetilociclohexano 10 2 Yes 023 63.0 GC-Q-MS GC-Q-MS No 2 2 Yes 024 65.3 GC-ITD-MS/MS GC-ECD toluene 2 3 Yes 025 61 GC-ITD-MS/MS GC-ITD-MS/MS isottane 2 3 Yes 027 0.221 LC-MS/MS LC-MS/MS No 15 5 No 029 57.8 LC-MS/MS LC-MS/MS No 5 1 Yes 030 54.0 GC-ECD GC-ECD Yes 1 2 Yes 032 56.03 GC-G-MS GC-Q-MS Yes 0.8 2 Yes 033 67.5	016	53.7	GC-ECD	GC-ECD	Yes	2	2	Yes				
020 43.92 GC-ITD-MS/MS GC-ITD-MS/MS AcOEt:C6H121:9 10 4 No 022 57.7 GC-Q-MS GC-Q-MS acetatoetilociclohexano 10 2 Yes 023 63.0 GC-Q-MS GC-Q-MS No 2 2 Yes 024 65.3 GC-ITD-MS/MS GC-ECD toluene 2 3 Yes 025 61 GC-ITD-MS/MS GC-ITD-MS/MS isottane 2 3 Yes 027 0.221 LC-MS/MS LC-MS/MS No 15 5 No 029 57.8 LC-MS/MS LC-MS/MS No 5 1 Yes 030 54.0 GC-ECD GC-ECD Yes 1 2 Yes 032 56.03 GC-Q-MS GC-Q-MS Yes 0.8 2 Yes 033 67.50 GC-ITD-MS/MS GC-ITD-MS/MS ciclohexane 10 4 Yes 035	017	16.0	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	4	4	Yes				
022 57.7 GC-Q-MS GC-Q-MS acetatoetilociclohexano 10 2 Yes 023 63.0 GC-Q-MS GC-Q-MS No 2 2 Yes 024 65.3 GC-ITD-MS/MS GC-ECD toluene 2 3 Yes 025 61 GC-ITD-MS/MS GC-ITD-MS/MS isottane 2 3 Yes 027 0.221 LC-MS/MS LC-MS/MS No 15 5 No 029 57.8 LC-MS/MS LC-MS/MS No 5 1 Yes 030 54.0 GC-ECD GC-ECD Yes 1 2 Yes 032 56.03 GC-Q-MS GC-Q-MS Yes 0.8 2 Yes 033 67.50 GC-ITD-MS/MS GC-ITD-MS/MS ciclohexane 10 4 Yes 035 60.1 GC-QAQA-MS/MS LC-MS/MS none 3 3 Yes 036 62	019	36.4	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Yes	1	2	Yes				
022 57.7 GC-Q-MS GC-Q-MS ciclohexano 10 2 Yes 023 63.0 GC-Q-MS GC-Q-MS No 2 2 Yes 024 65.3 GC-ITD-MS/MS GC-ECD toluene 2 3 Yes 025 61 GC-ITD-MS/MS GC-ITD-MS/MS isottane 2 3 Yes 027 0.221 LC-MS/MS LC-MS/MS No 15 5 No 029 57.8 LC-MS/MS LC-MS/MS No 5 1 Yes 030 54.0 GC-ECD GC-ECD Yes 1 2 Yes 032 56.03 GC-Q-MS GC-Q-MS Yes 0.8 2 Yes 033 67.50 GC-ITD-MS/MS GC-ITD-MS/MS ciclohexane 10 4 Yes 035 60.1 GC-Q-MS GC-Q-MS Yes 10 4 Yes 036 62 GC-Q-MS<	020	43.92	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt:C6H12 1:9	10	4	No				
023 63.0 GC-Q-MS GC-Q-MS No 2 2 Yes 024 65.3 GC-ITD-MS/MS GC-ECD toluene 2 3 Yes 025 61 GC-ITD-MS/MS GC-ITD-MS/MS isottane 2 3 Yes 027 0.221 LC-MS/MS LC-MS/MS No 15 5 No 029 57.8 LC-MS/MS LC-MS/MS No 5 1 Yes 030 54.0 GC-ECD GC-ECD Yes 1 2 Yes 032 56.03 GC-Q-MS GC-Q-MS Yes 0.8 2 Yes 033 67.50 GC-ITD-MS/MS GC-ITD-MS/MS ciclohexane 10 4 Yes 035 60.1 GC-Q-MS/MS LC-MS/MS none 3 3 Yes 036 62 GC-Q-MS GC-Q-MS Yes 10 4 Yes 039 67 GC-Q-MS	022	57.7	GC-Q-MS	GC-Q-MS		10	2	Yes				
025 61 GC-ITD-MS/MS isottane 2 3 Yes 027 0.221 LC-MS/MS LC-MS/MS No 15 5 No 029 57.8 LC-MS/MS LC-MS/MS No 5 1 Yes 030 54.0 GC-ECD GC-ECD Yes 1 2 Yes 032 56.03 GC-Q-MS GC-Q-MS Yes 0.8 2 Yes 033 67.50 GC-ITD-MS/MS GC-ITD-MS/MS ciclohexane 10 4 Yes 035 60.1 GC-QQQ-MS/MS LC-MS/MS none 3 3 Yes 036 62 GC-Q-MS GC-Q-MS Yes 10 4 Yes 039 67 GC-Q-MS GC-Q-MS No 5 1 No 040 42 GC-Q-MS No / 1 2 Yes	023	63.0	GC-Q-MS	GC-Q-MS		2	2	Yes				
027 0.221 LC-MS/MS LC-MS/MS No 15 5 No 029 57.8 LC-MS/MS LC-MS/MS No 5 1 Yes 030 54.0 GC-ECD GC-ECD Yes 1 2 Yes 032 56.03 GC-Q-MS GC-Q-MS Yes 0.8 2 Yes 033 67.50 GC-ITD-MS/MS GC-ITD-MS/MS ciclohexane 10 4 Yes 035 60.1 GC-QAQ-MS/MS LC-MS/MS none 3 3 Yes 036 62 GC-Q-MS GC-Q-MS Yes 10 4 Yes 039 67 GC-Q-MS GC-Q-MS No 5 1 No 040 42 GC-Q-MS No / 1 2 Yes	024	65.3	GC-ITD-MS/MS	GC-ECD	toluene	2	3	Yes				
029 57.8 LC-MS/MS No 5 1 Yes 030 54.0 GC-ECD GC-ECD Yes 1 2 Yes 032 56.03 GC-Q-MS GC-Q-MS Yes 0.8 2 Yes 033 67.50 GC-ITD-MS/MS GC-ITD-MS/MS ciclohexane 10 4 Yes 035 60.1 GC-QQQ-MS/MS LC-MS/MS none 3 3 Yes 036 62 GC-Q-MS GC-Q-MS Yes 10 4 Yes 039 67 GC-Q-MS GC-Q-MS No 5 1 No 040 42 GC-Q-MS No / 1 2 Yes	025	61	GC-ITD-MS/MS	GC-ITD-MS/MS	isottane	2	3	Yes				
030 54.0 GC-ECD GC-ECD Yes 1 2 Yes 032 56.03 GC-Q-MS GC-Q-MS Yes 0.8 2 Yes 033 67.50 GC-ITD-MS/MS GC-ITD-MS/MS ciclohexane 10 4 Yes 035 60.1 GC-QQQ-MS/MS LC-MS/MS none 3 3 Yes 036 62 GC-Q-MS GC-Q-MS Yes 10 4 Yes 039 67 GC-Q-MS No 5 1 No 040 42 GC-Q-MS No / 1 2 Yes	027	0.221	LC-MS/MS	LC-MS/MS	No	15	5	No				
032 56.03 GC-Q-MS Yes 0.8 2 Yes 033 67.50 GC-ITD-MS/MS GC-ITD-MS/MS ciclohexane 10 4 Yes 035 60.1 GC-QQQ-MS/MS LC-MS/MS none 3 3 Yes 036 62 GC-Q-MS GC-Q-MS Yes 10 4 Yes 039 67 GC-Q-MS GC-Q-MS No 5 1 No 040 42 GC-Q-MS No / 1 2 Yes	029	57.8	LC-MS/MS	LC-MS/MS	No	5	1	Yes				
033 67.50 GC-ITD-MS/MS GC-ITD-MS/MS ciclohexane 10 4 Yes 035 60.1 GC-QQQ-MS/MS LC-MS/MS none 3 3 Yes 036 62 GC-Q-MS GC-Q-MS Yes 10 4 Yes 039 67 GC-Q-MS GC-Q-MS No 5 1 No 040 42 GC-Q-MS No / 1 2 Yes	030	54.0	GC-ECD	GC-ECD	Yes	1	2	Yes				
035 60.1 GC-QQQ-MS/MS LC-MS/MS none 3 3 Yes 036 62 GC-Q-MS GC-Q-MS Yes 10 4 Yes 039 67 GC-Q-MS No 5 1 No 040 42 GC-Q-MS No / 1 2 Yes	032	56.03	GC-Q-MS	GC-Q-MS	Yes	0.8	2	Yes				
036 62 GC-Q-MS GC-Q-MS Yes 10 4 Yes 039 67 GC-Q-MS GC-Q-MS No 5 1 No 040 42 GC-Q-MS No / 1 2 Yes	033	67.50	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes				
039 67 GC-Q-MS No 5 1 No 040 42 GC-Q-MS No / 1 2 Yes	035	60.1	GC-QQQ-MS/MS	LC-MS/MS	none	3	3	Yes				
040 42 GC-Q-MS No / 1 2 Yes	036	62	GC-Q-MS	GC-Q-MS	Yes	10	4	Yes				
	039	67	GC-Q-MS	GC-Q-MS	No	5	1	No				
042 58.1 GC-Q-MS - 4 3 No	040	42	GC-Q-MS	No	/	1	2	Yes				
	042	58.1	GC-Q-MS	GC-Q-MS	-	4	3	No				
044 61.9 GC-TOF/MS GC-ECD ethyl acetate 1 5 Yes	044	61.9	GC-TOF/MS	GC-ECD	ethyl acetate	1	5	Yes				
046 18.85 GC-Q-MS No 1 2 Yes	046	18.85	GC-Q-MS	GC-Q-MS	No	1	2	Yes				
047 65.7 GC-Q-MS No 4 3 Yes	047	65.7	GC-Q-MS	GC-Q-MS	No	4	3	Yes				
050 30.8 GC-Q-MS GC-Q-MS No 10 4 Yes	050	30.8	GC-Q-MS	GC-Q-MS	No	10	4	Yes				
051 61.0 GC-ECD No Ethylacetat 1 1 Yes	051	61.0	GC-ECD	No	Ethylacetat	1	1	Yes				
052 43.8 GC-ECD GC-QQQ-MS/MS No 1 2 Yes	052	43.8	GC-ECD	GC-QQQ-MS/MS	No	1	2	Yes				
054 45.0 GC-ECD GC-MS solvent exchange 1 2 Yes	054	45.0	GC-ECD	GC-MS	solvent exchange	1	2	Yes				
057 47.8 GC-Q-MS No No 5 3 No	057	47.8	GC-Q-MS	No	No	5	3	No				

ANNEX 3. Standard Solution Ringtest. Results and Participants.

	*Deltamethrin									
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µI)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?			
059	74.5	GC-Q-MS	GC/ECD.GC/NPD	acetone	2	2	Yes			
060	52.7	GC-Q-MS	GC-Q-MS	No	3	3	Yes			
062	49.5	GC-Q-MS	GC-Q-MS	No	10	3	Yes			
063	55.7	GC-Q-MS	GC-Q-MS	No	2	3	No			
064	61.8	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes			
065	56.0	GC-Q-MS	GC-Q-MS	-	2	2	Yes			
066	68.9	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Salad matrix	5	3	Yes			
069	57.6	GC-QQQ-MS/MS	GC-QQQ-MS/MS	EtOAc/ch	2	2	Yes			
071	59.0	GC-Q-MS	GC-Q-MS	Isooctan	3	3	Yes			
072	62.9	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes			
074	58	GC-ECD	No	No	2	2	No			
076	57.9	GC-Q-MS	GC-Q-MS	Acetonitril	1	2	Yes			
077	55.50	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes			
078	65.58	GC-ECD	GC-ITD-MS/MS	ethyl acetate	1	3	No			
079	52.1	GC-ECD	GC-ECD	Isooctan + Acetone	1	2	Yes			
082	74.5	GC-ECD	GC-ITD-MS/MS	Yes	2	3	No			
084	60	GC-ECD	GC-ECD	Acetato de Etilo	1	2	Yes			
088	61.22	GC-ECD	GC-ECD	isooctane/toluene 90/10	1	2	No			
089	48.13	GC-IT/MS	GC-IT/MS	No	1	2	Yes			
090	68.101	GC-ECD	GC-ECD	Ethyl Acetate	1	2	Yes			
091	59.9	GC-ECD	GC-ITD-MS/MS	No	4	2	Yes			
093	60.0	GC-ECD	GC-ITD-MS/MS	isooctan	1	2	Yes			
094	49.4	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes			
096	84.5	LC-MS/MS	No	No	5	1	Yes			
098	65.7	GC-ECD	GC-ECD	Yes	2	2	No			
101	58.6	GC-ECD	GC-ITD-MS/MS	Ethyle Acetate	4	3	Yes			
102	64	GC-ECD	GC-ECD	Yes	2	2	No			
104	53	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt	10	3	Yes			
106	77.6	GC-ECD	GC-FPD	Isooctan	1	2	Yes			
107	50.1	GC-ECD	GC-TOF/MS	ethyl acetate	1	2	Yes			
111	0.04	GC-Q-MS	GC-Q-MS	acetonitrile	5	2	Yes			
114	53.57	GC-ECD	GC-ECD	toluene	1	1	Yes			
118	80.8	GC-ECD	No	acn	1	2	No			
119	48.00	GC-ECD	No	Yes	1	2	Yes			
120	63.3	GC-ECD	GC-ECD	Yes	1	2	Yes			
121	39.050	GC-Q-MS	GC-ECD	No	5	1	Yes			
123	66.0	GC-ECD	GC-ECD	Yes	2	2	Yes			
124	41.3	GC-Q-MS	No	No	8	4	Yes			

ANNEX 3. Standards Solution Ring Test. Results and Participants.

	*Deltamethrin										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
125	60.8	GC-ITD-MS	GC-ITD-MS	No	5	4	No				
130	77.0	GC-ECD	GC-ECD	heksane/acetone	2	1	Yes				
132	42.25	GC-FPD	No	acetone	1	5	Yes				
133	56.58	GC-ECD	GC-Q-MS	ethyl acetate	1	2	Yes				
135	72.9	GC-ECD	GC-ECD	aceton	1	2	Yes				
136	56.1	GC-Q-MS	GC-Q-MS	No	3	2	Yes				
137	40.44	GC-ITD-MS/MS	GC-ITD-MS/MS	Acetonitrilo	10	3	Yes				
141	57.7	GC-Q-MS	GC-Q-MS	No	4	3	No				
142	72	GC-ECD	GC-ECD	ethyl acetate	1	2	Yes				
148	87.3	LC-MS/MS	LC-MS/MS	No	10	5	Yes				
150	25	GC-ECD	GC-Q-MS	isohexane	2	1	Yes				

	*Diazinon										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
002	96.0	GC-NPD	GC-Q-MS	No	1	2	Yes				
003	60.3	GC-Q-MS	No	toluen	1	2	Yes				
004	64.6	LC-MS/MS	LC-MS/MS	No	50	2	Yes				
006	53.5	GC-Q-MS	GC-ITD-MS/MS	Cyclohexane	2	2	No				
007	69.9	GC-Q-MS	GC-QQQ-MS/MS	No	3	3	Yes				
009	74.4	GC-Q-MS	GC-ITD-MS/MS	No	2	2	Yes				
010	67.7	GC-ITD-MS/MS	GC-ITD-MS/MS	No	5	4	Yes				
011	54.95	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No				
012	39.15	GC-ITD-MS/MS	No	No	1.5	2	Yes				
013	67.4	GC-NPD	GC-Q-MS	isooctane	1	2	Yes				
014	63.0	GC-NPD	GC-Q-MS	isottano	3	2	Yes				
015	66.1	GC-QQQ-MS/MS	No	No	3	4	Yes				
016	61.1	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	3	Yes				
017	49.7	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	4	4	Yes				
019	56.7	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Yes	1	2	Yes				
020	54.88	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt:C6H12 1:9	10	4	No				
022	52.1	GC-Q-MS	GC-Q-MS	acetatoetilo- ciclohexano	10	2	Yes				
023	66.1	GC-Q-MS	GC-Q-MS	No	2	2	Yes				
024	62.2	GC-ITD-MS/MS	GC-NPD	toluene	2	3	Yes				
025	59	GC-NPD	GC-ITD-MS/MS	isottane	2	3	Yes				
027	41.4	LC-MS/MS	LC-MS/MS	No	15	5	No				
029	56.8	LC-MS/MS	LC-MS/MS	No	5	1	Yes				
030	74.3	GC-NPD	GC-NPD	Yes	1	2	Yes				
032	49.79	GC-Q-MS	GC-Q-MS	Yes	0.8	2	Yes				
033	81.50	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes				
034	64.8	LC-MS/MS	LC-MS/MS	Yes	2	2	Yes				
035	65.8	GC-QQQ-MS/MS	LC-MS/MS	none	3	3	Yes				
036	62	GC-Q-MS	GC-Q-MS	Yes	10	4	Yes				
039	67	GC-Q-MS	GC-Q-MS	No	5	1	No				
040	63	GC-Q-MS	No	/	1	2	Yes				
042	66.1	LC-MS/MS	LC-MS/MS	-	20	5	No				
044	56.3	GC-TOF/MS	GC-FPD	ethyl acetate	1	5	Yes				
046	52.38	GC-Q-MS	GC-Q-MS	No	1	2	Yes				
047	59.8	GC-TOF/MS	GC-TOF/MS	No	3	3	Yes				
050	67.8	GC-Q-MS	GC-Q-MS	No	10	4	No				
051	59.3	GC-NPD	GC-ECD	Ethylacetat	1	1	Yes				
052	45.7	GC-NPD	GC-QQQ-MS/MS	No	1	2	Yes				

ANNEX 3. Standards Solution Ring Test. Results and Participants.

	*Diazinon										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µI)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
054	56.9	GC-NPD	GC-MS	solvent exchange	1	2	Yes				
057	60.1	GC-Q-MS	No	No	5	3	No				
059	60.5	GC-Q-MS	GC/ECD.GC/NPD	acetone	2	2	Yes				
060	32.2	GC-Q-MS	GC-Q-MS	No	3	3	Yes				
062	64.8	GC-Q-MS	GC-Q-MS	No	10	3	Yes				
063	66.3	GC-FPD	GC-Q-MS	No	2	3	No				
064	52.7	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes				
065	65.5	GC-Q-MS	GC-Q-MS	-	2	2	Yes				
066	63.0	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes				
068	50.2	GC-NPD	GC-QQQ-MS/MS	Yes	4	2	Yes				
069	75.9	LC-MS/MS	LC-MS/MS	МеОН	5	1	Yes				
071	73.4	GC-Q-MS	GC-Q-MS	Isooctan	3	3	Yes				
072	58.9	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes				
074	60	GC-ECD	GC-NPD	No	2	2	No				
076	71.9	GC-Q-MS	GC-Q-MS	Acetonitril	1	2	Yes				
077	73.33	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes				
078	70.15	GC-ECD	GC-ITD-MS/MS	ethyl acetate	1	3	Yes				
079	67.3	LC-MS/MS	LC-MS/MS	No	10	5	No				
082	56.4	GC-FPD	GC-ITD-MS/MS	Yes	2	3	Yes				
086	63.2	GC-Q-MS	GC-Q-MS	Acetonitril	2	2	No				
088	60.50	GC-NPD	GC-ECD	isooctane/toluene 90/10	1	5	No				
089	49.16	GC-IT/MS	GC-IT/MS	No	1	2	Yes				
090	64.027	GC-FPD	GC-NPD	Ethyl Acetate	1	2	Yes				
<u>091</u>	69.3	LC-MS/MS	GC-ITD-MS/MS	No	5	5	Yes				
093	61.2	GC-NPD	GC-ECD	isooctan	1	5	Yes				
094	83.94	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes				
096	63.7	LC-MS/MS	No	No	5	1	Yes				
098	56.8	GC-NPD	GC-NPD	Yes	2	2	No				
101	69.4	GC-NPD	GC-ITD-MS/MS	Ethyle Acetate	4	3	Yes				
102	59	GC-NPD	GC-ECD	Yes	2	2	No				
104	67	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt	10	3	Yes				
106	70.6	GC-ECD	GC-Q-MS	Isooctan	1	2	Yes				
107	41.0	GC-TOF/MS	GC-TOF/MS	ethyl acetate	1	2	Yes				
111	0.42	GC-Q-MS	GC-Q-MS	acetonitrile	5	2	Yes				
112	63.152	GC-Q-MS	GC-Q-MS	Acetonitril	2.0	2	Yes				
114	41.63	GC-NPD	GC-NPD	ethyl acetate	5	2	Yes				
118	65.1	GC-ECD	No	acn	1	2	No				
119	54.10	GC-NPD	No	Yes	1	2	Yes				

ANNEX 3. Standard Solution Ringtest. Results and Participants.

	*Diazinon											
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?					
120	55.2	GC-NPD	GC-ITD-MS/MS	Yes	1	2	Yes					
121	49.209	GC-Q-MS	GC-ECD	No	5	1	Yes					
123	65.0	GC-ECD	GC-ECD	Yes	2	2	Yes					
124	31.9	GC-Q-MS	No	No	8	4	Yes					
125	59.6	GC-ITD-MS	GC-ITD-MS	No	5	4	No					
130	64.0	GC-NPD	GC-ECD	heksane/acetone	2	2	Yes					
132	58.8	GC-FPD	No	acetone	1	5	Yes					
133	61.4	GC-ECD	GC-Q-MS	ethyl acetate	1	2	Yes					
135	52.9	GC-NPD	GC-NPD	aceton	1	1	Yes					
136	54.1	GC-Q-MS	GC-Q-MS	No	3	2	Yes					
137	35.31	GC-ITD-MS/MS	GC-ITD-MS/MS	Acetonitrilo	10	3	Yes					
138	35.05	GC-MS	No	Acetone	1	2	Yes					
141	56.7	GC-Q-MS	GC-Q-MS	No	4	3	No					
142	60	GC-NPD	GC-NPD	ethyl acetate	5	2	Yes					
148	23.43	GC/MS scan	GC/MS scan	No	1	2	Yes					
150	50.3	GC-FPD	GC-Q-MS	isohexane	2	3	Yes					

			Isofen	phos-methyl			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
002	75.8	GC-NPD	GC-Q-MS	No	1	2	Yes
003	66.6	LC-MS/MS	No	No	5	5	Yes
006	56.3	GC-Q-MS	GC-ITD-MS/MS	Cyclohexane	2	2	No
007	83.0	GC-Q-MS	GC-QQQ-MS/MS	No	3	3	Yes
009	78.3	GC-Q-MS	GC-ITD-MS/MS	No	2	2	Yes
010	69.6	GC-ITD-MS/MS	GC-ITD-MS/MS	No	5	4	Yes
011	74.32	LC-MS/MS	LC-MS/MS	Yes	10	5	No
015	74.1	GC-QQQ-MS/MS	No	No	3	4	Yes
016	64.9	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	3	Yes
017	64.1	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	4	4	Yes
019	64.9	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Yes	1	2	Yes
020	54.24	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt:C6H12 1:9	10	4	No
023	71.3	GC-Q-MS	GC-Q-MS	No	2	2	Yes
024	50	GC-ITD-MS/MS	GC-NPD	toluene	2	3	Yes
025	71	GC-NPD	GC-ITD-MS/MS	isottane	2	3	Yes
029	61.8	GC-Q-MS	GC-Q-MS	Yes	1	1	Yes
030	58.44	LC-MS/MS	LC-MS/MS	No	5	5	Yes
032	88.84	LC-MS/MS	LC-MS/MS	No	3	1	Yes
033	74.50	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes
034	68.6	GC-Q-MS	GC-Q-MS	Yes	2	2	Yes
035	73.9	GC-QQQ-MS/MS	LC-MS/MS	none	3	3	Yes
036	71	GC-Q-MS	GC-Q-MS	Yes	10	4	Yes
039	76	LC-MS/MS	LC-MS/MS	No	1	5	No
040	72	GC-Q-MS	No	/	1	2	Yes
042	64.5	GC-Q-MS	GC-Q-MS	-	4	3	No
044	68.6	GC-ITD-MS/MS	GC-FPD	ethyl acetate	1	5	Yes
046	NA	GC-Q-MS	GC-Q-MS	No	1	2	Yes
047	74.1	GC-TOF/MS	GC-TOF/MS	No	3	3	Yes
050	ND	LC-MS/MS	LC-MS/MS	Yes	3	5	No
051	57.5	GC-NPD	GC-ECD	Ethylacetat	1	1	Yes
052	42.0	GC-NPD	GC-QQQ-MS/MS	No	1	2	Yes
054	147.8	GC-NPD	GC-NPD	solvent exchange	1	2	Yes
057	62.7	GC-Q-MS	No	No	5	3	No
059	67.5	GC-Q-MS	GC/ECD.GC/NPD	acetone	2	2	Yes
060	65.2	LC-MS/MS	LC-MS/MS	No	8	1	Yes
062	58.7	LC-MS/MS	No	No	5	5	Yes
063	67.1	LC-MS/MS	GC-Q-MS	No	10	5	No
066	64.6	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Salad matrix	5	3	Yes

ANNEX 3. Standard Solution Ringtest. Results and Participants.

	Isofenphos-methyl											
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?					
068	65.6	GC-NPD	GC-ECD	Yes	4	2	Yes					
069	74.6	LC-MS/MS	LC-MS/MS	MeOH	5	1	Yes					
071	68.8	GC-Q-MS	GC-Q-MS	Isooctan	3	3	Yes					
072	71.8	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes					
076	80.6	GC-Q-MS	GC-Q-MS	Acetonitril	1	2	Yes					
079	74.9	LC-MS/MS	LC-MS/MS	No	10	5	No					
082	73.5	GC-FPD	GC-ITD-MS/MS	Yes	2	3	Yes					
089	64.80	GC-IT/MS	GC-IT/MS	No	1	2	Yes					
091	77.2	GC-ITD-MS/MS	GC-ITD-MS/MS	No	5	4	Yes					
093	63.5	GC-PFPD	GC-ECD	isooctan	2	2	Yes					
094	87.020	GC-ECD	GC-ECD	acetone	1	2	Yes					
096	60.0	LC-MS/MS	No	No	5	1	Yes					
104	62	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt	10	3	Yes					
106	63.8	GC-ECD	LC-MS/MS	Isooctan	1	2	Yes					
107	46.0	GC-TOF/MS	GC-TOF/MS	ethyl acetate	1	2	Yes					
119	67.70	GC-NPD	No	Yes	1	2	Yes					
120	60.3	GC-NPD	GC-ITD-MS/MS	Yes	1	2	Yes					
121	65.237	GC-FPD	GC-FPD	No	5	1	Yes					
125	59.7	GC-ITD-MS	GC-ITD-MS	No	5	4	No					
135	71.9	GC-NPD	GC-NPD	aceton	1	1	Yes					
136	59.2	GC-Q-MS	GC-Q-MS	No	3	2	Yes					
137	96.74	LC-MS/MS	LC-MS/MS	Acetonitrilo	10	5	Yes					
141	57.3	GC-Q-MS	GC-Q-MS	No	4	3	No					
148	33.21	GC/MS scan	GC/MS scan	No	1	2	Yes					
150	40	GC-Q-MS	GC-Q-MS	isohexane	2	3	Yes					

	*Lambda-cyhalothrin											
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?					
002	20.7	GC-ECD	GC-Q-MS	No	1	2	Yes					
003	23.0	GC-Q-MS	No	toluen	1	2	Yes					
004	63.5	GC-Q-MS	GC-Q-MS	cyclohexane	1	1	Yes					
006	18.2	GC-ECD	GC-ITD-MS/MS	cyclohexane	2	2	No					
007	25.3	GC-Q-MS	GC-QQQ-MS/MS	No	3	3	Yes					
009	13.0	GC-Q-MS	GC-ITD-MS/MS	No	2	2	Yes					
010	25.3	GC-ITD-MS/MS	GC-ITD-MS/MS	No	5	4	Yes					
011	25.5	GC-ECD	GC-ECD	Yes	1	2	No					
013	24.0	GC-ECD	GC-Q-MS	isooctane	1	2	Yes					
014	24.5	GC-ECD	GC-Q-MS	isottano	3	2	Yes					
015	20.7	GC-QQQ-MS/MS	No	No	3	4	Yes					
016	21.5	GC-ECD	GC-ECD	Yes	2	2	Yes					
017	11.4	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	4	4	Yes					
019	13.6	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Yes	1	2	Yes					
020	16.36	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt:C6H12 1:9	10	4	No					
022	17.9	GC-Q-MS	GC-Q-MS	acetatoetilo- ciclohexano	10	2	Yes					
023	23.4	GC-Q-MS	GC-Q-MS	No	2	2	Yes					
024	24.2	GC-ECD	GC-ITD-MS/MS	toluene	1	2	Yes					
025	31	GC-ITD-MS/MS	GC-ITD-MS/MS	isottane	2	3	Yes					
027	0.181	LC-MS/MS	LC-MS/MS	No	15	5	No					
029	21.9	LC-MS/MS	LC-MS/MS	No	5	1	Yes					
030	25.6	GC-ECD	GC-ECD	Yes	1	2	Yes					
032	18.64	GC-Q-MS	GC-Q-MS	Yes	0.8	2	Yes					
035	20.8	GC-QQQ-MS/MS	LC-MS/MS	none	3	3	Yes					
036	22	GC-Q-MS	GC-Q-MS	Yes	10	4	Yes					
039	20	GC-Q-MS	GC-Q-MS	No	5	1	No					
040	22	GC-Q-MS	No	/	1	2	Yes					
042	26.3	GC-Q-MS	GC-Q-MS	-	4	3	No					
044	25.5	GC-ITD-MS/MS	GC-ECD	ethyl acetate	1	5	Yes					
046	NA	GC-Q-MS	GC-Q-MS	No	1	2	Yes					
047	21.7	GC-TOF/MS	GC-TOF/MS	No	3	3	Yes					
050	12.5	GC-Q-MS	GC-Q-MS	No	10	4	No					
051	22.0	GC-ECD	No	Ethylacetat	1	1	Yes					
052	36.4	GC-ECD	GC-QQQ-MS/MS	No	1	2	Yes					
054	26.0	LC-MS/MS	LC-MS/MS	solvent exchange	1	2	Yes					
057	23.8	GC-Q-MS	No	No	5	3	No					
059	25.5	GC-Q-MS	GC/ECD.GC/NPD	acetone	2	2	Yes					

ANNEX 3. Standard Solution Ringtest. Results and Participants.

	*Lambda-cyhalothrin											
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?					
060	31.9	GC-Q-MS	GC-Q-MS	No	3	3	Yes					
062	23.6	GC-Q-MS	GC-Q-MS	No	10	3	Yes					
063	19.3	GC-Q-MS	GC-Q-MS	No	2	3	No					
064	14.4	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes					
065	19.5	GC-Q-MS	GC-Q-MS	-	2	2	Yes					
069	25.8	GC-QQQ-MS/MS	GC-QQQ-MS/MS	EtOAc/ch	2	2	Yes					
071	24.6	GC-Q-MS	GC-Q-MS	Isooctan	3	3	Yes					
072	18.9	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes					
074	27	GC-ECD	No	No	2	2	No					
076	26.3	GC-Q-MS	GC-Q-MS	Acetonitril	1	1	Yes					
077	18.00	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes					
078	25.35	GC-ECD	GC-ITD-MS/MS	ethyl acetate	1	3	Yes					
079	29.6	GC-ECD	GC-ECD	Isooctan + Acetone	1	2	Yes					
082	19.9	GC-ECD	GC-ITD-MS/MS	Yes	2	3	Yes					
086	21.2	GC-Q-MS	GC-Q-MS	Acetonitril	2	2	No					
088	22.40	GC-ECD	GC-ECD	isooctane/toluene 90/10	1	2	No					
089	16.87	GC-IT/MS	GC-IT/MS	No	1	2	Yes					
090	23.074	GC-ECD	GC-ECD	Ethyl Acetate	1	2	Yes					
091	29.6	GC-ITD-MS/MS	GC-ITD-MS/MS	No	5	4	Yes					
093	22.4	GC-ECD	GC-ITD-MS/MS	isooctan	1	2	Yes					
094	20.74	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes					
096	31.6	LC-MS/MS	No	No	5	1	Yes					
098	33.5	GC-ECD	GC-ECD	Yes	2	2	No					
099	27.16	GC-Q-MS	No	No	2	2	Yes					
101	30.3	GC-ECD	GC-ITD-MS/MS	Ethyle Acetate	4	3	Yes					
102	32	GC-ECD	GC-ECD	Yes	2	2	No					
104	24	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt	10	3	Yes					
106	27.3	GC-ECD	GC-Q-MS	Isooctan	1	2	Yes					
107	13.9	GC-TOF/MS	GC-TOF/MS	ethyl acetate	1	2	Yes					
111	0.20	GC-Q-MS	GC-Q-MS	acetonitrile	5	2	Yes					
112	24.688	GC-Q-MS	GC-Q-MS	Acetonitril	2.0	2	Yes					
114	22.51	GC-ECD	GC-ECD	toluene	1	1	Yes					
118	25.7	GC-ECD	No	acn	1	2	No					
119	20.20	GC-ECD	No	Yes	1	2	Yes					
120	22.3	GC-ECD	GC-ITD-MS/MS	Yes	1	2	Yes					
121	13.145	GC-Q-MS	GC-ECD	No	5	1	Yes					
123	22.3	GC-ECD	GC-ECD	Yes	2	2	Yes					
124	15.2	GC-Q-MS	No	No	8	4	Yes					

ANNEX 3. Standards Solution Ring Test. Results and Participants.

	*Lambda-cyhalothrin											
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?					
125	21.2	GC-ITD-MS	GC-ITD-MS	No	5	4	No					
130	28.6	GC-ECD	GC-ECD	heksane/acetone	2	1	Yes					
132	12.06	GC-FPD	No	acetone	1	5	Yes					
133	24.8	GC-ECD	GC-Q-MS	ethyl acetate	1	2	Yes					
135	26.8	GC-ECD	GC-ECD	aceton	1	2	Yes					
136	31.0	LC-MS/MS	LC-MS/MS	No	20	2	Yes					
137	15.93	GC-ITD-MS/MS	GC-ITD-MS/MS	Acetonitrilo	10	3	Yes					
141	22.7	GC-Q-MS	GC-Q-MS	No	4	3	No					
142	24	GC-ECD	GC-ECD	ethyl acetate	1	2	Yes					
148	17.44	GC/MS scan	GC/MS scan	No	1	2	Yes					
150	9	GC-ECD	GC-Q-MS	isohexane	2	3	Yes					

	*Metalaxyl sum										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
002	24.0	LC-MS/MS	LC-MS/MS	No	1	5	Yes				
003	25.8	LC-MS/MS	No	No	5	5	Yes				
004	11.6	LC-MS/MS	LC-MS/MS	No	50	2	Yes				
006	20.5	GC-Q-MS	GC-ITD-MS/MS	Cyclohexane	2	2	No				
007	22.5	LC-MS/MS	LC-MS/MS	No	5	5	Yes				
009	32.6	GC-Q-MS	GC-ITD-MS/MS	No	2	2	Yes				
010	21.3	GC-ITD-MS/MS	GC-ITD-MS/MS	No	5	4	Yes				
011	31.74	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No				
013	34.0	GC-NPD	GC-Q-MS	isooctane	1	2	Yes				
014	21	GC-NPD	GC-Q-MS	isottano	3	2	Yes				
015	22.6	GC-QQQ-MS/MS	No	No	3	4	Yes				
016	30.3	LC-MS/MS	LC-MS/MS	Yes	6	1	Yes				
017	26.1	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	4	4	Yes				
019	23.7	LC-MS/MS	LC-MS/MS	No	5	5	Yes				
020	23.32	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt:C6H12 1:9	10	4	No				
022	26.3	GC-Q-MS	GC-Q-MS	acetatoetilo- ciclohexano	10	2	Yes				
023	26.0	GC-Q-MS	GC-Q-MS	No	2	2	Yes				
024	24.9	GC-ITD-MS/MS	GC-NPD	toluene	2	3	Yes				
025	30	GC-ITD-MS/MS	GC-ITD-MS/MS	isottane	2	3	Yes				
027	5.9	LC-MS/MS	LC-MS/MS	No	15	5	No				
029	21.3	LC-MS/MS	LC-MS/MS	No	5	1	Yes				
030	24.93	LC-MS/MS	LC-MS/MS	No	5	5	Yes				
032	21.67	LC-MS/MS	LC-MS/MS	No	3	1	Yes				
033	26	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes				
034	28.2	GC-Q-MS	GC-Q-MS	Yes	2	2	Yes				
035	26.2	GC-QQQ-MS/MS	LC-MS/MS	none	3	3	Yes				
036	24	GC-Q-MS	GC-Q-MS	Yes	10	4	Yes				
039	26	LC-MS/MS	LC-MS/MS	No	1	5	No				
040	23	GC-Q-MS	No	/	1	2	Yes				
042	24.8	LC-MS/MS	LC-MS/MS	-	20	5	No				
044	19.5	GC-ITD-MS/MS	GC-ITD-MS/MS	ethyl acetate	1	5	Yes				
046	<0.01	GC-Q-MS	GC-Q-MS	No	1	2	Yes				
047	28.1	LC-MS/MS	LC-MS/MS	No	3	1	Yes				
050	29.3	GC-Q-MS	LC-MS/MS	No	10	4	Yes				
051	32.0	LC-MS/MS	LC-MS/MS	No	20	5	No				
052	25.2	LC-MS/MS	LC-MS/MS	No	20	2	Yes				
054	25.1	GC-NPD	GC-NPD	solvent exchange	1	2	Yes				

ANNEX 3. Standards Solution Ring Test. Results and Participants.

	*Metalaxyl sum										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
057	22.8	GC-Q-MS	No	No	5	3	No				
059	23.5	GC-Q-MS	GC/ECD.GC/NPD	acetone	2	2	Yes				
060	21.0	LC-MS/MS	LC-MS/MS	No	8	1	Yes				
062	23.1	GC-Q-MS	GC-Q-MS	No	10	3	Yes				
063	20.1	LC-MS/MS	GC-Q-MS	No	10	5	No				
064	20.2	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes				
065	25.8	GC-Q-MS	GC-Q-MS	-	2	2	Yes				
066	11.7	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes				
069	30.9	LC-MS/MS	LC-MS/MS	MeOH	5	1	Yes				
071	22.6	GC-Q-MS	GC-Q-MS	Isooctan	3	3	Yes				
072	22.7	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes				
074	19	GC-NPD	No	No	2	2	No				
076	28.6	GC-Q-MS	GC-Q-MS	Acetonitril	1	2	Yes				
077	22.17	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes				
079	26.3	LC-MS/MS	LC-MS/MS	No	10	5	No				
082	24.5	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	2	3	Yes				
086	27	GC-Q-MS	GC-Q-MS	Acetonitril	2	2	No				
089	19.58	LC-MS/MS	LC-MS/MS	No	10	1	Yes				
090	21.449	LC-MS/MS	LC-MS/MS	No	20	1	Yes				
091	24.9	LC-MS/MS	LC-MS/MS	No	5	5	Yes				
093	21.7	LC-MS/MS	No	No	10	5	Yes				
094	23.66	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes				
096	27.0	LC-MS/MS	No	No	5	1	Yes				
098	24.7	GC-NPD	GC-NPD	Yes	2	2	No				
102	23	GC-NPD	GC-NPD	Yes	2	2	No				
104	28	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt	10	3	Yes				
106	24.8	LC-MS/MS	No	No	15	4	Yes				
107	15.9	GC-TOF/MS	GC-TOF/MS	ethyl acetate	1	2	Yes				
111	0.36	GC-Q-MS	GC-Q-MS	acetonitrile	5	2	Yes				
112	31.535	GC-Q-MS	GC-Q-MS	Acetonitril	2.0	2	Yes				
119	20.00	LC-MS	No	Yes	20	5	Yes				
120	20.5	GC-NPD	GC-ITD-MS/MS	Yes	1	2	Yes				
121	20.471	GC-Q-MS	GC-Q-MS	No	5	1	Yes				
124	18.3	GC-Q-MS	No	No	8	4	Yes				
125	23.3	LC-MS/MS	LC-MS/MS	No	5	1	Yes				
130	24.3	GC-NPD	No	heksane/acetone	2	2	Yes				
133	32.8	GC-NPD	GC-Q-MS	ethyl acetate	1	2	Yes				
135	20.7	GC-ECD	GC-ECD	aceton	1	2	Yes				

ANNEX 3. Standard Solution Ringtest. Results and Participants.

	*Metalaxyl sum										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
136	24.5	LC-MS/MS	LC-MS/MS	No	20	2	Yes				
137	22.62	LC-MS/MS	LC-MS/MS	Acetonitrilo	10	5	Yes				
141	24.6	GC-Q-MS	GC-Q-MS	No	4	3	No				
148	15.62	GC/MS scan	GC/MS scan	No	1	2	Yes				
150	15	GC-Q-MS	GC-Q-MS	isohexane	2	3	Yes				

			*Met	hamidophos			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
002	34.5	LC-MS/MS	LC-MS/MS	No	1	5	Yes
003	43.5	GC-Q-MS	No	toluen	1	2	Yes
004	30.8	LC-MS/MS	LC-MS/MS	No	50	2	Yes
006	48.0	LC-MS/MS	LC-MS/MS	No	10	5	No
007	36.8	LC-MS/MS	LC-MS/MS	No	5	5	Yes
009	40.5	GC-Q-MS	GC-ITD-MS/MS	No	2	2	Yes
011	47.08	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No
013	43.1	GC-NPD	GC-Q-MS	isooctane	1	2	Yes
014	44.4	GC-NPD	GC-Q-MS	isottano	3	2	Yes
015	31.8	GC-QQQ-MS/MS	No	No	3	4	Yes
016	44.0	LC-MS/MS	LC-MS/MS	Yes	6	1	Yes
017	46.0	LC-MS/MS	LC-MS/MS	No	10	2	Yes
019	37.2	LC-MS/MS	LC-MS/MS	No	5	5	Yes
020	15.60	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt:C6H12 1:9	10	4	No
022	48.4	GC-Q-MS	GC-Q-MS	acetatoetilo- ciclohexano	10	2	Yes
023	41.1	GC-Q-MS	LC-MS/MS	No	2	2	Yes
024	39.5	GC-ITD-MS/MS	No	No	3	5	Yes
025	49	GC-NPD	GC-ITD-MS/MS	isottane	2	3	Yes
027	34.5	LC-MS/MS	LC-MS/MS	No	15	5	No
029	36.3	LC-MS/MS	LC-MS/MS	No	5	1	Yes
030	21.99	LC-MS/MS	LC-MS/MS	No	5	5	Yes
032	37.05	LC-MS/MS	LC-MS/MS	No	3	1	Yes
033	48	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes
035	43.1	LC-MS/MS	No	none	3	1	Yes
036	37	LC-MS/MS	LC-MS/MS	No	10	1	Yes
039	40	LC-MS/MS	LC-MS/MS	No	1	5	No
040	46.2	LC-MS/MS	No	/	25	5	Yes
042	38.6	LC-MS/MS	LC-MS/MS	-	20	5	No
044	47.3	GC-ITD-MS/MS	GC-FPD	ethyl acetate	1	5	No
046	<0.01	GC-Q-MS	GC-Q-MS	No	1	2	Yes
047	43.6	LC-MS/MS	LC-MS/MS	No	3	1	Yes
050	34.6	LC-MS/MS	LC-MS/MS	Yes	3	5	No
051	41.0	GC-NPD	No	Ethylacetat	1	1	Yes
052	47.9	LC-MS/MS	LC-MS/MS	No	20	2	Yes
054	28.55	GC-NPD	GC-MS	solvent exchange	1	2	Yes
057	41.8	LC-MS/MS	No	No	55	5	Yes
059	40.9	LC-MS/MS	LC-MS/MS	m	4	5	Yes

ANNEX 3. Standard Solution Ringtest. Results and Participants.

	*Methamidophos										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
060	53.5	LC-MS/MS	LC-MS/MS	No	8	1	Yes				
062	37.8	LC-MS/MS	No	No	5	5	Yes				
063	28.2	LC-MS/MS	GC-Q-MS	No	10	5	No				
064	33.7	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes				
065	30.8	LC-MS/MS	LC-MS/MS	-	10	1	Yes				
066	40.4	GC-QQQ-MS/MS	GC-QQQ- MS/MS	Salad matrix	5	3	Yes				
069	41.7	LC-MS/MS	LC-MS/MS	MeOH	5	1	Yes				
071	38.3	LC-MS/MS	LC-MS/MS	No	10	1	Yes				
076	45.8	LC-MS/MS	LC-MS/MS	Acetonitril	1	1	Yes				
077	42.90	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes				
079	42.6	LC-MS/MS	LC-MS/MS	No	10	5	No				
082	74.4	GC-FPD	GC-ITD-MS/MS	Yes	2	3	Yes				
085	33.49	LC-MS/MS	LC-MS/MS	methanol	5	5	Yes				
089	40.34	LC-MS/MS	LC-MS/MS	No	10	1	Yes				
090	40.849	LC-MS/MS	LC-MS/MS	No	20	1	Yes				
091	44.7	LC-MS/MS	LC-MS/MS	No	5	5	Yes				
093	42.8	GC-NPD	GC-PFPD	isooctan	2	2	Yes				
094	22.41	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes				
096	53.6	LC-MS/MS	No	No	5	1	Yes				
104	40	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOet	10	3	Yes				
106	52.4	GC-FPD	LC-MS/MS	No	1	2	Yes				
107	32.9	GC-FPD	GC-TOF/MS	ethyl acetate	1	2	Yes				
114	33.01	GC-NPD	GC-NPD	ethyl acetate	5	2	Yes				
119	68.14	LC-MS	No	Yes	20	5	Yes				
120	45.5	GC-NPD	GC-ITD-MS/MS	Yes	1	2	Yes				
121	34.969	GC-Q-MS	GC-FPD	No	5	1	Yes				
124	89.1	GC-Q-MS	No	No	8	4	Yes				
125	43.6	LC-MS/MS	LC-MS/MS	No	5	1	Yes				
130	43.6	GC-NPD	No	heksane/acetone	2	2	Yes				
133	48.1	GC-NPD	GC-Q-MS	ethyl acetate	1	2	Yes				
135	62.9	GC-NPD	GC-NPD	aceton	1	1	Yes				
136	40.4	LC-MS/MS	LC-MS/MS	No	20	2	Yes				
137	7.5	GC-ITD-MS/MS	GC-ITD-MS/MS	Acetonitrilo	10	3	Yes				
142	44	GC-NPD	GC-NPD	ethyl acetate	5	2	Yes				
148	32.7	LC-MS/MS	LC-MS/MS	No	10	5	Yes				
150	45	GC-FPD	GC-Q-MS	isohexane	2	3	Yes				

	*Methidathion											
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?					
002	53.0	GC-NPD	GC-Q-MS	No	1	2	Yes					
003	58.1	LC-MS/MS	No	No	5	5	Yes					
004	39.3	LC-MS/MS	LC-MS/MS	No	50	2	Yes					
006	45.2	GC-Q-MS	GC-ITD-MS/MS	Cyclohexane	2	2	No					
007	55.8	LC-MS/MS	LC-MS/MS	No	5	5	Yes					
009	55.7	GC-Q-MS	GC-ITD-MS/MS	No	2	2	Yes					
011	63.12	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No					
013	53.3	GC-NPD	GC-Q-MS	isooctane	1	2	Yes					
014	81.5	GC-NPD	GC-Q-MS	isottano	3	2	Yes					
015	55.2	GC-QQQ-MS/MS	LC-MS/MS	No	3	4	Yes					
016	38.2	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	3	Yes					
017	48.5	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	4	4	Yes					
019	48.2	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Yes	1	2	Yes					
020	10.52	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt:C6H12 1:9	10	4	No					
022	65.5	GC-Q-MS	GC-Q-MS	acetatoetilo- ciclohexano	10	2	Yes					
023	57.5	GC-Q-MS	LC-MS/MS	No	2	2	Yes					
024	55.6	GC-NPD	GC-ECD	toluene	2	3	Yes					
025	48	GC-NPD	GC-ITD-MS/MS	isottane	2	3	Yes					
029	48	LC-MS/MS	LC-MS/MS	No	5	1	Yes					
030	46.3	GC-NPD	GC-NPD	Yes	1	2	Yes					
032	41.09	GC-Q-MS	GC-Q-MS	Yes	0.8	2	Yes					
033	53.00	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes					
034	53.9	LC-MS/MS	LC-MS/MS	No	5	1	Yes					
035	57.4	LC-MS/MS	No	none	3	1	Yes					
036	38	GC-Q-MS	GC-Q-MS	Yes	10	4	Yes					
039	57	LC-MS/MS	LC-MS/MS	No	1	5	No					
040	33	GC-Q-MS	No	/	1	2	Yes					
042	46.8	GC-Q-MS	GC-Q-MS	-	4	3	No					
044	54.9	GC-ITD-MS/MS	GC-FPD	ethyl acetate	1	5	Yes					
046	39.65	GC-Q-MS	GC-Q-MS	No	1	2	Yes					
047	57.1	GC-TOF/MS	GC-TOF/MS	No	3	3	Yes					
050	38.1	GC-Q-MS	GC-Q-MS	No	10	5	No					
051	51.0	GC-NPD	GC-ECD	Ethylacetat	1	1	Yes					
052	36.4	GC-NPD	GC-QQQ-MS/MS	No	1	2	Yes					
054	49.5	GC-NPD	GC-MS	solvent exchange	1	2	Yes					
057	53.2	GC-Q-MS	LC-MS/MS	No	5	3	No					
059	46.5	GC-Q-MS	GC/ECD.GC/NPD	acetone	2	2	Yes					
		1	ı				i .					

ANNEX 3. Standard Solution Ringtest. Results and Participants.

*Methidathion							
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
060	58.8	GC-Q-MS	GC-Q-MS	No	3	3	Yes
062	48.0	GC-Q-MS	GC-Q-MS	No	10	3	Yes
063	47.1	LC-MS/MS	No	No	10	5	No
064	40.6	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes
065	48.0	GC-Q-MS	GC-Q-MS	-	2	2	Yes
066	53.1	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Salad matrix	5	3	Yes
068	52.7	GC-ECD	GC-QQQ-MS/MS	Yes	4	2	Yes
069	61.4	LC-MS/MS	LC-MS/MS	MeOH	5	1	Yes
071	52.7	GC-Q-MS	GC-Q-MS	Isooctan	3	3	Yes
072	57.4	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes
074	59	GC-ECD	GC-NPD	No	2	2	No
076	59.2	GC-Q-MS	GC-Q-MS	Acetonitril	1	2	Yes
077	68.83	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes
078	65.19	GC-ECD	GC-ITD-MS/MS	ethyl acetate	1	3	No
079	57.1	LC-MS/MS	LC-MS/MS	No	10	5	No
082	62.4	GC-FPD	GC-ITD-MS/MS	Yes	2	3	Yes
086	62.1	GC-Q-MS	GC-Q-MS	Acetonitril	2	2	No
088	53.39	GC-NPD	GC-ECD	isooctane/toluene 90/10	1	5	No
089	50.53	GC-IT/MS	GC-IT/MS	No	1	2	Yes
090	49.807	GC-FPD	GC-NPD	Ethyl Acetate	1	2	Yes
091	57.0	LC-MS/MS	LC-MS/MS	No	5	5	Yes
093	56.0	GC-NPD	GC-ECD	isooctan	1	5	Yes
094	50.24	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes
096	54.2	LC-MS/MS	No	No	5	1	Yes
098	59.7	GC-NPD	GC-ECD	Yes	2	2	No
101	65	GC-ECD	GC-ITD-MS/MS	Ethyle Acetate	4	3	Yes
102	58	GC-NPD	GC-ECD	Yes	2	2	No
104	58	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt	10	3	Yes
106	59.5	GC-ECD	LC-MS/MS	Isooctan	1	2	Yes
107	34.3	GC-TOF/MS	GC-TOF/MS	ethyl acetate	1	2	Yes
112	60.333	GC-Q-MS	GC-Q-MS	Acetonitril	2.0	2	Yes
114	45.95	GC-NPD	GC-NPD	ethyl acetate	5	2	Yes
118	74.2	GC-NPD	No	acn	5	3	No
119	58.90	GC-NPD	No	Yes	1	2	Yes
120	57.5	GC-NPD	GC-ITD-MS/MS	Yes	1	2	Yes
121	37.998	GC-Q-MS	GC-Q-MS	No	5	1	Yes
123	52.0	GC-ECD	GC-ECD	Yes	2	2	Yes
124	54.9	GC-Q-MS	No	No	8	4	Yes

ANNEX 3. Standards Solution Ring Test. Results and Participants.

	*Methidathion											
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?					
125	53.6	GC-ITD-MS	GC-ITD-MS	No	5	4	No					
130	60.5	GC-ECD	GC-ECD	heksane/acetone	2	1	Yes					
132	58.83	GC-FPD	No	acetone	1	5	Yes					
133	52.29	GC-NPD	GC-Q-MS	ethyl acetate	1	2	Yes					
135	45.9	GC-NPD	GC-NPD	aceton	1	1	Yes					
136	46.3	GC-Q-MS	GC-Q-MS	No	3	2	Yes					
137	13.05	GC-ITD-MS/MS	GC-ITD-MS/MS	Acetonitrilo	10	3	Yes					
141	48.6	GC-Q-MS	GC-Q-MS	No	4	3	No					
142	58	GC-NPD	GC-NPD	ethyl acetate	5	2	Yes					
148	35.93	GC/MS scan	GC/MS scan	No	1	2	Yes					
150	40	GC-FPD	GC-Q-MS	isohexane	2	3	Yes					

				Methomyl			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
002	61.8	LC-MS/MS	LC-MS/MS	No	1	5	Yes
003	64.4	LC-MS/MS	No	No	5	5	Yes
006	78.5	LC-MS/MS	LC-MS/MS	No	10	5	No
007	52.0	LC-MS/MS	LC-MS/MS	No	5	5	Yes
009	61.8	HPLC-FL	No	СНЗОН	10	5	Yes
011	77.00	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No
012	46.24	HPLC-FL	No	No	10	2	Yes
015	65.5	LC-MS/MS	No	No	20	5	Yes
016	68.5	LC-MS/MS	LC-MS/MS	Yes	6	1	Yes
017	86.2	LC-MS/MS	LC-MS/MS	No	10	2	Yes
019	54.0	LC-MS/MS	LC-MS/MS	No	5	5	Yes
020	58.14	LC-MS/MS	LC-MS/MS	ACN:H2O 1:3	7	1	No
023	71.5	LC-MS/MS	LC-MS/MS	No	10	2	No
024	70	LC-MS/MS	No	No	3	5	Yes
027	3.98	LC-MS/MS	LC-MS/MS	No	15	5	No
030	61.19	LC-MS/MS	LC-MS/MS	No	5	5	Yes
030	61.19	LC-MS/MS	LC-MS/MS	No	5	5	Yes
032	56.49	LC-MS/MS	LC-MS/MS	No	3	1	Yes
033	65.2	LC-MS/MS	LC-MS/MS	No	10	5	Yes
034	58.4	LC-MS/MS	LC-MS/MS	No	5	1	Yes
035	66.1	LC-MS/MS	No	none	3	1	Yes
036	64	LC-MS/MS	LC-MS/MS	No	10	1	Yes
039	56	LC-MS/MS	LC-MS/MS	No	1	5	No
040	66.9	LC-MS/MS	No	/	25	5	Yes
042	46.5	LC-MS/MS	LC-MS/MS	-	20	5	No
044	49.8	LC-MS/MS	LC-MS/MS	water/methanol	10	5	Yes
046	NA	GC-Q-MS	GC-FPD	No	1	2	Yes
047	63.5	LC-MS/MS	LC-MS/MS	No	3	1	Yes
050	85.6	LC-MS/MS	LC-MS/MS	Yes	3	5	No
051	56.0	LC-MS/MS	LC-MS/MS	No	20	5	No
052	65.9	LC-MS/MS	LC-MS/MS	No	20	2	Yes
054	65.1	LC-MS/MS	LC-MS/MS	solvent exchange	1	2	Yes
057	53.4	LC-MS/MS	No	No	55	5	Yes
059	65.9	LC-MS/MS	LC-MS/MS	methanol	4	5	Yes
060	55.3	LC-MS/MS	LC-MS/MS	No	8	1	Yes
062	57.9	LC-MS/MS	No	No	5	5	Yes
063	45.4	LC-MS/MS	No	No	10	5	No
064	56.4	LC-MS/MS	LC-MS/MS	Yes	10	2	Yes

ANNEX 3. Standards Solution Ring Test. Results and Participants.

	Methomyl											
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µI)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?					
065	40.1	LC-MS/MS	LC-MS/MS	1	10	1	Yes					
066	49.3	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes					
069	64.8	LC-MS/MS	LC-MS/MS	MeOH	5	1	Yes					
071	41.7	LC-MS/MS	LC-MS/MS	No	10	1	No					
076	82.5	LC-MS/MS	LC-MS/MS	Acetonitril	1	1	Yes					
077	23.99	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes					
078	58.8	HPLC-FL	No	acetonitrile	100	5	Yes					
079	61.2	LC-MS/MS	LC-MS/MS	No	10	5	No					
082	54.5	HPLC-UV	HPLC-DAD	Yes	20	5	Yes					
085	61.64	LC-MS/MS	LC-MS/MS	methanol	5	5	Yes					
089	41.99	LC-MS/MS	LC-MS/MS	No	10	1	Yes					
090	59.125	LC-MS/MS	LC-MS/MS	No	20	1	Yes					
091	62.7	LC-MS/MS	LC-MS/MS	No	5	5	Yes					
093	53.9	LC-MS/MS	No	No	10	5	Yes					
096	58.2	LC-MS/MS	No	No	5	1	Yes					
104	13	LC-MS/MS	LC-MS/MS	ACN	15	1	No					
107	64.2	HPLC-FL	HPLC-FL	acidified water	200	1	Yes					
119	53.20	LC-MS	No	Yes	20	5	Yes					
120	52.7	HPLC-DAD	HPLC-DAD	No	20	5	Yes					
121	71.200	LC-MS/MS	LC-MS/MS	No	6	2	Yes					
124	62.9	LC-MS/MS	HPLC-DAD	No	5	5	Yes					
125	64.4	LC-MS/MS	LC-MS/MS	No	5	1	Yes					
135	35.5	HPLC-DAD	HPLC-DAD	No	20	5	Yes					
136	63.2	LC-MS/MS	LC-MS/MS	No	20	2	Yes					
137	66.83	LC-MS/MS	LC-MS/MS	Acetonitrilo	10	5	Yes					
148	24.85	LC-MS/MS	LC-MS/MS	No	10	5	Yes					

			*M	onocrotopho	S		
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
002	35.5	LC-MS/MS	LC-MS/MS	No	1	5	Yes
003	46.5	LC-MS/MS	No	No	5	5	Yes
004	45.5	LC-MS/MS	LC-MS/MS	No	50	2	Yes
006	45.0	LC-MS/MS	LC-MS/MS	No	10	5	No
007	39.2	LC-MS/MS	LC-MS/MS	No	5	5	Yes
009	28.3	GC-NPD	GC-ITD-MS/MS	No	2	2	Yes
011	49.73	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No
013	34.4	GC-NPD	GC-Q-MS	isooctane	1	2	Yes
015	46.5	LC-MS/MS	No	No	20	5	Yes
016	76.3	LC-MS/MS	LC-MS/MS	Yes	6	1	Yes
019	42.7	LC-MS/MS	LC-MS/MS	No	5	5	Yes
020	11.00	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt:C6H12 1:9	10	4	No
023	48.0	GC-Q-MS	GC-Q-MS	No	2	2	Yes
024	43.8	GC-NPD	GC-ITD-MS/MS	toluene	2	3	Yes
025	47	GC-NPD	GC-ITD-MS/MS	isottane	2	3	Yes
027	5.35	LC-MS/MS	LC-MS/MS	No	15	5	No
029	36	LC-MS/MS	LC-MS/MS	No	5	1	Yes
030	40.67	LC-MS/MS	LC-MS/MS	No	5	5	Yes
032	40.14	LC-MS/MS	LC-MS/MS	No	3	1	Yes
033	44.50	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes
035	46.8	LC-MS/MS	No	none	3	1	Yes
036	46	LC-MS/MS	LC-MS/MS	No	10	1	Yes
039	47	LC-MS/MS	LC-MS/MS	No	1	5	No
040	43.9	LC-MS/MS	No	/	25	5	Yes
042	44.6	LC-MS/MS	LC-MS/MS	-	20	5	No
044	67.0	GC-ITD-MS/MS	GC-FPD	ethyl acetate	1	5	Yes
046	28.475	GC-Q-MS	GC-Q-MS	No	1	2	Yes
047	46.8	LC-MS/MS	LC-MS/MS	No	3	1	Yes
050	46.8	LC-MS/MS	LC-MS/MS	Yes	3	5	No
051	40.0	GC-NPD	No	Ethylacetat	1	1	Yes
052	38.2	GC-NPD	GC-QQQ- MS/MS	No	1	2	Yes
054	31.4	GC-NPD	GC-NPD	solvent exchange	1	2	Yes
057	46.3	LC-MS/MS	GC-Q-MS	No	55	5	Yes
059	50.8	LC-MS/MS	LC-MS/MS	methanol	4	5	Yes
060	39.5	LC-MS/MS	LC-MS/MS	No	8	1	Yes
062	45.8	LC-MS/MS	No	No	5	5	Yes
063	31.6	LC-MS/MS	GC-Q-MS	No	10	5	No

ANNEX 3. Standards Solution Ring Test. Results and Participants.

	*Monocrotophos											
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?					
064	45.1	LC-MS/MS	LC-MS/MS	Yes	10	2	Yes					
065	42.1	LC-MS/MS	LC-MS/MS	-	10	1	Yes					
066	30.8	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes					
069	51.1	LC-MS/MS	LC-MS/MS	MeOH	5	1	Yes					
071	39.2	LC-MS/MS	LC-MS/MS	No	10	1	Yes					
072	37.7	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes					
076	59.9	LC-MS/MS	LC-MS/MS	Acetonitril	1	1	Yes					
077	56.50	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes					
079	46.3	LC-MS/MS	LC-MS/MS	No	10	5	No					
082	42.5	GC-FPD	GC-ITD-MS/MS	Yes	2	3	Yes					
085	41.97	LC-MS/MS	LC-MS/MS	methanol	5	5	Yes					
089	35.93	LC-MS/MS	LC-MS/MS	No	10	1	Yes					
090	42.46	LC-MS/MS	LC-MS/MS	No	20	1	Yes					
091	43.7	LC-MS/MS	LC-MS/MS	No	5	5	Yes					
093	43.1	GC-PFPD	GC-NPD	isooctan	2	2	Yes					
096	43.7	LC-MS/MS	No	No	5	1	Yes					
104	47	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt	10	3	Yes					
106	44.9	LC-MS/MS	No	No	15	4	Yes					
119	59.60	LC-MS	No	Yes	20	5	Yes					
120	41.0	GC-NPD	GC-ITD-MS/MS	Yes	1	2	Yes					
121	39.414	GC-Q-MS	GC-FPD	No	5	1	Yes					
125	47.7	LC-MS/MS	LC-MS/MS	No	5	1	Yes					
133	46.95	GC-NPD	GC-Q-MS	athyl acetaste	1	2	Yes					
135	41.6	GC-NPD	GC-NPD	aceton	1	1	Yes					
136	44.4	LC-MS/MS	LC-MS/MS	No	20	2	Yes					
137	39.06	LC-MS/MS	LC-MS/MS	Acetonitrilo	10	5	Yes					
148	9.54	GC/MS scan	GC/MS scan	No	1	2	Yes					

				*Oxamyl			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
002	91.9	LC-MS/MS	LC-MS/MS	No	1	5	Yes
003	78.1	LC-MS/MS	No	No	5	5	Yes
004	73.5	LC-MS/MS	LC-MS/MS	No	50	2	Yes
006	94.0	LC-MS/MS	LC-MS/MS	No	10	5	No
007	66.9	LC-MS/MS	LC-MS/MS	No	5	5	Yes
009	65.5	HPLC-FL	GC-Q-MS	СНЗОН	10	5	Yes
011	82.50	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No
012	52.25	HPLC-FL	No	No	10	2	Yes
015	73.1	LC-MS/MS	No	No	20	4	Yes
016	85.5	LC-MS/MS	LC-MS/MS	Yes	6	1	Yes
017	88.4	LC-MS/MS	LC-MS/MS	No	10	2	Yes
019	60.3	LC-MS/MS	GC-ECD	No	5	5	Yes
020	88.14	LC-MS/MS	LC-MS/MS	ACN:H2O 1:3	7	1	No
023	72.1	LC-MS/MS	LC-MS/MS	No	10	2	No
024	55	LC-MS/MS	No	No	3	5	Yes
027	5.47	LC-MS/MS	LC-MS/MS	No	15	5	No
029	72.8	LC-MS/MS	LC-MS/MS	No	5	1	Yes
030	66.75	LC-MS/MS	LC-MS/MS	No	5	5	Yes
032	70.14	LC-MS/MS	LC-MS/MS	No	3	1	Yes
033	68.40	LC-MS/MS	LC-MS/MS	No	10	5	Yes
035	71.5	LC-MS/MS	No	none	3	1	Yes
036	76	LC-MS/MS	LC-MS/MS	No	10	1	Yes
039	70	LC-MS/MS	LC-MS/MS	No	1	5	No
040	78.6	LC-MS/MS	No	/	25	5	Yes
042	73.3	LC-MS/MS	LC-MS/MS	-	20	5	No
044	60.1	LC-MS/MS	LC-MS/MS	water/methanol	10	5	Yes
046	NA	GC-Q-MS	GC-Q-MS	No	1	2	Yes
047	85.8	LC-MS/MS	LC-MS/MS	No	3	1	Yes
050	85.1	LC-MS/MS	LC-MS/MS	Yes	3	5	No
051	72.5	LC-MS/MS	LC-MS/MS	No	20	5	No
052	77.9	LC-MS/MS	LC-MS/MS	No	20	2	Yes
054	66.3	GC-NPD	GC-NPD	solvent exchange	1	2	Yes
057	67.7	LC-MS/MS	No	No	55	5	Yes
059	63.5	LC-MS/MS	LC-MS/MS	methanol	4	5	Yes
060	59.5	LC-MS/MS	LC-MS/MS	No	8	1	Yes
062	52.3	LC-MS/MS	No	No	5	5	Yes
063	50.7	LC-MS/MS	No	No	10	5	No
064	73.4	LC-MS/MS	LC-MS/MS	Yes	10	2	Yes

ANNEX 3. Standards Solution Ring Test. Results and Participants.

	*Oxamyl											
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?					
066	65.8	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes					
069	79.7	LC-MS/MS	LC-MS/MS	MeOH	5	1	Yes					
071	59.3	LC-MS/MS	LC-MS/MS	No	10	1	No					
076	114.5	LC-MS/MS	LC-MS/MS	Acetonitril	1	1	Yes					
078	66.25	HPLC-FL	No	acetonitrile	100	5	Yes					
079	77.5	LC-MS/MS	LC-MS/MS	No	10	5	No					
082	69.4	HPLC-UV	HPLC-DAD	Yes	20	5	Yes					
085	73.52	LC-MS/MS	LC-MS/MS	methanol	5	5	Yes					
089	70.99	LC-MS/MS	LC-MS/MS	No	10	1	Yes					
090	58.393	LC-MS/MS	LC-MS/MS	No	20	1	Yes					
091	74.8	LC-MS/MS	LC-MS/MS	No	5	5	Yes					
093	64.4	LC-MS/MS	No	No	10	5	Yes					
096	69.9	LC-MS/MS	No	No	5	1	Yes					
106	61.1	LC-MS/MS	No	No	15	4	Yes					
107	71.6	HPLC-FL	HPLC-FL	acidified water	200	1	Yes					
119	70.50	LC-MS	No	Yes	20	5	Yes					
120	64.5	HPLC-DAD	HPLC-DAD	No	20	5	Yes					
121	79.083	LC-MS/MS	LC-MS/MS	No	6	2	Yes					
125	70.9	LC-MS/MS	LC-MS/MS	No	5	1	Yes					
135	48.6	HPLC-DAD	HPLC-DAD	No	20	5	Yes					
136	73.8	LC-MS/MS	LC-MS/MS	No	20	2	Yes					
137	59.03	LC-MS/MS	LC-MS/MS	Acetonitrilo	10	5	Yes					
148	66.5	LC-MS/MS	LC-MS/MS	No	10	5	Yes					

	Parathion-methyl										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
002	44.0	GC-NPD	GC-Q-MS	No	1	2	Yes				
003	37.3	GC-Q-MS	No	toluen	1	2	Yes				
004	22.7	GC-Q-MS	GC-Q-MS	cyclohexane	1	1	Yes				
006	32.5	GC-Q-MS	GC-ITD-MS/MS	Cyclohexane	2	2	No				
007	51.8	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	3	3	Yes				
009	44.1	GC-Q-MS	GC-ITD-MS/MS	No	2	2	Yes				
010	42.1	GC-ITD-MS/MS	GC-ITD-MS/MS	No	5	4	Yes				
011	51.50	GC-ECD	LC-MS/MS	Yes	1	2	No				
013	57.0	GC-NPD	GC-Q-MS	isooctane	1	2	Yes				
014	50.8	GC-NPD	GC-Q-MS	isottano	3	2	Yes				
015	45.6	GC-QQQ-MS/MS	No	No	3	4	Yes				
016	36.7	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	3	Yes				
017	41.6	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	4	4	Yes				
019	40.4	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Yes	1	2	Yes				
020	17.16	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt:C6H12 1:9	10	4	No				
022	66	GC-Q-MS	GC-Q-MS	acetatoetilo- ciclohexano	10	2	Yes				
023	45.2	GC-Q-MS	GC-Q-MS	No	2	2	Yes				
024	45.5	GC-ITD-MS/MS	GC-NPD	toluene	1	2	Yes				
025	55	GC-NPD	GC-ITD-MS/MS	isottane	2	3	Yes				
027	0.175	GC-Q-MS	GC-Q-MS	No	1	2	No				
029	40.8	LC-MS/MS	LC-MS/MS	No	5	1	Yes				
030	45.2	GC-NPD	GC-NPD	Yes	1	2	Yes				
032	41.70	GC-Q-MS	GC-Q-MS	Yes	0.8	2	Yes				
033	47.75	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes				
035	42.3	GC-QQQ-MS/MS	LC-MS/MS	none	3	3	Yes				
036	34	GC-Q-MS	GC-Q-MS	Yes	10	4	Yes				
039	53	GC-Q-MS	GC-Q-MS	No	5	1	No				
040	15	GC-Q-MS	No	/	1	2	Yes				
042	40.4	GC-Q-MS	GC-Q-MS	-	4	3	No				
044	42.1	GC-ITD-MS/MS	GC-FPD	ethyl acetate	1	5	Yes				
046	22.435	GC-Q-MS	GC-Q-MS	No	1	2	Yes				
047	44.3	GC-TOF/MS	GC-TOF/MS	No	3	3	Yes				
050	28.8	GC-Q-MS	GC-Q-MS	No	10	4	No				
051	48.0	GC-NPD	GC-ECD	Ethylacetat	1	1	Yes				
052	29.4	GC-NPD	GC-NPD	No	1	2	Yes				
054	23.2	GC-ECD	GC-MS	solvent exchange	1	2	Yes				
057	41.9	GC-Q-MS	No	No	5	3	No				

ANNEX 3. Standards Solution Ring Test. Results and Participants.

	Parathion-methyl										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
059	46.5	GC-Q-MS	GC/ECD.GC/NPD	acetone	2	2	Yes				
060	44.5	GC-Q-MS	GC-Q-MS	No	3	3	Yes				
062	42.1	GC-Q-MS	GC-Q-MS	No	10	3	Yes				
063	45.0	GC-FPD	GC-Q-MS	No	2	3	No				
065	42.8	GC-Q-MS	GC-Q-MS	-	2	2	Yes				
066	40.8	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Salad matrix	5	3	Yes				
068	41.8	GC-NPD	GC-QQQ-MS/MS	Yes	4	2	Yes				
069	47.0	GC-QQQ-MS/MS	GC-QQQ-MS/MS	EtOAc/ch	2	2	Yes				
071	43.8	GC-Q-MS	GC-Q-MS	Isooctan	3	3	Yes				
072	34.8	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes				
074	50	GC-ECD	GC-NPD	No	2	2	No				
076	46.7	GC-Q-MS	GC-Q-MS	46.7	1	2	Yes				
077	36.67	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes				
078	54.23	GC-ECD	GC-ITD-MS/MS	ethyl acetate	1	3	Yes				
079	45.0	LC-MS/MS	LC-MS/MS	No	10	5	No				
082	50.5	GC-FPD	GC-ITD-MS/MS	Yes	2	3	Yes				
088	37.62	GC-NPD	GC-ECD	isooctane/toluene	1	5	No				
089	35.56	GC-IT/MS	GC-IT/MS	No	1	2	Yes				
090	45.316	GC-FPD	GC-NPD	Ethyl Acetate	1	2	Yes				
091	54.7	GC-ITD-MS/MS	GC-ITD-MS/MS	No	5	4	Yes				
093	51.3	GC-NPD	GC-ECD	isooctan	1	5	Yes				
094	48.34	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes				
096	45.8	LC-MS/MS	No	No	5	1	Yes				
098	47.1	GC-ECD	GC-NPD	Yes	2	2	No				
101	62.1	GC-NPD	GC-ITD-MS/MS	Ethyle Acetate	4	3	Yes				
102	50	GC-NPD	GC-ECD	Yes	2	2	No				
104	44	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt	10	3	Yes				
106	44.8	GC-ECD	GC-FPD	Isooctan	1	2	Yes				
107	31.2	GC-TOF/MS	GC-TOF/MS	ethyl acetate	1	2	Yes				
111	0.05	GC-Q-MS	GC-Q-MS	acetonitrile	5	2	Yes				
114	37.04	GC-NPD	GC-NPD	ethyl acetate	5	2	Yes				
118	46.0	GC-NPD	No	acn	5	3	No				
119	47.60	GC-NPD	No	Yes	1	2	Yes				
120	54.5	GC-NPD	GC-ITD-MS/MS	Yes	1	2	Yes				
121	32.962	GC-Q-MS	GC-FPD	No	5	1	Yes				
123	46.3	GC-ECD	GC-ECD	Yes	2	2	Yes				
125	43.6	GC-ITD-MS	GC-ITD-MS	No	5	4	No				
130	52.3	GC-NPD	No	heksane/acetone	2	2	Yes				

ANNEX 3. Standard Solution Ringtest. Results and Participants.

	Parathion-methyl										
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?				
133	41.5	GC-ECD	GC-Q-MS	ethyl acetate	1	2	Yes				
135	35.9	GC-NPD	GC-NPD	aceton	1	1	Yes				
136	40.6	GC-Q-MS	GC-Q-MS	No	3	2	Yes				
137	14.85	GC-ITD-MS/MS	GC-ITD-MS/MS	Acetonitrilo	10	3	Yes				
138	28.93	GC-MS	No	Acetone	1	2	Yes				
141	32.3	GC-Q-MS	GC-Q-MS	No	4	3	No				
142	55	GC-NPD	GC-NPD	ethyl acetate	5	2	Yes				
148	30.64	GC/MS scan	GC/MS scan	No	1	2	Yes				
150	35	GC-FPD	GC-Q-MS	isohexane	2	3	Yes				

	Paraoxon-methyl											
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?					
002	41.6	GC-NPD	GC-Q-MS	No	1	2	Yes					
003	36.0	GC-Q-MS	No	Toluene	1	2	Yes					
006	58.2	LC-MS/MS	LC-MS/MS	No	10	5	No					
007	43.7	LC-MS/MS	LC-MS/MS	No	5	5	Yes					
009	32.8	GC-Q-MS	GC-ITD-MS/MS	No	2	2	Yes					
011	42.95	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No					
013	47.2	GC-NPD	GC-Q-MS	Isooctane	1	2	Yes					
014	45.4	GC-NPD	GC-Q-MS	Isooctane	3	2	Yes					
015	27.9	GC-QQQ-MS/MS	No	No	3	4	Yes					
019	34.0	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Yes	1	2	Yes					
020	8.88	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt:C6H12 1:9	10	4	No					
023	44.5	GC-Q-MS	GC-Q-MS	No	2	1	Yes					
024	34.2	GC-ITD-MS/MS	GC-NPD	toluene	1	2	Yes					
025	34	GC-NPD	GC-ITD-MS/MS	isottane	2	3	Yes					
029	34.3	LC-MS/MS	LC-MS/MS	No	5	1	Yes					
030	34.63	LC-MS/MS	LC-MS/MS	No	5	5	Yes					
032	19.12	GC-Q-MS	GC-Q-MS	Yes	0.8	2	Yes					
035	42.1	LC-MS/MS	No	none	3	1	Yes					
036	41	GC-Q-MS	GC-Q-MS	Yes	10	4	Yes					
039	39	LC-MS/MS	LC-MS/MS	No	1	5	No					
040	23	GC-Q-MS	No	/	1	2	Yes					
042	35.9	GC-Q-MS	GC-Q-MS	-	4	3	No					
044	49.2	GC-ITD-MS/MS	GC-FPD	Ethyl Acetate	1	5	Yes					
046	NA	GC-Q-MS	GC-Q-MS	No	1	2	Yes					
047	40.7	GC-TOF/MS	GC-TOF/MS	No	3	3	Yes					
050	43.9	LC-MS/MS	LC-MS/MS	Yes	3	5	Yes					
051	41.0	GC-NPD	GC-ECD	EthylAacetate	1	1	Yes					
052	33.4	GC-NPD	GC-QQQ-MS/MS	No	1	2	Yes					
054	28.2	GC-NPD	GC-MS	solvent exchange	1	2	Yes					
057	42.2	GC-Q-MS	LC-MS/MS	No	5	3	No					
059	50.0	GC-Q-MS	GC/ECD.GC/NPD	Acetone	2	2	Yes					
060	42.0	LC-MS/MS	LC-MS/MS	No	8	1	Yes					
062	31.1	GC-Q-MS	GC-Q-MS	No	10	3	Yes					
063	35.6	GC-FPD	GC-Q-MS	No	2	3	No					
064	39.7	LC-MS/MS	LC-MS/MS	Yes	10	2	Yes					
066	30.9	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes					
069	44.1	LC-MS/MS	LC-MS/MS	МеОН	5	1	Yes					
071	57.5	GC-Q-MS	GC-Q-MS	Isooctane	3	3	Yes					

ANNEX 3. Standard Solution Ringtest. Results and Participants.

	Paraoxon-methyl											
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?					
072	35.5	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes					
076	77.3	GC-Q-MS	GC-Q-MS	Acetonitril	1	2	Yes					
077	91.67	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes					
078	49.17	GC-ECD	GC-ITD-MS/MS	ethyl acetate	1	3	Yes					
079	42.3	LC-MS/MS	LC-MS/MS	No	10	5	No					
089	31.05	GC-IT/MS	GC-IT/MS	No	1	2	Yes					
090	37.351	LC-MS/MS	LC-MS/MS	No	20	1	Yes					
091	62.0	GC-ITD-MS/MS	GC-ITD-MS/MS	No	5	4	Yes					
094	19.6	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes					
096	39.5	LC-MS/MS	No	No	5	1	Yes					
101	38.4	GC-NPD	GC-ITD-MS/MS	Ethyle Acetate	4	3	Yes					
106	47.6	GC-ECD	LC-MS/MS	Isooctan	1	2	Yes					
120	38.5	GC-NPD	GC-ITD-MS/MS	Yes	1	2	Yes					
121	25.270	GC-Q-MS	GC-FPD	No	5	1	Yes					
124	35.0	GC-Q-MS	No	No	8	4	Yes					
130	33.6	GC-NPD	GC-ECD	heksane/acetone	2	2	Yes					
133	41.2	GC-NPD	GC-Q-MS	ethyl acetate	1	2	Yes					
136	24.8	GC-Q-MS	GC-Q-MS	No	3	2	Yes					
137	5.12	GC-ITD-MS/MS	GC-ITD-MS/MS	Acetonitrilo	10	3	Yes					
148	30.09	GC/MS scan	GC/MS scan	No	1	2	Yes					

			*P	hosalone			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
002	80.0	GC-NPD	GC-Q-MS	No	1	2	Yes
003	86.3	LC-MS/MS	No	No	5	5	Yes
004	75.3	LC-MS/MS	LC-MS/MS	No	50	2	Yes
006	65.8	GC-Q-MS	GC-ITD-MS/MS	Cyclohexane	2	2	No
009	65.8	GC-Q-MS	GC-Q-MS	No	2	2	Yes
010	66.0	GC-ITD-MS/MS	GC-ITD-MS/MS	No	5	4	Yes
011	100.13	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No
013	90.0	GC-NPD	GC-Q-MS	isooctane	1	2	Yes
014	86.7	GC-NPD	GC-Q-MS	isottano	3	2	Yes
015	62.9	GC-QQQ-MS/MS	No	No	3	4	Yes
016	56.9	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	3	Yes
017	47.6	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	4	4	Yes
019	66.4	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Yes	1	2	Yes
020	25.08	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt:C6H12 1:9	10	4	No
022	101	GC-Q-MS	GC-Q-MS	acetatoetilo- ciclohexano	10	2	Yes
023	85.3	GC-Q-MS	GC-Q-MS	No	2	2	Yes
024	84.2	GC-ITD-MS/MS	GC-ECD	toluene	1	2	Yes
025	72	GC-NPD	GC-ITD-MS/MS	isottane	2	1	Yes
027	3.36	LC-MS/MS	LC-MS/MS	No	15	5	No
029	67.5	LC-MS/MS	LC-MS/MS	No	5	1	Yes
030	76.0	GC-ECD	GC-NPD	Yes	1	2	Yes
032	68.92	LC-MS/MS	LC-MS/MS	No	3	1	Yes
033	90.25	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes
034	88.8	GC-Q-MS	GC-Q-MS	Yes	2	2	Yes
035	79.4	LC-MS/MS	No	none	3	1	Yes
036	67	GC-Q-MS	GC-Q-MS	Yes	10	4	Yes
039	82	GC-Q-MS	GC-Q-MS	No	5	1	No
040	66	GC-Q-MS	No	/	1	2	Yes
042	78.1	GC-Q-MS	GC-Q-MS	-	4	3	No
044	85.9	GC-ITD-MS/MS	GC-FPD	ethyl acetate	1	5	Yes
046	87.34	GC-Q-MS	GC-Q-MS	No	1	2	Yes
047	72.8	GC-TOF/MS	GC-TOF/MS	No	3	3	Yes
050	58.9	GC-Q-MS	GC-Q-MS	No	10	4	No
051	84.0	GC-ECD	GC-NPD	Ethylacetat	1	1	Yes
052	68.3	GC-NPD	GC-QQQ-MS/MS	No	1	2	Yes
054	82.15	GC-NPD	GC-MS	solvent exchange	1	2	Yes
057	69.6	GC-Q-MS	LC-MS/MS	No	5	3	No

ANNEX 3. Standard Solution Ringtest. Results and Participants.

			*P	hosalone			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µI)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
059	94.8	GC-Q-MS	GC/ECD.GC/NPD	acetone	2	2	Yes
060	79.8	LC-MS/MS	LC-MS/MS	No	8	1	Yes
062	72.5	GC-Q-MS	GC-Q-MS	No	10	3	Yes
063	80.3	GC-Q-MS	GC-Q-MS	No	2	3	No
064	74.2	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes
065	72.9	GC-Q-MS	GC-Q-MS	-	2	2	Yes
066	80.0	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes
069	68.7	GC-QQQ-MS/MS	GC-QQQ-MS/MS	EtOAc/ch	2	2	Yes
071	79.8	GC-Q-MS	GC-Q-MS	Isooctan	3	3	Yes
072	37.4	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes
074	88	GC-ECD	GC-NPD	No	2	2	No
076	95.6	GC-Q-MS	GC-Q-MS	Acetonitril	1	2	Yes
077	83.00	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes
078	83.34	GC-ECD	GC-ITD-MS/MS	ethyl acetate	1	3	No
079	81.4	LC-MS/MS	LC-MS/MS	No	10	5	No
082	84.5	GC-FPD	GC-ITD-MS/MS	Yes	2	3	Yes
086	90.2	GC-Q-MS	GC-Q-MS	Acetonitril	2	2	No
088	79.18	GC-NPD	GC-NPD	isooctane/toluene 90/10	1	5	No
089	67.51	LC-MS/MS	LC-MS/MS	No	10	1	Yes
091	88.9	LC-MS/MS	GC-ITD-MS/MS	No	5	5	Yes
093	76.9	GC-ECD	GC-NPD	isooctan	1	2	Yes
094	75.72	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes
096	72.7	LC-MS/MS	No	No	5	1	Yes
098	102.0	GC-ECD	GC-ECD	Yes	2	2	No
101	84.6	GC-ITD-MS/MS	GC-NPD	Ethyle Acetate	1	2	Yes
102	100	GC-NPD	GC-ECD	Yes	2	2	No
104	83	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt	10	3	Yes
106	83.0	GC-ECD	LC-MS/MS	Isooctan	1	2	Yes
107	48.0	GC-TOF/MS	GC-TOF/MS	ethyl acetate	1	2	Yes
111	0.10	GC-Q-MS	GC-Q-MS	acetonitrile	5	2	Yes
114	66.47	GC-ECD	GC-ECD	toluene acetone	1	1	Yes
119	76.00	GC-NPD	No	Yes	1	2	Yes
120	80.3	GC-NPD	GC-ITD-MS/MS	Yes	1	2	Yes
121	53.742	GC-Q-MS	GC-FPD	No	5	1	Yes
124	89.2	GC-Q-MS	No	No	8	4	Yes
125	85.4	GC-ITD-MS	GC-ITD-MS	No	5	4	No
129	80	GC-NPD	GC-NPD	ethyl acetate	1	2	Yes
132	57.35	GC-FPD	No	acetone	1	5	Yes

ANNEX 3. Standards Solution Ring Test. Results and Participants.

			*P	hosalone			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
133	56.9	GC-ECD	GC-Q-MS	ethyl acetate	1	2	Yes
135	66.7	GC-NPD	GC-NPD	aceton	1	1	Yes
136	75.8	GC-Q-MS	GC-Q-MS	No	3	2	Yes
137	27.15	GC-ITD-MS/MS	GC-ITD-MS/MS	Acetonitrilo	10	3	Yes
138	35.30	GC-MS	No	Acetone	1	2	Yes
141	62.3	GC-Q-MS	GC-Q-MS	No	4	3	No
142	79	GC-ECD	GC-ECD	ethyl acetate	1	2	Yes
148	55.95	GC/MS scan	GC/MS scan	No	1	2	Yes
150	44	GC-FPD	GC-Q-MS	isohexane	2	1	Yes

			*Pro	cymidone			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
002	20.3	GC-ECD	GC-Q-MS	No	1	2	Yes
003	25.0	GC-Q-MS	No	toluen	1	2	Yes
004	21.9	GC-Q-MS	GC-Q-MS	cyclohexane	1	1	Yes
006	17.5	GC-Q-MS	GC-ITD-MS/MS	Cyclohexane	2	2	No
007	23.2	GC-Q-MS	GC-QQQ-MS/MS	No	3	3	Yes
009	15.9	GC-Q-MS	GC-Q-MS	No	2	2	Yes
010	21.0	GC-ITD-MS/MS	GC-ITD-MS/MS	No	5	4	Yes
011	25.9	GC-ECD	LC-MS/MS	Yes	1	2	No
012	0.482	GC-ITD-MS/MS	No	No	1.5	2	Yes
013	22.1	GC-ECD	GC-Q-MS	isooctane	1	2	Yes
014	20.9	GC-ECD	GC-Q-MS	isottano	3	2	Yes
015	22.4	GC-QQQ-MS/MS	No	No	3	4	Yes
016	19.3	GC-ECD	GC-ECD	Yes	2	2	Yes
017	18.7	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	4	4	Yes
019	21.0	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Yes	1	2	Yes
020	19.72	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt:C6H12 1:9	10	4	No
022	20.1	GC-Q-MS	GC-Q-MS	acetatoetilo- ciclohexano	10	2	Yes
023	22.2	GC-Q-MS	GC-Q-MS	No	2	2	Yes
024	26.9	GC-ITD-MS/MS	GC-NPD	toluene	1	2	Yes
025	21	GC-ITD-MS/MS	GC-ITD-MS/MS	isottane	2	3	Yes
027	10.1	GC-Q-MS	GC-Q-MS	No	1	2	No
029	24.6	GC-Q-MS	GC-Q-MS	Yes	1	1	Yes
030	25.1	GC-NPD	GC-NPD	Yes	1	2	Yes
032	18.25	GC-Q-MS	GC-Q-MS	Yes	0.8	2	Yes
033	23.25	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes
034	29.9	GC-Q-MS	GC-Q-MS	Yes	2	2	Yes
035	21.5	GC-QQQ-MS/MS	LC-MS/MS	none	3	3	Yes
036	22	GC-Q-MS	GC-Q-MS	Yes	10	4	Yes
039	21	GC-Q-MS	LC-MS/MS	No	5	1	No
040	23	GC-Q-MS	No	No	1	2	Yes
042	21.3	GC-Q-MS	GC-Q-MS	-	4	3	No
044	26.4	GC-ITD-MS/MS	GC-ECD	ethyl acetate	1	5	Yes
046	17.215	GC-Q-MS	GC-Q-MS	No	1	2	Yes
047	21.6	GC-TOF/MS	GC-TOF/MS	No	3	3	Yes
050	21.6	GC-Q-MS	GC-Q-MS	No	10	4	No
051	20.0	GC-ECD	GC-NPD	Ethylacetat	1	1	Yes
052	22.6	GC-ECD	GC-QQQ-MS/MS	No	1	2	Yes

ANNEX 3. Standards Solution Ring Test. Results and Participants.

			*Pro	ocymidone			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
054	33.0	GC-ECD	GC-MS	solvent exchange	1	2	Yes
057	22.6	GC-Q-MS	No	No	5	3	No
059	23.7	GC-Q-MS	GC/ECD.GC/NPD	acetone	2	2	Yes
062	21.7	GC-Q-MS	GC-Q-MS	No	10	3	Yes
063	19.3	GC-Q-MS	GC-Q-MS	No	2	3	No
064	15.9	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes
065	19.7	GC-Q-MS	GC-Q-MS	-	2	2	Yes
066	19.6	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Salad matrix	5	3	Yes
068	19.3	GC-ECD	GC-QQQ-MS/MS	Yes	4	2	Yes
069	21.9	GC-QQQ-MS/MS	GC-QQQ-MS/MS	EtOAc/ch	2	2	Yes
071	20.3	GC-Q-MS	GC-Q-MS	Isooctan	3	3	Yes
072	19.1	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes
074	20	GC-ECD	No	No	2	2	No
076	23.7	GC-Q-MS	GC-Q-MS	Acetonitril	1	2	Yes
077	20.50	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes
078	23.71	GC-ECD	GC-ITD-MS/MS	ethyl acetate	1	3	Yes
079	20.8	GC-ECD	GC-ECD	Isooctane + Acetone	1	2	Yes
082	24.0	GC-ECD	GC-ITD-MS/MS	Yes	2	3	Yes
084	23	GC-ECD	GC-ECD	Acetato de Etilo	1	2	Yes
086	21.7	GC-Q-MS	GC-Q-MS	Acetonitril	2	2	No
088	22.47	GC-ECD	GC-ECD	isooctane/toluene 90/10	1	2	No
089	21.75	GC-IT/MS	GC-IT/MS	No	1	2	Yes
090	24.294	GC-ECD	GC-ECD	Ethyl Acetate	1	2	Yes
091	29.1	GC-ITD-MS/MS	GC-ITD-MS/MS	No	5	4	Yes
093	23.4	GC-ECD	GC-NPD	isooctan	1	5	Yes
094	23.20	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes
096	29.0	LC-MS/MS	No	No	5	1	Yes
098	22.1	GC-ECD	GC-ECD	Yes	2	2	No
099	22.29	GC-Q-MS	No	No	2	2	Yes
101	25.4	GC-ECD	GC-ITD-MS/MS	Ethyle Acetate	4	3	Yes
102	21	GC-NPD	GC-ECD	Yes	2	2	No
104	23	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt	10	3	Yes
106	24.6	GC-ECD	GC-Q-MS	Isooctan	1	2	Yes
107	18.0	GC-ECD	GC-TOF/MS	ethyl acetate	1	2	Yes
	0.8	GC-Q-MS	GC-Q-MS	acetonitrile	5	2	Yes
112	19.432	GC-Q-MS	GC-Q-MS	Acetonitril	2.0	2	Yes
114	19.84	GC-ECD	GC-ECD	toluene acetone	1	1	Yes
118	25.7	GC-ECD	No	acn	1	2	No

ANNEX 3. Standard Solution Ringtest. Results and Participants.

			*Pro	ocymidone			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
119	23.60	GC-ECD	No	Yes	1	2	Yes
120	22.4	GC-ECD	GC-ITD-MS/MS	Yes	1	2	Yes
121	19.005	GC-Q-MS	GC-Q-MS	No	5	1	Yes
123	22.8	GC-ECD	GC-ECD	Yes	2	2	Yes
124	17.3	GC-Q-MS	No	No	8	4	Yes
125	20.2	GC-ITD-MS	GC-ITD-MS	No	5	4	No
130	23.6	GC-ECD	GC-ECD	heksane/acetone	2	1	Yes
133	22.66	GC-ECD	GC-Q-MS	ethyl acetate	1	2	Yes
135	20.2	GC-ECD	GC-ECD	aceton	1	2	Yes
136	18.5	GC-Q-MS	GC-Q-MS	No	3	2	Yes
137	18.99	GC-ITD-MS/MS	GC-ITD-MS/MS	Acetonitrilo	10	3	Yes
141	20.5	GC-Q-MS	GC-Q-MS	No	4	3	No
142	23	GC-ECD	GC-ECD	ethyl acetate	1	2	Yes
148	23.55	GC/MS scan	GC/MS scan	No	1	2	Yes
150	15.6	GC-ECD	GC-Q-MS	isohexane	2	3	Yes

			* T	hiacloprid			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
002	37.4	LC-MS/MS	LC-MS/MS	No	1	5	Yes
003	41.2	LC-MS/MS	No	No	5	5	Yes
004	36.5	LC-MS/MS	LC-MS/MS	No	50	2	Yes
006	53.2	LC-MS/MS	LC-MS/MS	No	10	5	No
007	35.1	LC-MS/MS	LC-MS/MS	No	5	5	Yes
009	33	HPLC-DAD	No	СНЗОН	50	5	Yes
011	58.13	LC-MS/MS	LC-MS/MS	MeOH/H2O (30/70)	10	5	No
015	42.1	LC-MS/MS	No	No	20	5	Yes
017	42.5	LC-MS/MS	LC-MS/MS	No	10	2	Yes
019	34.9	LC-MS/MS	LC-MS/MS	No	5	5	Yes
020	41.56	LC-MS/MS	LC-MS/MS	ACN:H2O 1:3	7	1	No
023	47.8	LC-MS/MS	LC-MS/MS	No	10	2	No
024	33.5	LC-MS/MS	No	No	3	5	Yes
027	3.58	LC-MS/MS	LC-MS/MS	No	15	5	No
029	34.1	LC-MS/MS	LC-MS/MS	No	5	1	Yes
030	37.8	LC-MS/MS	LC-MS/MS	No	5	5	Yes
032	33.96	LC-MS/MS	LC-MS/MS	No	3	1	Yes
033	23.5	LC-MS/MS	LC-MS/MS	No	10	5	Yes
034	35.3	LC-MS/MS	LC-MS/MS	No	5	1	Yes
035	40.0	LC-MS/MS	No	none	3	1	Yes
036	36	LC-MS/MS	LC-MS/MS	No	10	1	Yes
039	38	LC-MS/MS	LC-MS/MS	No	1	5	No
040	38.8	LC-MS/MS	No	/	25	5	Yes
042	36.0	LC-MS/MS	LC-MS/MS	-	20	5	No
044	36.7	LC-MS/MS	LC-MS/MS	water/methanol	10	5	Yes
046	NA	GC-Q-MS	GC-Q-MS	No	1	2	Yes
047	41.0	LC-MS/MS	LC-MS/MS	No	3	1	Yes
050	45.7	LC-MS/MS	LC-MS/MS	Yes	3	5	Yes
051	32.3	LC-MS/MS	LC-MS/MS	No	20	5	No
052	38.1	LC-MS/MS	LC-MS/MS	No	20	2	Yes
054	37.4	LC-MS/MS	LC-MS/MS	solvent exchange	1	2	Yes
057	38.7	LC-MS/MS	No	No	55	5	Yes
059	38.9	LC-MS/MS	LC-MS/MS	methanol	4	5	Yes
060	33.0	LC-MS/MS	LC-MS/MS	No	8	1	Yes
062	36.3	LC-MS/MS	No	No	5	5	Yes
063	35.4	LC-MS/MS	No	No	10	5	No
064	37.3	LC-MS/MS	LC-MS/MS	Yes	10	2	Yes
066	33.3	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes

ANNEX 3. Standard Solution Ringtest. Results and Participants.

			*T	hiacloprid			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µI)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
069	47.1	LC-MS/MS	LC-MS/MS	MeOH	5	1	Yes
076	51.7	LC-MS/MS	LC-MS/MS	Acetonitril	1	1	Yes
079	39.2	LC-MS/MS	LC-MS/MS	No	10	5	No
082	42.5	HPLC-UV	HPLC-DAD	Yes	20	5	Yes
085	46.97	LC-MS/MS	LC-MS/MS	methanol	5	5	Yes
089	32.47	LC-MS/MS	LC-MS/MS	No	10	1	Yes
090	38.425	LC-MS/MS	LC-MS/MS	No	20	1	Yes
091	42.1	LC-MS/MS	LC-MS/MS	No	5	5	Yes
093	35.1	LC-MS/MS	No	No	10	5	Yes
096	36.4	LC-MS/MS	No	No	5	1	Yes
104	20	LC-MS/MS	LC-MS/MS	ACN	15	1	No
106	44.6	LC-MS/MS	No	No	15	4	Yes
119	34.60	LC-MS	No	Yes	20	5	Yes
120	31.6	HPLC-DAD	HPLC-DAD	No	20	5	Yes
121	52.500	LC-MS/MS	LC-MS/MS	No	6	2	Yes
124	42.5	LC-MS/MS	HPLC-DAD	No	5	5	Yes
135	32.9	HPLC-DAD	HPLC-DAD	No	20	5	Yes
136	42.2	LC-MS/MS	LC-MS/MS	No	20	2	Yes
137	40.06	LC-MS/MS	LC-MS/MS	Acetonitrilo	10	5	Yes
148	59.35	LC-MS/MS	LC-MS/MS	No	10	5	Yes

			1	[riazophos			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
002	28.1	GC-NPD	GC-Q-MS	No	1	2	Yes
003	33.0	LC-MS/MS	No	No	5	5	Yes
006	27.8	GC-Q-MS	GC-ITD-MS/MS	Cyclohexane	2	2	No
007	38.7	GC-Q-MS	GC-QQQ-MS/MS	No	3	3	Yes
009	13	GC-Q-MS	GC-Q-MS	No	2	2	Yes
011	24.5	GC-NPD	LC-MS/MS	Yes	1	2	No
013	34.3	GC-NPD	GC-Q-MS	isooctane	1	2	Yes
014	40.1	GC-NPD	GC-Q-MS	isottano	3	2	Yes
015	36.3	GC-QQQ-MS/MS	No	No	3	4	Yes
016	32.4	GC-NPD	GC-NPD	Yes	2	2	Yes
017	24.5	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	4	4	Yes
019	29.2	GC-QQQ-MS/MS	GC-QQQ-MS/MS	Yes	1	2	Yes
020	12.56	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt:C6H12 1:9	10	4	No
022	42	GC-Q-MS	GC-Q-MS	acetatoetilo- ciclohexano	10	2	Yes
023	32.6	GC-Q-MS	GC-Q-MS	No	2	2	Yes
024	29.2	GC-NPD	GC-ITD-MS/MS	toluene	2	3	Yes
025	33	GC-NPD	GC-ITD-MS/MS	isottane	2	3	Yes
027	12.6	LC-MS/MS	LC-MS/MS	No	15	5	No
029	23.7	LC-MS/MS	LC-MS/MS	No	5	1	Yes
030	39.9	GC-NPD	GC-NPD	Yes	1	2	Yes
032	24.66	LC-MS/MS	LC-MS/MS	No	3	1	Yes
033	55.00	GC-ITD-MS/MS	GC-ITD-MS/MS	ciclohexane	10	4	Yes
035	34.6	LC-MS/MS	No	none	3	1	Yes
036	28	GC-Q-MS	GC-Q-MS	Yes	10	4	Yes
039	34	GC-Q-MS	GC-Q-MS	No	5	1	No
040	17	GC-Q-MS	No	/	1	2	Yes
042	28.8	GC-Q-MS	GC-Q-MS	-	4	3	No
044	40.6	GC-ITD-MS/MS	GC-FPD	ethyl acetate	1	5	Yes
046	30.64	GC-Q-MS	GC-Q-MS	No	1	2	Yes
047	30.9	GC-TOF/MS	GC-TOF/MS	No	3	3	Yes
050	22.7	GC-Q-MS	GC-Q-MS	No	10	4	No
051	27.0	GC-NPD	No	Ethylacetat	1	1	Yes
052	20.0	GC-QQQ-MS/MS	GC-QQQ-MS/MS	No	1	2	Yes
054	23.0	GC-NPD	GC-MS	solvent exchange	1	2	Yes
057	27.5	GC-Q-MS	No	No	5	3	No
059	43.5	GC-Q-MS	GC/ECD.GC/NPD	acetone	2	2	Yes
060	29.7	GC-Q-MS	GC-Q-MS	No	3	3	Yes

ANNEX 3. Standard Solution Ringtest. Results and Participants.

			1	Triazophos			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
062	28.3	GC-Q-MS	GC-Q-MS	No	10	3	Yes
063	29.4	LC-MS/MS	GC-Q-MS	No	10	5	No
064	16.6	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes
065	27.4	GC-Q-MS	GC-Q-MS	-	2	2	Yes
066	24.6	LC-MS/MS	LC-MS/MS	10 % Methanol	20	5	Yes
068	29.8	GC-NPD	GC-QQQ-MS/MS	Yes	4	2	Yes
069	37.9	GC-QQQ-MS/MS	GC-QQQ-MS/MS	EtOAc/ch	2	2	Yes
071	36.2	GC-Q-MS	GC-Q-MS	Isooctan	3	3	Yes
072	31.9	GC-ITD-MS/MS	GC-ITD-MS/MS	Yes	1	5	Yes
074	30	GC-ECD	No	No	2	2	No
076	31.2	GC-Q-MS	GC-ECD	Acetonitril	1	2	Yes
077	29.50	GC-Q-MS	GC-Q-MS	Yes	1	2	Yes
079	30.7	LC-MS/MS	LC-MS/MS	No	10	5	No
082	31.6	GC-FPD	GC-ITD-MS/MS	Yes	2	3	Yes
085	28.09	GC-MS	LC-MS/MS	methanol	5	5	Yes
086	22.2	GC-Q-MS	GC-Q-MS	Acetonitril	2	2	No
088	26.20	GC-NPD	GC-NPD	isooctane/toluene 90/10	1	5	No
089	22.52	GC-IT/MS	GC-IT/MS	No	1	2	Yes
090	32.372	LC-MS/MS	LC-MS/MS	No	20	1	Yes
091	32.1	LC-MS/MS	GC-ITD-MS/MS	No	5	5	Yes
093	30.2	GC-NPD	GC-PFPD	isooctan	1	5	Yes
094	24.04	GC-Q-MS	GC-Q-MS	acetone	1	2	Yes
096	30.5	LC-MS/MS	No	No	5	1	Yes
098	34.1	GC-NPD	GC-NPD	Yes	2	2	No
101	30	GC-NPD	GC-ITD-MS/MS	Ethyle Acetate	4	3	Yes
102	33	GC-NPD	GC-ECD	Yes	2	2	No
104	38	GC-ITD-MS/MS	GC-ITD-MS/MS	AcOEt	10	3	Yes
106	47.9	GC-FPD	LC-MS/MS	No	1	2	Yes
107	16.0	GC-TOF/MS	GC-TOF/MS	ethyl acetate	1	2	Yes
111	0.30	GC-Q-MS	GC-Q-MS	acetonitrile	5	2	Yes
114	26.15	GC-NPD	GC-NPD	ethyl acetate	5	2	Yes
118	30.8	GC-NPD	No	acn	5	3	No
119	36.10	GC-NPD	No	Yes	1	2	Yes
120	32.3	GC-NPD	GC-ITD-MS/MS	Yes	1	2	Yes
121	16.010	GC-Q-MS	GC-FPD	No	5	1	Yes
124	16.3	GC-Q-MS	No	No	8	4	Yes
125	30.7	GC-ITD-MS	GC-ITD-MS	No	5	4	No
130	30.3	GC-NPD	No	heksane/acetone	2	2	Yes

ANNEX 3. Standards Solution Ring Test. Results and Participants.

			•	Triazophos			
Lab	Concentration (mg/L)	Determination Technique	Confirmation Technique	Solvent Exchange (if any)	Inyection Volume (µl)	Inyection Type (if applicable)	Have you used the same Standard solution to quantify EUPT-FV matrix than to cuantify this Standar solution?
132	23.58	GC-FPD	No	acetone	1	5	Yes
133	43.4	GC-NPD	GC-Q-MS	ethyl acetate	1	2	Yes
135	20.3	GC-NPD	GC-NPD	aceton	1	1	Yes
136	23.7	LC-MS/MS	LC-MS/MS	No	20	2	Yes
137	14.18	GC-ITD-MS/MS	GC-ITD-MS/MS	Acetonitrilo	10	3	Yes
142	21	GC-NPD	GC-NPD	ethyl acetate	5	2	Yes
148	22.60	GC/MS scan	GC/MS scan	No	1	2	Yes
150	33	GC-FPD	GC-Q-MS	isohexane	2	3	Yes

ANNEX 3. Standard Solution Ringtest. Results and Participants.

Table 3. List of EUPT-FV-11 standard solution ring test participants.

COUNTRY	LABORATORY NAME	СІТҮ	PARTICIPATION	REPORTED RESULTS
AUSTRIA	AGES Competence Center for Residues of Plant Protection Products	INNSBRUCK	Yes	Yes
AUSTRIA	Competence Centre for Residue Analysis, Austrian Agency for Health and Food Safety	WIEN	Yes	No
BELGIUM	Fytolab	ZWIJNAARDE	Yes	Yes
BELGIUM	Scientific Institute of Public Health	BRUXELLES	Yes	Yes
BELGIUM	LOVAP	GEEL	Yes	Yes
BELGIUM	Eurofins Belgium NV	OOSTKAMP	Yes	Yes
BULGARIA	Central Laboratory for Chemical Testing and Control	SOFIA	Yes	Yes
BULGARIA	Laboratory Analysis Directorate - Regional Inspectorate for Public Health Protection and Control - Pleven	PLEVEN	Yes	Yes
BULGARIA	Regional Inspectorate for Puplic Health Protection and Control, Directorate Laboratory Analysis	SOFIA	Yes	Yes
BULGARIA	Regional Inspectorate for Public Health Protection and Control - Veliko Tarnovo	VELIKO TARNOVO	Yes	Yes
BULGARIA	RIOKOZ - Plovdiv	PLOVDIV	Yes	Yes
BULGARIA	RIOKOZ - Varna	VARNA	No	No
CYPRUS	Pesticide Residues Laboratory of the State General Laboratory	NICOSIA	No	No
CZECH REPUBLIC	Institute of Chemical Technology, Prague	PRAGUE	Yes	Yes
CZECH REPUBLIC	Czech Agriculture and Food Inspection Authority	PRAHA	Yes	No
DENMARK	Danish Vet, and Food Adm. Region East	DENMARK	Yes	Yes
DENMARK	National Food Institute, DTU	SOEBORG	Yes	Yes
EGYPT	Central Lab of Residue Analysis of Pesticides and Heavy Metals in Foods	GIZA	Yes	Yes
ESTONIA	Laboratory for Residues and Contaminants, Agricultural Research Centre	SAKU	Yes	Yes
ESTONIA	Tartu Laboratory of Health Protection Inspectorate	TARTU	Yes	No
FINLAND	Finnish Customs Laboratory	ESPOO	Yes	Yes
FINLAND	MetropoliLab	HELSINKI	Yes	No
FRANCE	Laboratoire du SCL de Montpellier	MONTPELLIER	Yes	Yes
FRANCE	SCL - Laboratoire de d'Ile de France Massy	MASSY CEDEX	Yes	Yes
FRANCE	SCL - Rennes	RENNES	Yes	Yes
FRANCE	SCL - Strasbourg	ILLKIRCH	Yes	Yes
FRANCE	SCL Laboratoire de Pessac	PESSAC	Yes	Yes
FRANCE	Laboratoire Départemantal de la Sarthe	LE MANS	Yes	No
GERMANY	Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen (LUA) Sachsen	DRESDEN	Yes	Yes
GERMANY	CVUA Stuttgart	FELLBACH	Yes	Yes
GERMANY	Landesbetrieb Hessisches Landeslabor	KASSEL	Yes	Yes
GERMANY	Landesamt für Landwirtschaft, Lebensmittelsicherheit und Fischerei Mecklenburg-Vorpommern	ROSTOCK	Yes	Yes
GERMANY	Niedersaechsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit	OLDENBURG	Yes	Yes
GERMANY	LAV Sachsen-Anhalt	HALLE/SAALE	Yes	Yes
GERMANY	Thueringer Landesamt fuer Lebensmittelsicherheit und Verbraucherschutz	BAD LANGENSALZA	Yes	Yes

ANNEX 3. Standards Solution Ring Test. Results and Participants.

COUNTRY	LABORATORY NAME	СІТҮ	PARTICIPATION	REPORTED RESULTS
GERMANY	Federal Office of Consumer Protection and Food Safety (BVL)	BERLIN	Yes	Yes
GERMANY	Chemisches Landes- und staatliches Veterniaer Untersuchungsamt Muenster	MUENSTER	Yes	Yes
GERMANY	Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit	ERLANGEN	Yes	Yes
GERMANY	Chemisches u. Lebensmitteluntersuchungsamt der Stadt Dortmund	DORTMUND	Yes	Yes
GERMANY	Chemisches und Veterinäruntersuchungsamt Ostwestfalen-Lippe - CVUA-OWL	BIELEFELD	Yes	Yes
GERMANY	Landesuntersuchungsamt Rheinland-Pfalz	SPEYER	Yes	Yes
GERMANY	Amt für Umwelt, Verbraucherschutz und Lokale Agenda der Stadt Bonn	BONN	Yes	Yes
GERMANY	LUFA-ITL GMBH	KIEL	Yes	Yes
GERMANY	Amt für Verbraucherschutz Düsseldorf - Abt. 39/2 Chemische und Lebensmitteluntersuchung		Yes	Yes
GERMANY	Landesamt für Soziales, Gesundheit und Verbraucherschutz	SAARBRÜCKEN	Yes	No
GERMANY	Institut für Hygiene und Umwelt	HAMBURG	Yes	No
GERMANY	CVUA-RRW-Standort Essen	ESSEN	Yes	No
GERMANY	Landeslabor Berlin-Brandenburg, FB II-3 (Berlin)	BERLIN	No	No
GERMANY	Landesuntersuchungsamt für Chemie, Hygiene und Veterinärmedizin Bremen	BREMEN	No	No
GERMANY	Landeslabor Berlin-Brandenburg Fachbereich II-2	FRANKFURT(ODER)	No	No
GERMANY	Landeslabor Schleswig Holstein	neumünster	No	No
GREECE	Benaki Phytopathological Institute	KIFISSIA	Yes	Yes
GREECE	Ministry of Rural Development & Food, Regional Centre of Plant Protection & Quality Control of Ioannina Laboratory of pesticide analysis	IOANNINA	Yes	Yes
GREECE	Regional Center of Plant Protection and Quality Control of Magnesia, Laboratory of Pesticides Residue Analysis	VOLOS	Yes	Yes
GREECE	General Chemical State Laboratory, Pesticide Residues Laboratory	ATHENS	Yes	Yes
GREECE	Regional Centre of Plant Protection & Q. Control of Heraklio	HERAKLIO - CRETE - GREECE	Yes	Yes
GREECE	Peripheral Center of Plant Protection And Quality Control of Kavala - Ministry of Rural Development and Food	KAVALA	No	No
GREECE	Regional Center of Plant Protection aAnd Quality Control. Laboratory of Pesticide Residues	THESSALONIKI	No	No
GREECE	Laboratory of Pesticide Residues of Nafplio	NAFPLIO	No	No
GREECE	Pesticide Residue Laboratory of Regional Center of Plant Protection & Quality Control of Piraeus	ATHENS	No	No
HUNGARY	Agricultural Office of BAZ. County Plant Protection and Soil Conservation Directorate Pesticide Residue Analytical Laboratory	MISKOLC	Yes	Yes
HUNGARY	Agricultural Office of Somogy County; Pesticide Residue Analytical Laboratory	KAPOSVÁR	Yes	Yes
HUNGARY	Agricultural Office of County Fejer, PPSCD Pesticide Residue Analytical Lab	VELENCE	Yes	Yes

ANNEX 3. Standard Solution Ringtest. Results and Participants.

COUNTRY	LABORATORY NAME	СІТҮ	PARTICIPATION	REPORTED RESULTS
HUNGARY	Agricultural Office of Vas County,Plant Protection and Soil Conservation Directorate Pesticide Residue Analytical Laboratory	TANAKAJD	Yes	Yes
HUNGARY	Agricultural Office of County Csongrád, Directorate of Plant Protection and Soil Conservation, Pesticide Residue Analytical Laboratory	HODMEZOVASARHELY	Yes	Yes
HUNGARY	Plant Protection and Soil Conservation Directorate of Jasz-Nagykun-Szolnok County	SZOLNOK	Yes	Yes
ICELAND	Matis ohf	AKUREYRI	Yes	Yes
IRELAND	Pesticide Control Laboratoy	CELBRIDGE, CO. KILDARE	Yes	Yes
ITALY	ARPA Piemonte Polo Regionale Alimenti	LA LOGGIA	No	No
ITALY	APPA Trento	TRENTO	Yes	Yes
ITALY	Laboratorio Di Sanita Pubblica	BERGAMO	Yes	Yes
ITALY	ARPA Puglia - Dipartimento di Bari -	BARI	Yes	Yes
ITALY	Arpa Emilia-Romagna RAR Fitofarmaci (Ex. Eccellenza Fitofarmaci)	FERRARA	Yes	Yes
ITALY	A.R.P.A.TDipartimento di Arezzo	AREZZO	Yes	Yes
ITALY	ARPA Valle d'aosta	SAINT CHRISTOPHE	Yes	Yes
ITALY	Agentur für Umwelt - Labor für Luft- und Lärmanalysen	BOZEN	Yes	Yes
ITALY	auls n.7 ARPA sicilia dap ragusa	RAGUSA	Yes	Yes
ITALY	A.S.L. della Provincia di Varese U.O. Laboratorio Chimico	VARESE	Yes	No
ITALY	ARPA-VENETO - DIP.REG.LAB S.L.	VERONA	Yes	No
ITALY	Laboratorio specializzato fitofarmaci- Dipartimento Tecnico di Napoli- ARPACampania	NAPLES	Yes	No
ITALY	Istituto Superiore di Sanità - Dip. AMPP - Reparto Antiparassitari	ROMA	Yes	No
ITALY	Arpa Sardegna - Dipartimento di Cagliari	CAGLIARI	Yes	No
ITALY	Arpacal - Dipartimento Di Reggio Calabria	REGGIO CALABRIA	Yes	No
ITALY	Arpal Laboratorio "Centro Regionale Pesticidi"	LA SPEZIA	No	No
ITALY	Arpa Friuli Venezia Giulia Dipartimento Di Pordenone	PORDENONE	No	No
ITALY	Arpam-Dip Macerata	MACERATA	No	No
LATVIA	National Diagnostic Centre	RIGA	Yes	Yes
LITHUANIA	National Food and Veterinary Risk Assessment Institute	VILNIUS	Yes	Yes
NORWAY	Bioforsk, Plant Health and Plant Protection, Pesticide Chemistry	AAS	Yes	Yes
POLAND	Laboratory of Warsaw Voivodeship Sanitary-Epidemiological Station	WARSAW	Yes	Yes
POLAND	Department of Pesticide Residue Research, Institute of Plant Protection	POZNAN	Yes	Yes
POLAND	Institute of Plant Protection National Research Institute Sosnicowice Branch	SOSNICOWICE	Yes	Yes
POLAND	Laboratory of Department of Environmental Toxicology, National Institute of Public Health- National Institute of Hygiene	WARSAW	Yes	Yes
POLAND	Institute oOf Plant Protection National Research Institute	RZESZOW	Yes	Yes
POLAND	Voivodeship Epidemiological and Sanitary Station	GORZÓW WIELKOPOLSKI	Yes	Yes

ANNEX 3. Standards Solution Ring Test. Results and Participants.

COUNTRY	LABORATORY NAME	CITY	PARTICIPATION	REPORTED RESULTS
POLAND	Instytut Ochrony Roślin Terenowa Stacja Doświadczalna	TRZEBNICA	Yes	Yes
POLAND	Wojewódzka Stacja Sanitarno Epidemiologiczna w Bydgoszczy	BYDGOSZCZ	Yes	Yes
POLAND	Wojewodzka Stacja Sanitarno-Epidemiologiczna Lab. Badania Zywnosci I Przedmiotow Uzytku	POZNAN	Yes	Yes
POLAND	Wojewódzka Stacja Sanitarno-Epidemiologiczna w Opolu	OPOLE	Yes	Yes
POLAND	Food Safety Laboratory, Research Institute of Pomology & Floriculture	SKIERNIEWICE	Yes	Yes
POLAND	Wojewódzka Stacja Sanitarno-Epidemiologiczna W Gdańsku Laboratorium Badania Żywności I Żywienia	GDAŃSK	Yes	Yes
POLAND	Powiatowa Stacja Sanitarno-Epidemiologiczna w Częstochowie	CZĘSTOCHOWA	Yes	Yes
POLAND	Poland: Voievodship Sanitary- Epidemiological Station in Szczecin, Laboratory of the Hygiene of Food, Nutrition and Articles of Common Use (WSSE Szczecin)	SZCZECIN	Yes	Yes
POLAND	Wojewódzka Stacja Sanitarno-Epidemiologiczna - Dział Laboratoryjny	LUBLIN	Yes	No
POLAND	Wojewodzka Stacja Sanitarno-Epidemiologiczna Olsztyn	OLSZTYN	Yes	No
POLAND	Wojewodzka Stacja Sanitarno-Epidemiologiczna w Kielcach	KIELCE	Yes	No
POLAND	Wojewódzka Stacja Sanitarno-Epidemiologiczna w Łodzi	ŁÓDŹ	No	No
POLAND	Main Inspectorate of Plant Health and Seed Inspection, CENTRAL LABORATORY	TORUN	No	No
POLAND	Wojewodzka Stacja Sanitarno-Epidemiologiczna we Wrocławiu, Dzial Laboratoryjny	WROCLAW	No	No
POLAND	Wojewódzka Stacja Sanitarno-Epidemiologiczna (WSSE) Katowice Pracownia Chromatografii Cieczowej	KATOWICE	No	No
POLAND	Wojewódzka Stacja Sanitarno-Epidemiologiczna, Pracownia Chromatografii Gazowej	KATOWICE	No	No
POLAND	WSSE w Białymstoku	BIAŁYSTOK	No	No
POLAND	Laboratorium Badania Pozostalosci Srodkow Ochrony Roslin w Bialymstoku	BIALYSTOK	No	No
POLAND	Wojewodzka Stacja Sanitarno-Epidemiologiczna w Rzeszowie	RZESZOW	No	No
PORTUGAL	Laboratório de Qualidade Alimentar da DRAPN	SENHORA DA HORA	Yes	Yes
PORTUGAL	L-INIA - Laboratório de Resíduos de Pesticidas	OEIRAS	Yes	Yes
PORTUGAL	Laboratório de Qualidade Agrícola	САМАСНА	Yes	No
ROMANIA	Sanitary Veterinary and Food Safety Directorate	BUCHAREST	Yes	No
ROMANIA	Central Laboratory for Pesticides Residues Control in Plants and Vegetables - LCCRPPPV	BUCHAREST	No	No
SLOVAKIA	State Veterinary and Food Institute Bratislava	BRATISLAVA	No	No
Slovakia	National reference centre for pesticide residues, Public helath authority of the Slovak republic	BRATISLAVA	No	No
SLOVENIA	Institute of Public Health Maribor	MARIBOR	Yes	Yes
SLOVENIA	Institute of public health of Republic of Slovenia	LJUBLJANA	Yes	Yes

ANNEX 3. Standard Solution Ringtest. Results and Participants.

COUNTRY	LABORATORY NAME	СІТҮ	PARTICIPATION	REPORTED RESULTS
SLOVENIA	Agricultural Institute of Slovenia	LJUBLJANA	Yes	Yes
SLOVENIA	Institute of Public Health Kranj	KRANJ	Yes	No
SPAIN	Laboratorio Arbitral Agroalimentario	MADRID	Yes	Yes
SPAIN	Laboratorio Agroalimentario de la Generalitat Valenciana	BURJASSOT, VALENCIA	Yes	Yes
SPAIN	Laboratorio Regional CCAA La Rioja	LOGROÑO	Yes	Yes
SPAIN	Laboratorio de Produccion y Sanidad Vegetal de Almeria	LA MOJONERA	Yes	Yes
SPAIN	Laboratorio Agrario Regional Junta de Castilla y León	BURGOS	Yes	Yes
SPAIN	Instituto Tecnológico de Canarias	SANTA LUCIA DE TIRAJANA	Yes	Yes
SPAIN	Laboratori Agroalimentari -DAR	CABRILS (BARCELONA)	Yes	Yes
SPAIN	Laboratorio Produccion y Sanidad Vegetal de Jaén	JAÉN	Yes	Yes
SPAIN	Laboratorio Provincial de Salud Pública de Almería	ALMERÍA	Yes	Yes
SPAIN	Laboratorio de producción y sanidad vegetal de Huelva	CARTAYA (HUELVA)	Yes	No
SPAIN	INGACAL (Laboratorio Agrario y Fitopatológico de Galicia)	SAN TIRSO DE MABEGONDO	Yes	No
SPAIN	Laboratorio Agroalimentario y de Sanidad Animal	EL PALMAR (MURCIA)	No	No
SPAIN	Centro Nacional Alimentacion AESAN	MAJADAHONDA- MADRID	No	No
SPAIN	Laboratorio Agroalimentario. Gobierno de Aragón	ZARAGOZA	No	No
SWEDEN	National Food Administration, Chemistry Division 1	UPPSALA	Yes	Yes
SWEDEN	Eurofins Food/Agro Sweden AB	LIDKÖPING	Yes	No
SWITZERLAND	Service de la Consommation et des Affaires Vétérinaires (SCAV)	GENÈVE	Yes	Yes
SWITZERLAND	Kantonales Labor Zurich	ZURICH	Yes	Yes
THE NETHERLANDS	VWA - Food and Consumer Product Safety Authority	AMSTERDAM	Yes	Yes
TURKEY	The Ministry of Agriculture and Rural Affairs Directorate of Adana Provincial Control Laboratory	ADANA	Yes	Yes
TURKEY	MSM Food Control Laboratories Inc	MERSIN	Yes	Yes
UNITED KINGDOM	SASA	EDINBURGH	No	No
UNITED KINGDOM	The Food and Environment Research Agency	YORK	Yes	Yes
UNITED KINGDOM	Laboratory of the Government Chemist	TEDDINGTON	Yes	No
UNITED KINGDOM	Eurofins Laboratories Ltd.	WOLVERHAMPTON	Yes	No
URUGUAY	Pharmacognosy & Natural Products Dpto.	MONTEVIDEO	Yes	Yes