Validation of pesticides in honey without sample preparation – dilute and shoot

<u>Christina Riemenschneider¹, Lisa Abel², Alan Barnes³, Neil J. Loftus³, Björn Hardebusch¹</u>

¹European Union Reference Laboratory for Pesticides in Food of Animal Origin and Commodities with High Fat Content (EURL-AO) Freiburg ²Shimadzu Deutschland GmbH, Duisburg, Germany

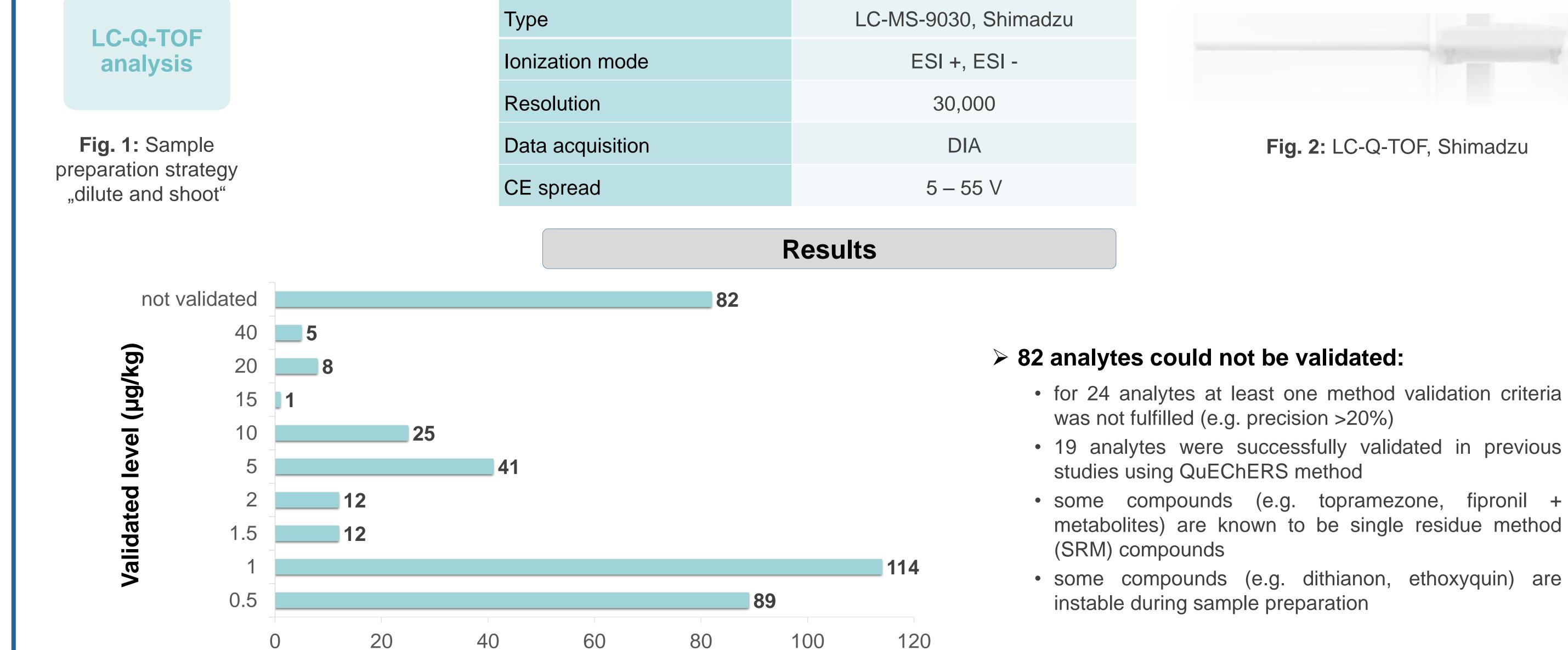
³Shimadzu Corporation, Manchester, UK

- Honey: high sugar, low fat content; pesticides to be found are more polar
- LC-Q-TOF: allows for detection of a nearly unlimited number of analytes in a single run
- Objective of this study:

EURL

- simplification of sample preparation strategies \rightarrow test of a generic sample preparation method
- development of a LC-Q-TOF based screening method for > 300 pesticides in honey

Methodology


Table 1: LC-Q-TOF instrument parameters

sample	
dilution with water (1:2, v/v)	thoroughly mix and keep at 40°C for 45 min, 5 min ultrasonic bath
centrifuge (10 min, 4000 RPM)	

honev

LC-system	UHPLC	
Туре	Nexera X2, Shimadzu	
Analytical column	Shim-pack Velox Biphenyl	
	2.1 mm x 100 mm, 2.7 <i>µ</i> m	
Injection volume	5 <i>µ</i> L	
Eluent A	water + 2 mM ammonium	
	formate + 0.004% formic acid	
Eluent B	methanol + 2 mM ammonium	
	formate + 0.004% formic acid	
Total run time	15 min	
MS-system	Q-TOF	

Analytes

Fig. 3: Number of compounds meeting the method validation criteria

Conclusion

> Pros

- rapid and sensitive multi-residue method for simultaneous determination of >300 pesticides
- analytes with a wide range of physico-chemical properties are covered
- suitable for screening of unknown pesticides and/or metabolites \rightarrow non-target analysis

> Cons

- low removal of matrix (sugar)
- higher ion contamination compared to a QuEChERS extract
- > for routine analysis QuEChERS is better suited!

References

[1] Analytical quality control and method validation procedures for pesticide residues analysis in food and feed SANTE 11312/2021

[2] EURL-AO report: Analysis of pesticide residues in honey using LC-Q-TOF; available from CIRCA BC