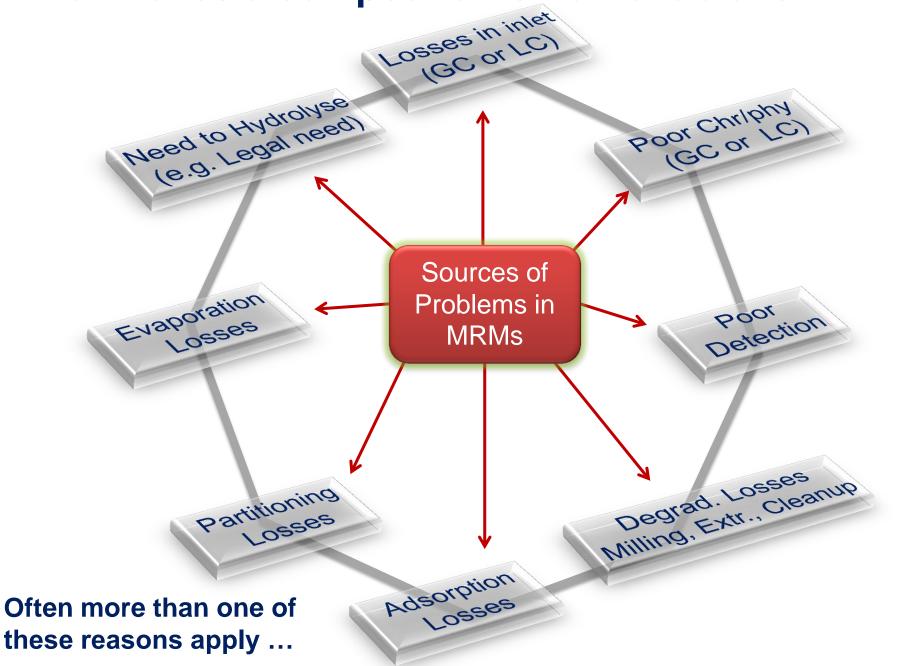


EU REFERENCE LABORATORIES FOR RESIDUES OF PESTICIDES

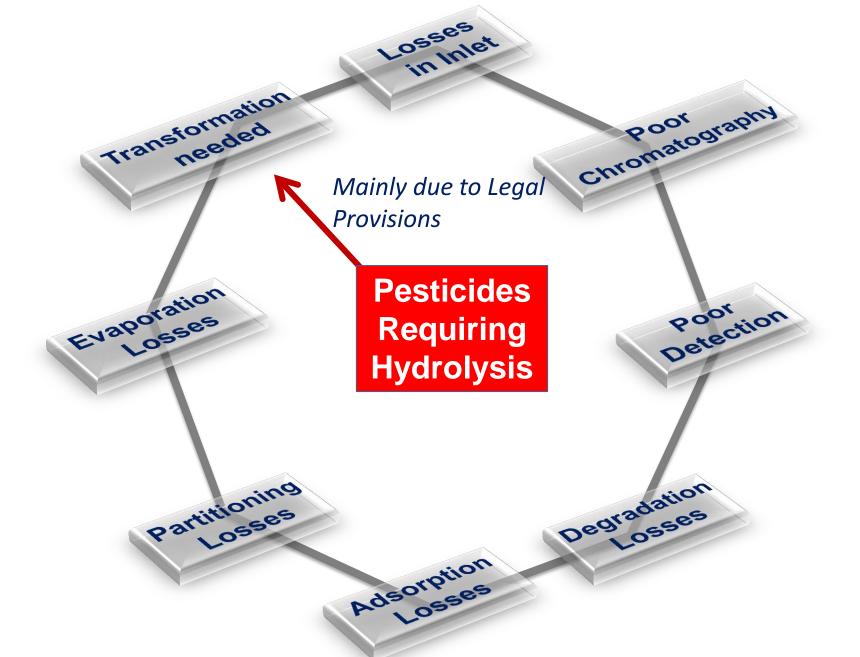
M. ANASTASSIADES E. EICHORN A. BENKENSTEIN S. LUKACEVIC D. MACK A. BARTH I. SIGALOVA A. BENKENSTEIN E. SCHERBAUM

> Joint EURL Workshop 30 Sept-02 Oct2015 in Stuttgart

EURL for Residues of Pesticides Requiring Single Residue Methods


LAB-PRIORITIES

MRM-Compound 1st MRM-Compound 2nd MRM-Compound 3rd MRM-Compound 4th SRM-compounds are not very popular ... MRM-Compound 5th


96th SRM-Compound (shift 1 to 136th) 97th SRM-Compound (maybe)

Let's take a closer look at the SRM pesticides

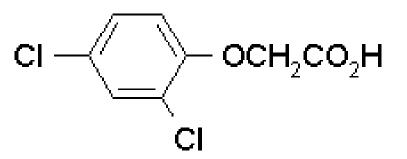
What makes a compound non-amenable to MRMs?

What makes a compound non-amenable to MRMs?

Some Residue Definitions requiring Hydrolysis

Parent often MRMamenable!

Compound	Residue definition	amenable!
Amitraz	amitraz including the metabolites contyaining the 2,4 -dimet expressed as amitraz	hylaniline moity
Cycloxydim	including degradation and reaction products which can be d thianyl)glutaric acid S-dioxide (BH 517-TGSO2) and/or 3-hy thianyl)glutaric acid S-dioxide (BH 517-5-OH-TGSO2) or me calculated in total as cycloxydim	droxy-3-(3-
Dinocap	sum of dinocap isomers and their corresponding phenols ex	pressed as dinocap
Diuron	Diuron including all components containing 3,4- dichloranilir as 3,4-dichloraniline	ne moiety expressed
Flufenacet	sum of all compounds containing the N fluorophenyl-N-isope expressed as flufenacet equivalent	ropyl moiety
Prochloraz	sum of prochloraz and its metabolites containing the 2,4,6-7 moiety expressed as prochloraz	richlorophenol
Pyridate	sum of pyridate, its hydrolysis product CL 9673 (6-chloro-4- phenylpyridazin) and hydrolysable conjugates of CL 9673 e	• •
Vinclozolin	sum of vinclozolin and all metabolites containing the 3,5-dic moiety , expressed as vinclozolin	hloraniniline
	MAIN STRATEGY:	

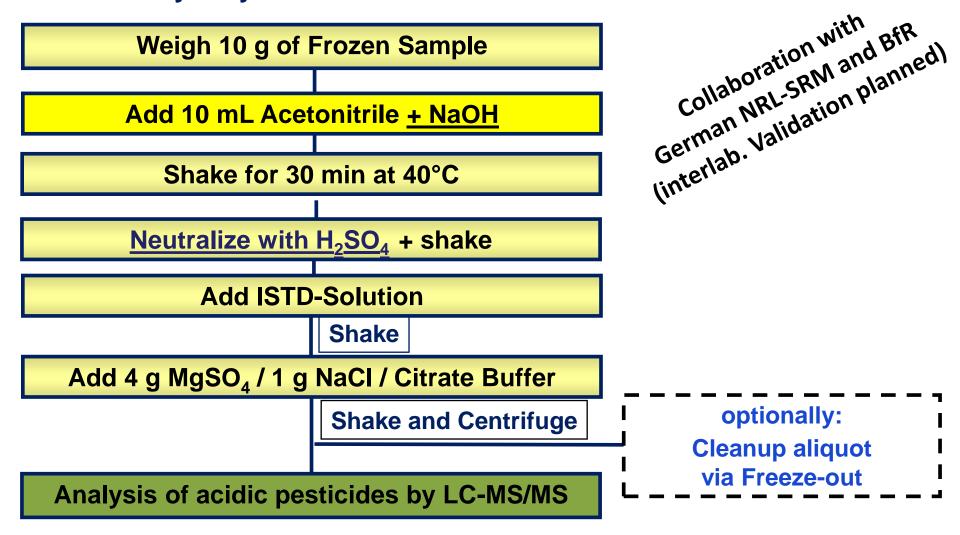

Modify residue definitions to only include major MRM-amenable components

Some Residue Definitions concerning acidic pesticides

Compound	Residue definition	Free Acids	Acids released via hydrolysis	
		Acius	Esters	Conjug.
2,4-D	2,4-D (sum of 2,4-D and its esters expressed as 2,4-D)	Х	X	
2,4-DB	Sum of 2,4-DB, its salts, its esters and its conjugates , expressed as 2,4-DB	X	x	X
Cyhalofop	sum of cyhalofop butyl and its free acids	X	X	
Fluazifop	Fluazifop-P-butyl (fluazifop acid (free and conjugate))	X	(X)	X
Fluroxypyr	Fluroxypyr including its esters expressed as fluroxypyr	Х	X	
Haloxyfop	Haloxyfop-R methyl ester , haloxyfop-R and conjugates of haloxyfop-R expressed as haloxyfop-R	Х	(X)	x
loxynil	Sum of loxynil, its salts and its esters , expressed as ioxynil	X	X	
MCPA / MCPB	MCPA, MCPB including their salts, esters and conjugates expressed as MCPA	X	X	x
Prohexadione	Prohexadione (acid) and its salts expressed as prohexadione-calcium	X		

Pesticides requiring a hydrolysis step

2,4-D


- Selective systemic herbicide
- Control of broad leaved weed
- Plant growth regulator used to prevent premature fruit drop
- Formulations include free acid, salts, esters
- May form conjugates (covalent binding to matrix components)

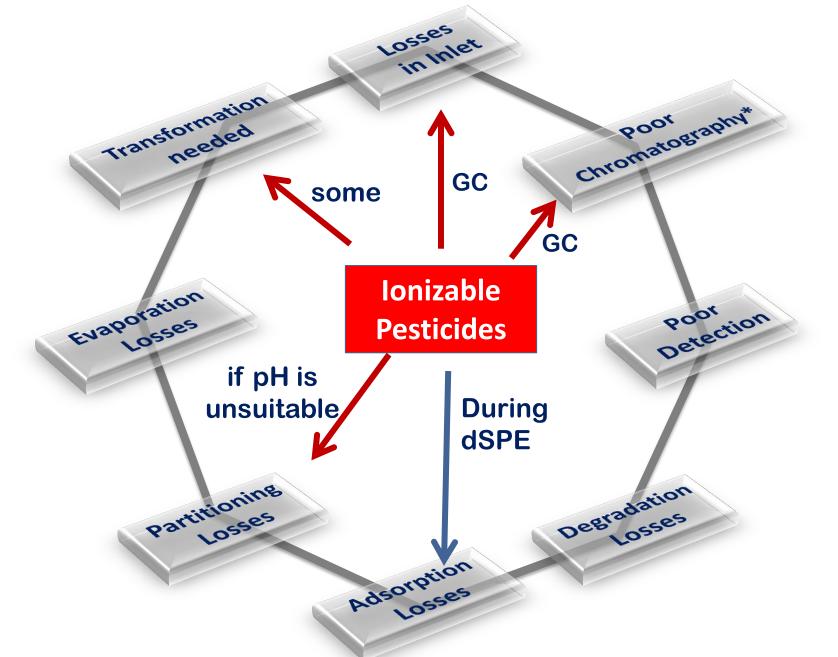
→ hydrolysis step needed

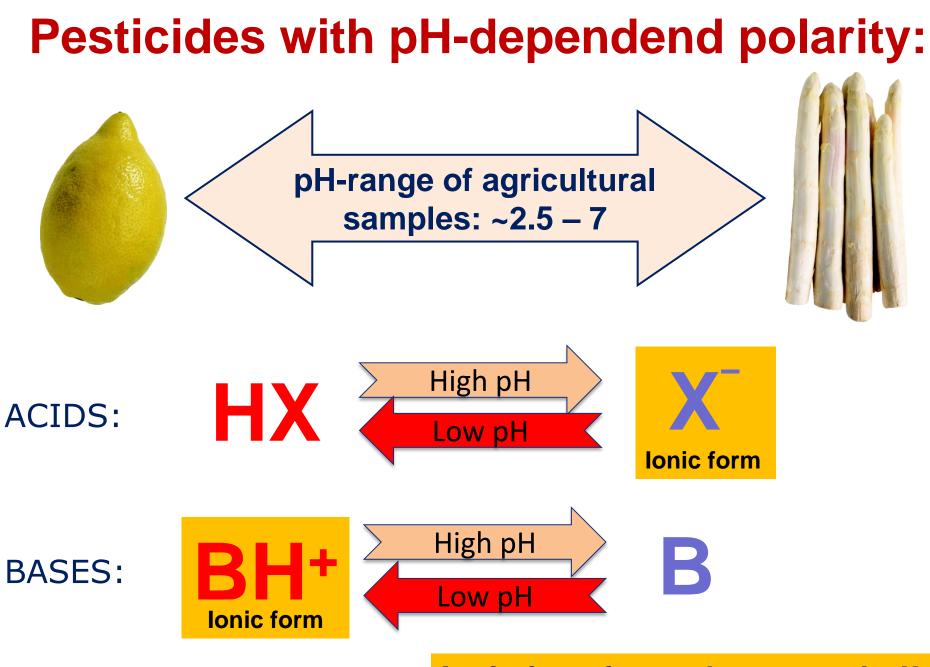
if residue definition includes conjugates and/or esters

QuEChERS combined with Alkaline Hydrolysis

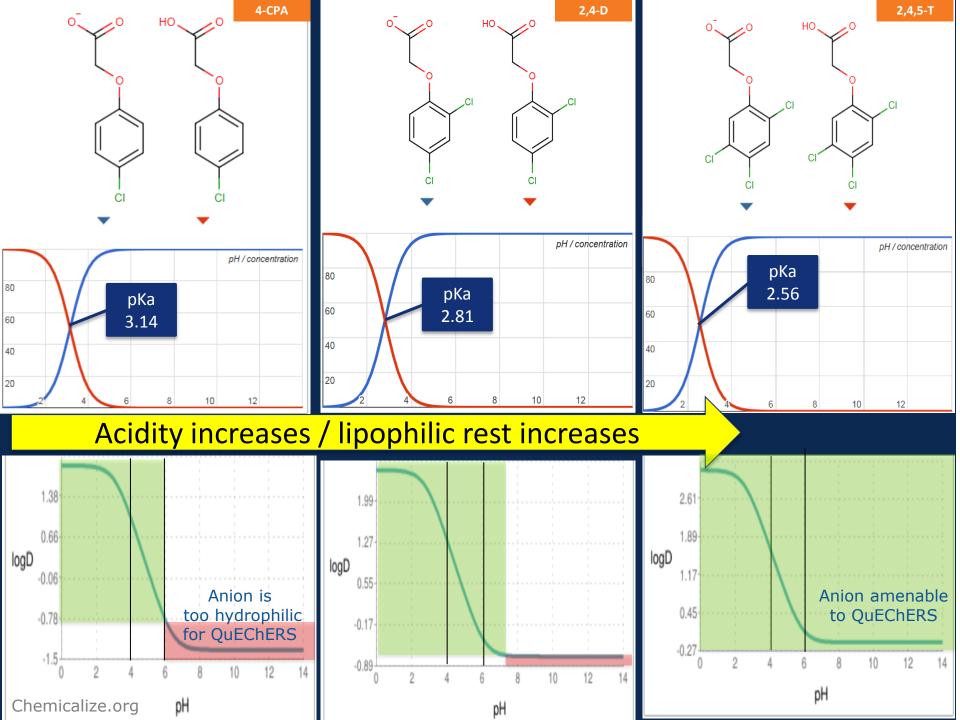
- > Previous approach Hydrolysis by adding base directly to sample
- > New approach: Hydrolysis after ACN-addition (first extraction step)
- Efficient hydrolysis of esters

Excellent hydrolysis of esters with new approach

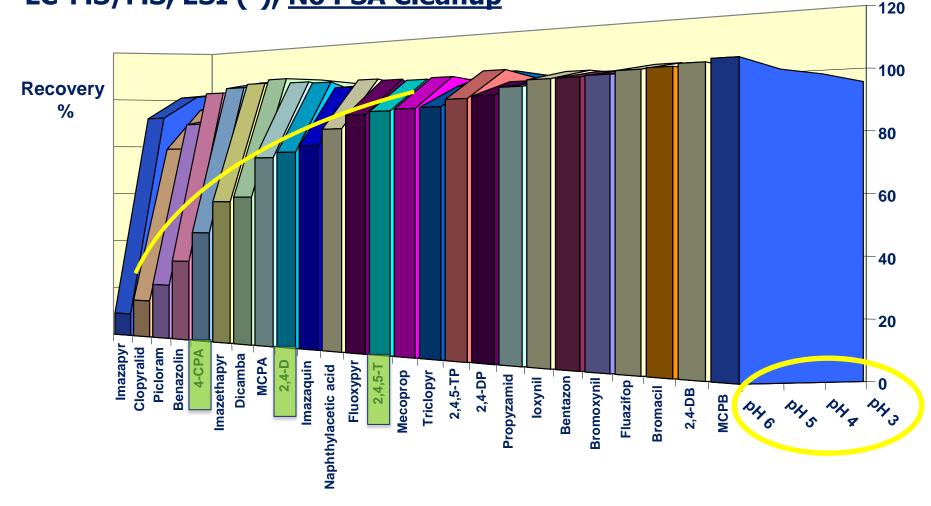

Remaining Esters	30 Min , 40°C	60 Min , 40°C	30 Min , 80°C	30 Min , 40°C	60 Min , 40°C	30 Min , 80°C	
after AH (%)		ydrolysi ACN-A		Hydrolysis during extraction			
2,4-DP-ethyl-hexyl	104	65	11	0	6	4	
Cyhalofop-butyl	20	10	0	0	0	0	
Diclofop methyl	15	7	2	2	1	1	
Fluazifop-(P)-butyl	22	12	0	0	0	0	
Fluroxypyr-1-meptyl	70	29	3	0	0	0	
Haloxyfop-ethoxyethyl	11	6	0	0	0	0	
MCPA butoxyethyl	3	2	0	0	0	0	
Mecoprop-1-octyl	110	70	12	0	0	0	


Matrix: Cucumber Level: 0,2ppm

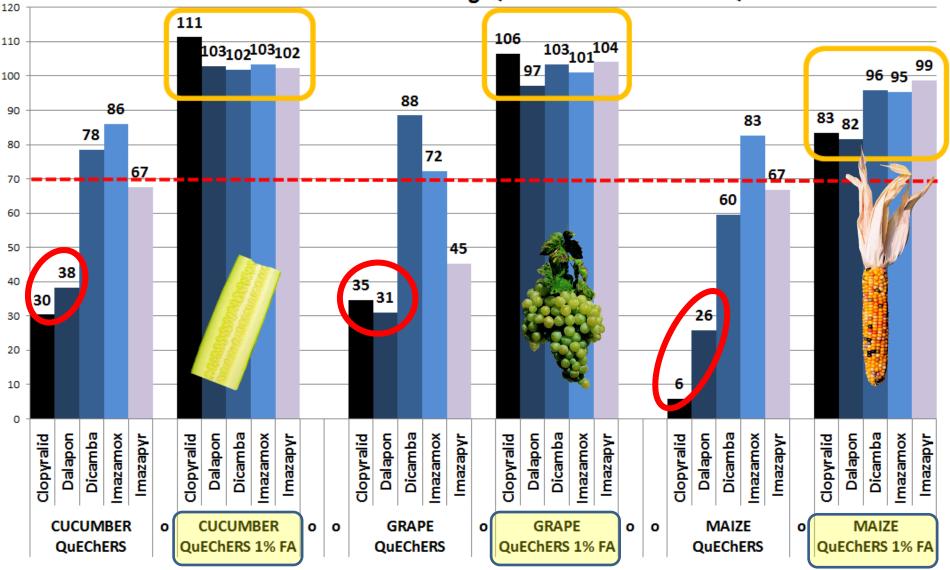
Impact of AH on results of acidic pesticides (real samples)


•				
Sample Name	Compound	Conc. using QuEChERS [mg/kg]	Conc. using QuEChERS w. AH (30 Min, 40°C) [mg/kg]	Ratio (QuEChERS = 100%)
DRIED SAMPLES				
Beans, dry 1	Fluazifop	0,053	0,067	125
Beans, dry 2	Haloxyfop	1,133	1,120	99
Lentils, dry (green)	2,4-D	0,078	0,077	99
Lentils, dry (red)	Haloxyfop	0,128	0,149	116
Peas, dry (yellow) 1	2,4-D	0,107	0,104	97
Peas, dry (yellow) 2	Fluazifop	0,362	0,482	133
Soya, dry	Fluazifop	0.43	0.52	120
Tomatoes dried	Fluazifop	0,036	0,041	113
Oranges, dried 1	2,4-D	0,138	0,294	213
Oranges, dried 2	2,4-D	0.015	0.029	(180)
Canola 1	2,4-D	0,006	0,020	356
Canola 1	Fluazifop	0,490	0,494	101
Теа	2,4-D	0.015	0.014	91
Wheat 1	2,4-D	0,075	0,068	91
Wheat 2	2,4-D	0,164	0,212	129
Oregano	Fluazifop	0,096	0,551	574
Aubergine	4-CPA	0.027	0.032	120
FRESH SAMPLES				
Grapefruit	2,4-D	0.06	0.410	536
Lime	2,4-D	0.050	0.055	109
Lime	2,4-D	0.398	0.657	165
Orange 1	2,4-D	0.074	0.092	124
Orange 2	2,4-D	0.088	0.135	253
Orange 3	2,4-D	0.158	0.393	248
Beans	Fluazifop	0,359	0,401	112

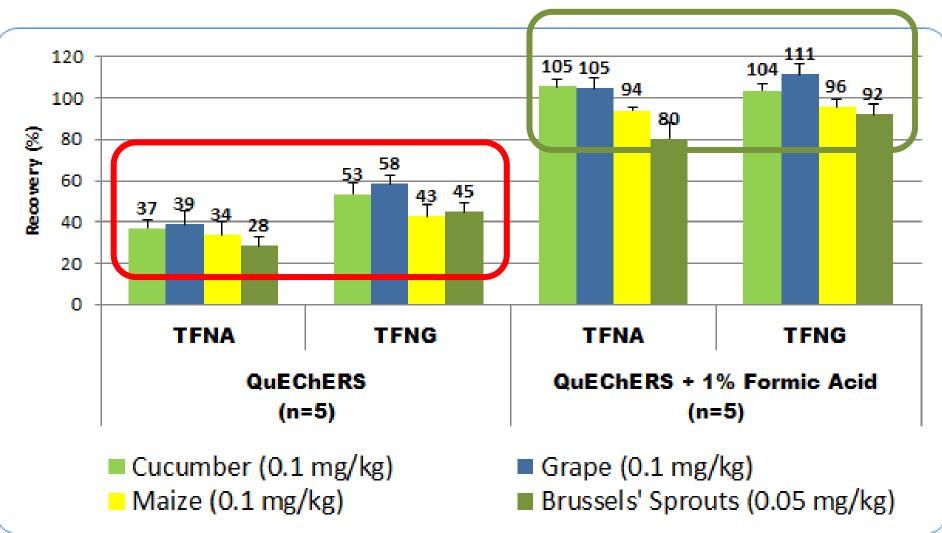
What makes a compound non-amenable to MRMs?


Ionic form is much more polar!!

Acidic pesticides – influence of pH on recovery

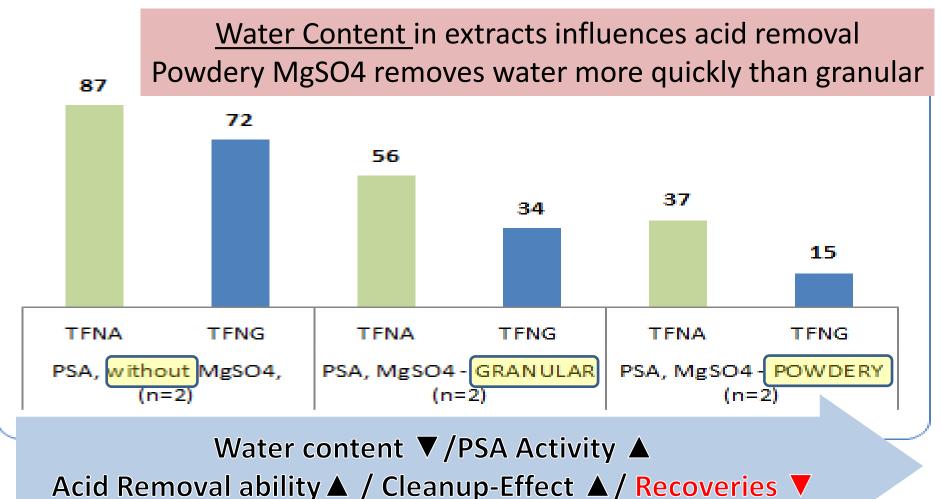

Original QuEChERS (no buffer used)

LC-MS/MS, ESI (-), No PSA Cleanup


Other examples ...

Recoveries of Acidic Pesticides using QuEChERs and Acidified QuEChERS

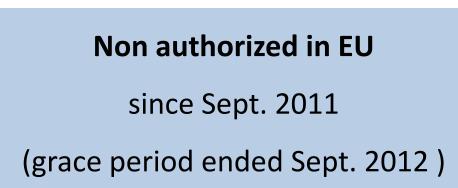
Impact of pH on TFNA and TFNG recoveries

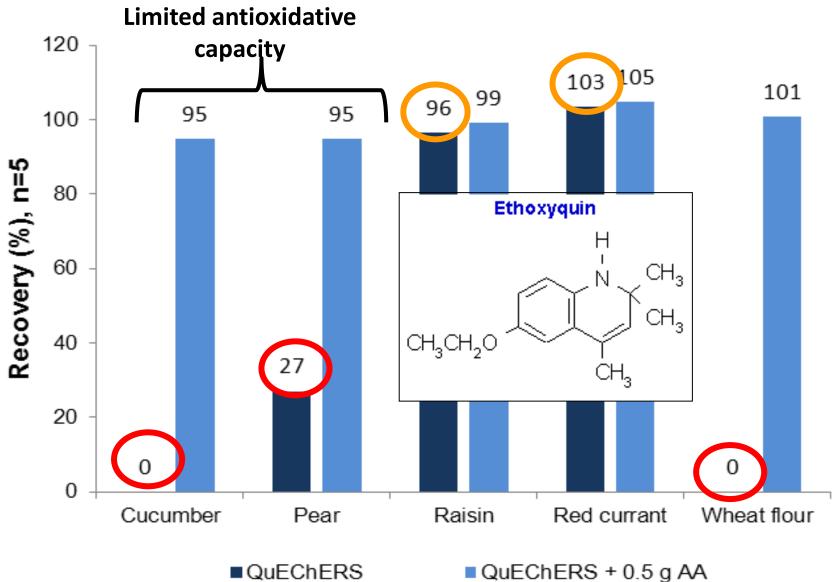


EU REFERENCE LABORATORIES FOR RESIDUES OF PESTICIDES

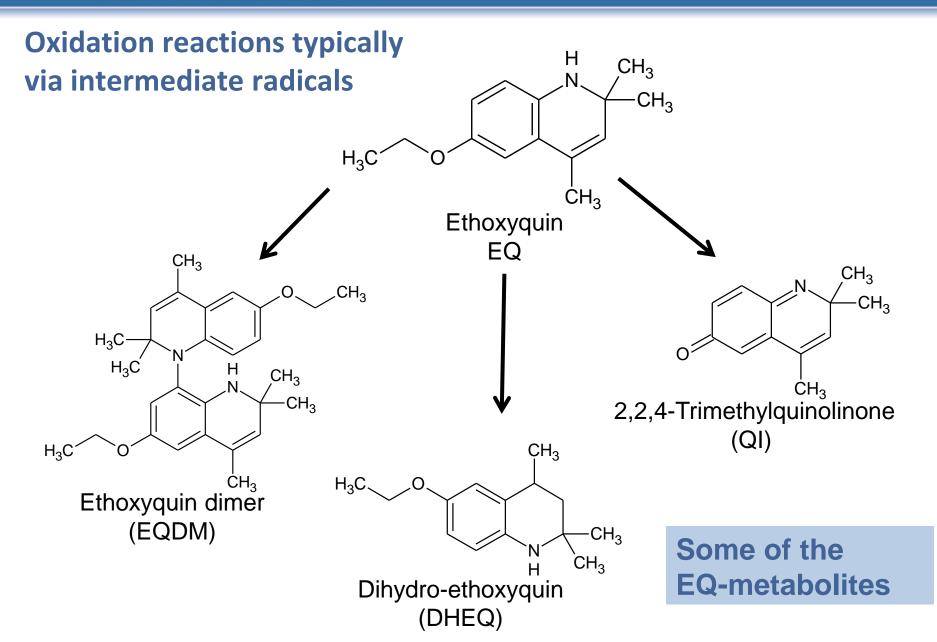
Losses during dSPE cleanup with PSA

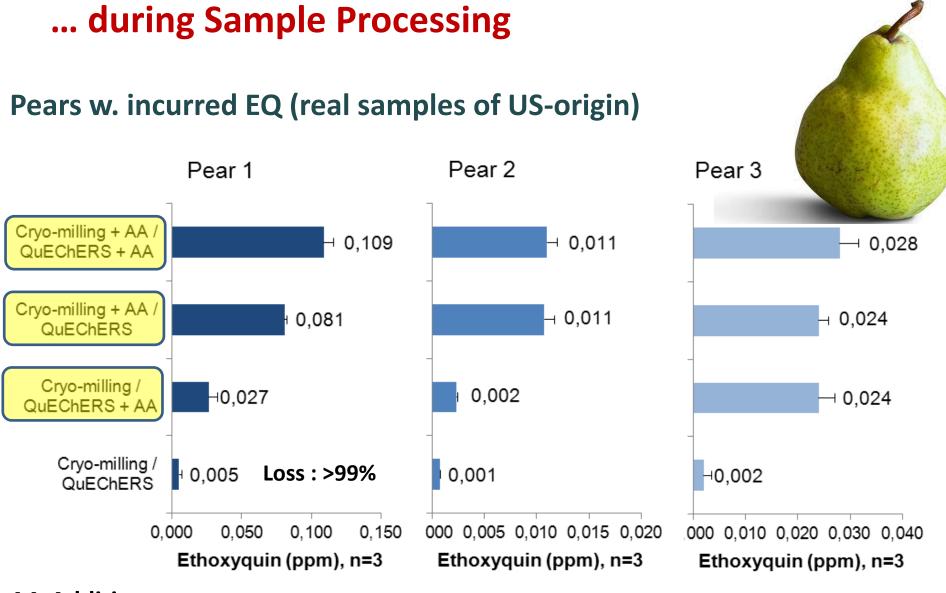
Spiked raw extract ► dSPE-Cleanup with PSA and with or w/o MgSO4


What makes a compound non-amenable to MRMs? Losses in inlet (GC) Need to Hydrolyse Poor Chriphy (e.g. Legal need) (GC) **Oxidation-**Evaporation Prone Poor Detection Losses Compounds Degrad. Losses Milling, Extr., Cleanup Partitioning LOSSES Adsorption LOSSES

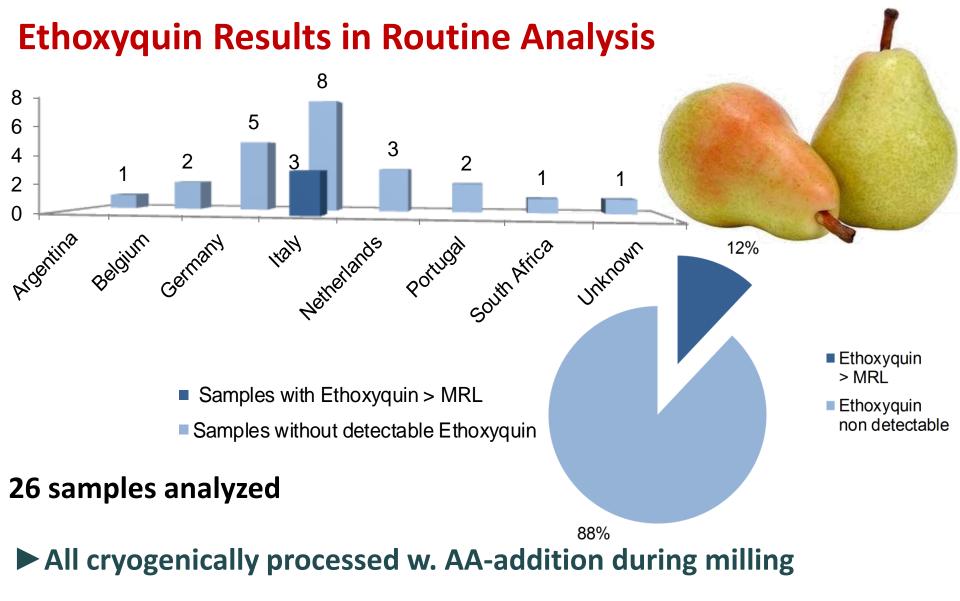

Usage of Ethoxyquin (EQ)

- Against storage scald for apples and pears
- Antioxidant in feed (E 324) and cereals
- Antioxidant in fish meal and fish feed (2000 t per year worldwide)
- USA: Additive for chicken feed, to achieve intense colour of egg york
- Antioxidant for pepper, chili powder, curcuma (preservation of color)
- Additive for cosmetics and medical devices

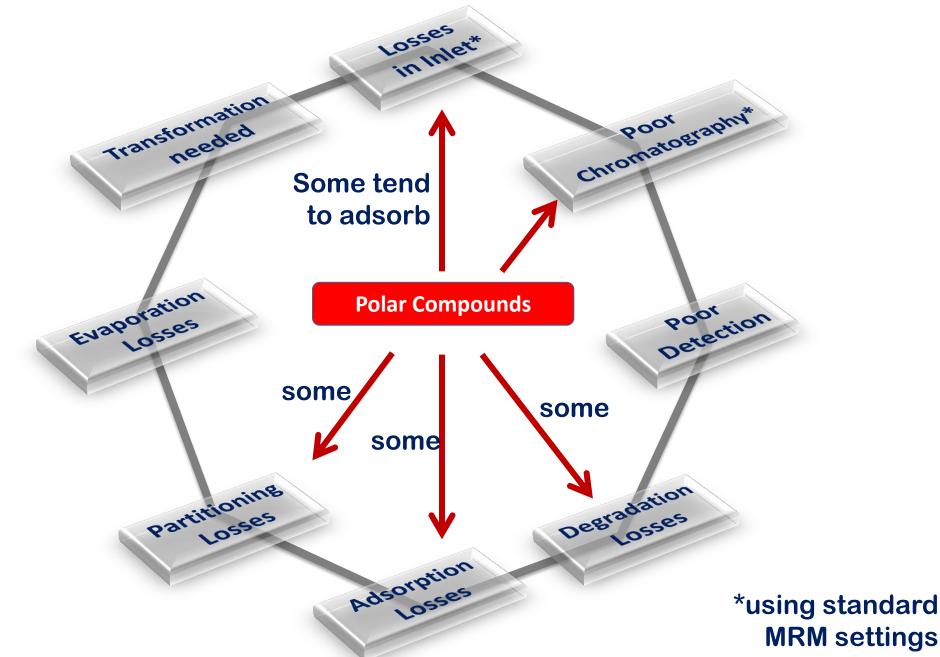



Losses of EQ during extraction

QuEChERS

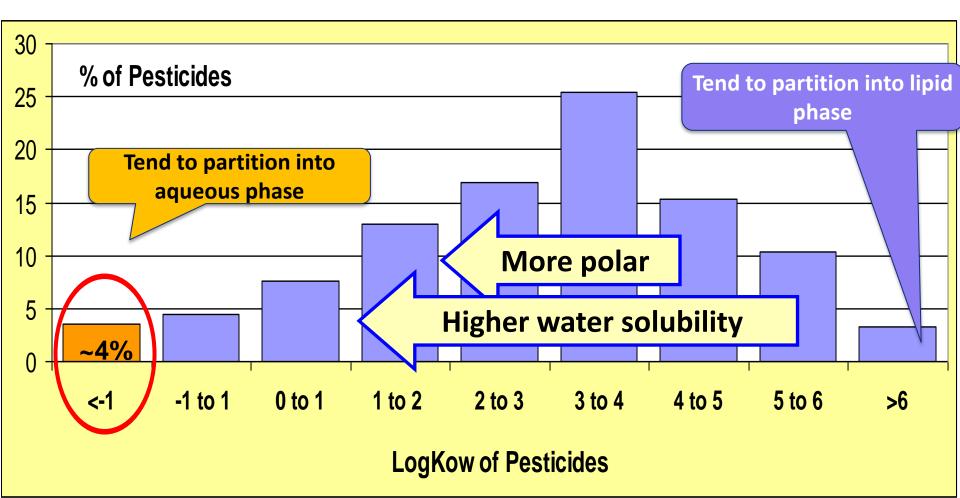


AA-Additions:


During milling: 1g/100 g; for Extraction: 0.3 g/10 g

Ethoxyquin losses also

3 Italian pears >MRL (also illegal use)


What makes a compound non-amenable to MRMs?

EU REFERENCE LABORATORIES FOR RESIDUES OF PESTICIDES

Pesticide overview...

QuPPe: Quick Polar Pesticides Method

U Reference Laboratories for Residues of Pesticides Single Residue Methods

Quick Method for the Analysis of numerous Highly Polar Pesticides in Foods of Plant Origin via LC-MS/MS involving Simultaneous Extraction with Methanol (QuPPe-Method)

 Version 8.1 (March 2015, Document History, see page 56)
 Authors: M. Anastassiades; D. I. Kolberg; E. Eichhorn; A. Benkenstein; S. Lukačević; D. Mack; C. Wildgrube; I. Sigalov; D. Dörk; A. Barth

Note: Changes from V7 to V8 are highlighted in yellow and changes from V8 to 8.1 are highlighted in turkuaz

1. Scope and Short Description

A method is described for the residue analysis of very polar, non-QuEChERS-amenable, pesticides in foods of plant origin such as fruits (including dried fruits), vegetables, cereals and processed products thereof as well as honey.

Residues are extracted from the test portion following water adjustment and the addition of acidified methanol. The mixture is centrifuged, filtered and directly analyzed by LC-MS/MS. Various options for the simultaneous LC-MS/MS analysis of different combinations of pesticides are provided. Quantification is in most cases performed with the help of isotopically labeled analogues of the target analytes, which are used as internal standards (ILISs). So far available, these ILISs are added directly to the test portion at the begin-

[kjuːb]

LC-MS/MS Analysis of QuPPe Extracts

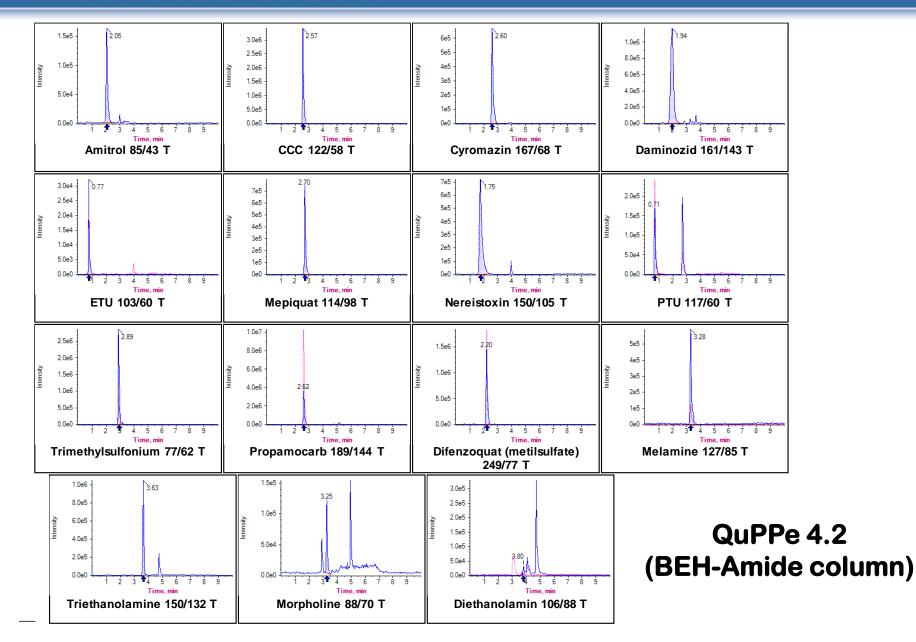
QuPPe Version 8.1 – LC-MS/MS-Aproaches

	M 1.1	M 1.2	М 1.3	M 1.4	M 2
ESI-mode	Neg.	Neg.	Neg.	Neg.	Neg.
Separation principle	Anion Exchange	Anion Exchange	Carbon	Carbon	HILIC
Column type	AS-11	AS11-HC	Hypercarb	Hypercarb	Obelisc-R
Ethephon	✓	✓	✓	NEW Z	-
НЕРА	✓	✓	✓		
Glufosinate	✓	✓	✓		
N-Acetyl-Glufosinate	✓	✓	✓		
МРРА	✓	✓	✓		
Glyphosate	✓	✓	✓		
АМРА	✓	✓	✓		
Phosphonic acid	✓	✓	✓	✓	
N-Acetyl-AMPA		✓	✓		
Fosetyl-Al		✓	✓		✓
Maleic hydazide			✓		✓
Perchlorate			✓	✓	✓
Chlorate			✓	✓	
Bialaphos			✓		
Cyanuric acid			✓		

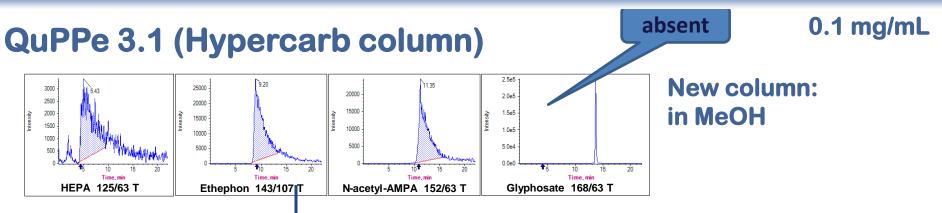
LC-MS/MS Analysis of QuPPe Extracts

QuPPe Version 8.1 – LC-MS/MS-Aproaches

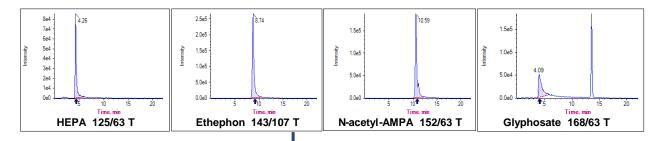
	М З	M 4.1	M 4.2	M 5	M 6	M 7	M8
ESI-mode	Pos.	Pos.	Pos.	Pos.	Pos.	Pos.	Pos.
Separation principle	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	Carbon
Column type	Obelisc-R	Obelisc-R	BEH- Amide	PFP	Obelisc-R	Trinity P1	Hypercarb
Amitrole	✓		✓				
ETU	✓		✓	✓		V	NEW,
PTU	✓		✓	✓			
Cyromazin	✓	✓	✓				
Trimesium	✓	✓	✓				
Daminozide	✓	✓	✓				
Chlormequat	✓	✓	✓	✓			
Mepiquat	✓	✓	✓	1			
Difenzoquat	✓	✓	√	✓			
Propamocarb	✓	✓	✓				
Melamine		✓	1				
Diquat		 ✓ 	NEW				
Paraquat		✓ ¹		<			
N,N-Dimethylhydrazine		✓					
Nereistoxine		✓	✓				
Streptomycin					✓		
Kasugamycin					✓		
Morpholin		(√)	(√)			✓	
Diethanolamine		(1)	(√)			✓	
Triethanolamine		(1)	(√)			✓	
1,2,4-Triazole		(1)					✓
Triazole Alanine		(1)					✓
Triazole acetic acid		(1)					✓
Triazole lactic acid							✓

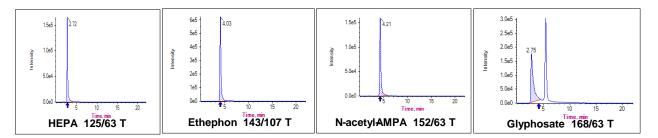


QuPPe 4.2 (BEH		\checkmark	12				
Instrument parameters	Conditions		\geq	NEW	$\langle \langle \rangle$		
Ionisation mode	ESI pos				\sim	1	
Column/temperature	BEH Amide	2.1 x 100mm 1.	7 µm (P/N: 186	004801); 4	0°C		
Pre-filters	e.g. Supelco	o column saver 2	2.0 µm Filter				
Pre-column	BEH Amide	1.7 µm (P/N: 18	36004799)				
Eluent A		50 mmol NH ₄ -formate in water (adjust to pH 3 with formic acid) Use brown glass !					
Eluent B	Acetonitrile						
Gradient	%A	Flow [mL/min]	Time [min]				
	3	0.5	0				
	3	0.5	0.5				
	30	0.5	4.0				
	60	0.5	5.0				
	60	0.5	6.0				
	3	0.5	6.1				
	3	0.5	10				
Injection volume	2 µL						

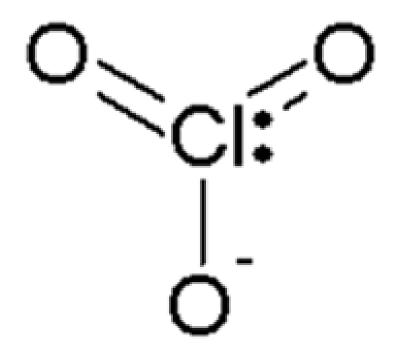

Joint EURL FV/CF/AO/SRM-Workshop 30 Sept. - 1 Oct. 2015, Stuttgart/Germany

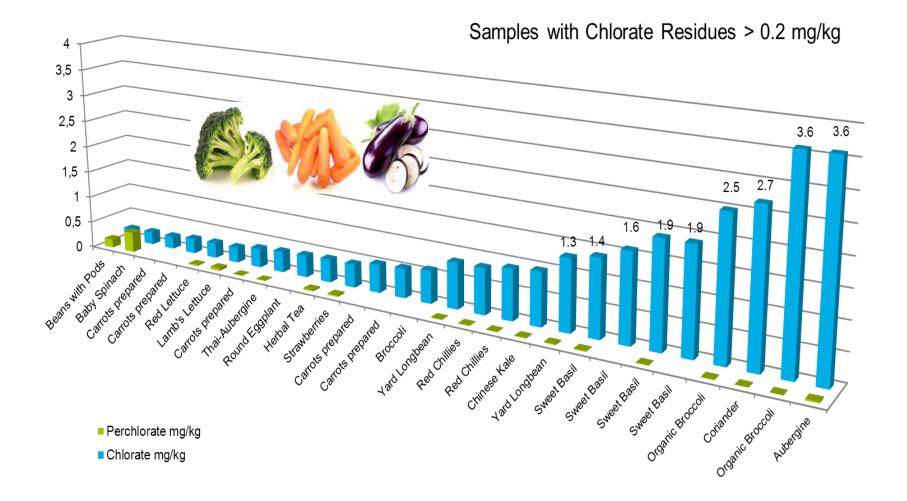
EU REFERENCE LABORATORIES FOR RESIDUES OF PESTICIDES



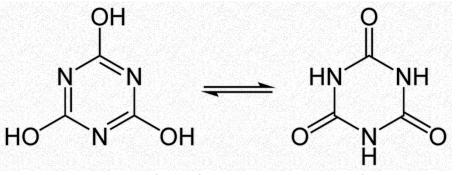

EU REFERENCE LABORATORIES FOR RESIDUES OF PESTICIDES

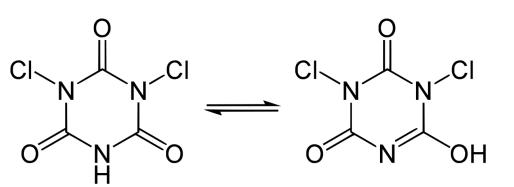
Primed w. SPINACH EXTRACT (10 inj.)


After several days of routine use (injection of various commodities)

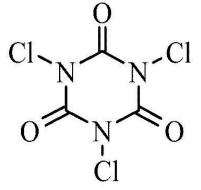


Chlorate

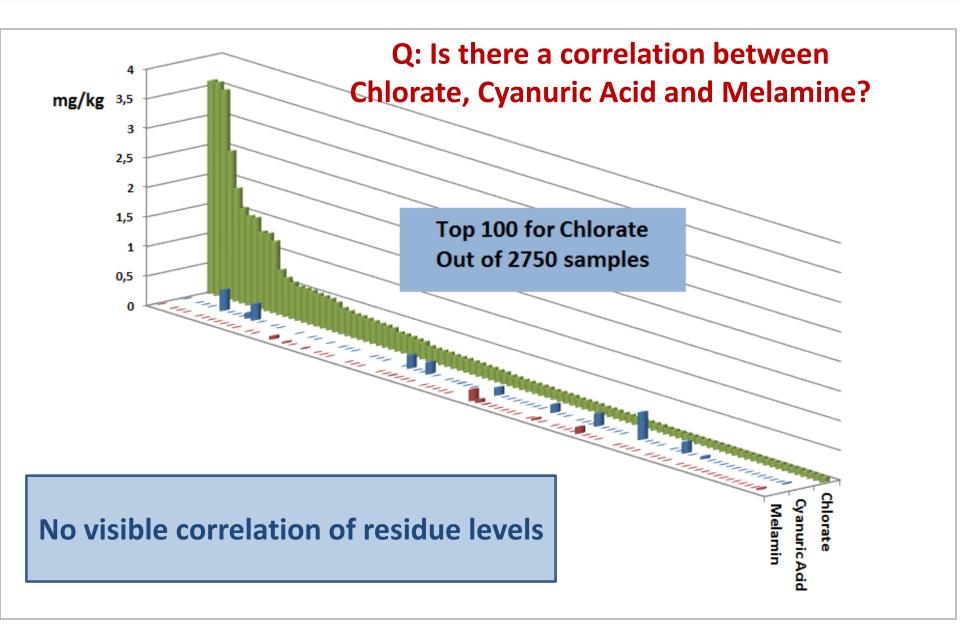

Little correlation between chlorate / perchlorate


Question?

Is there correlation between Chlorate and Cyanuric acid?


Cyanuric acid is used as <u>chlorine stabilizer</u> in waters (swimming pools). Binds chlorine and releases it slowly, extends depletion time.

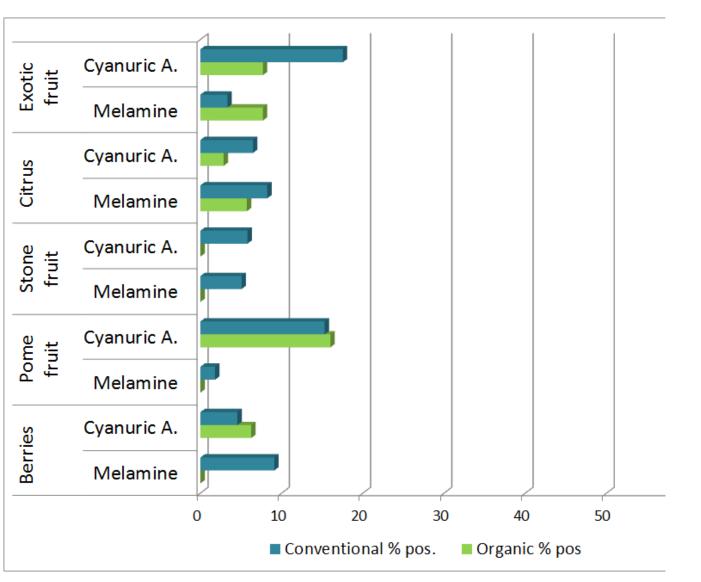
Cyanuric acid and Isocyanuric acid

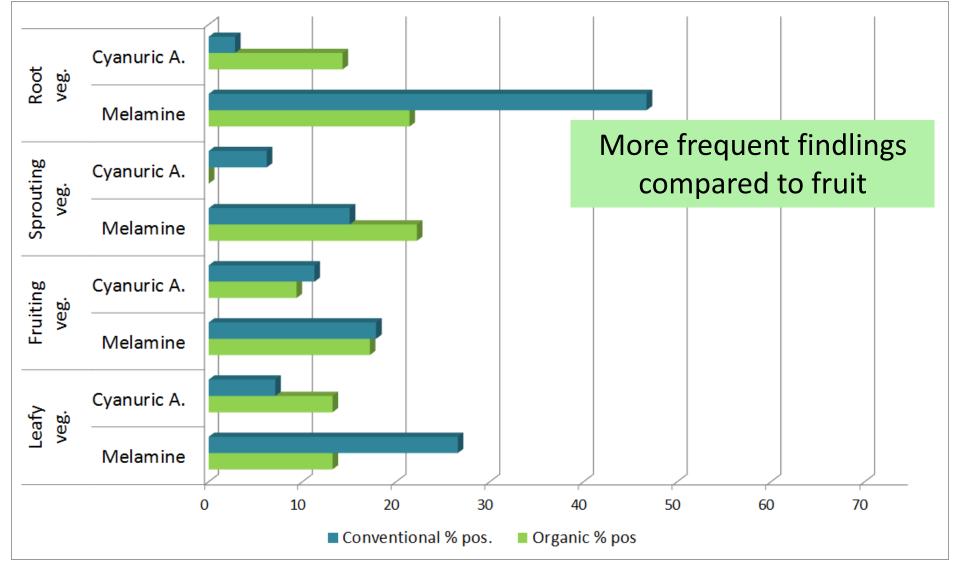


Dichloroisocyanuric acid

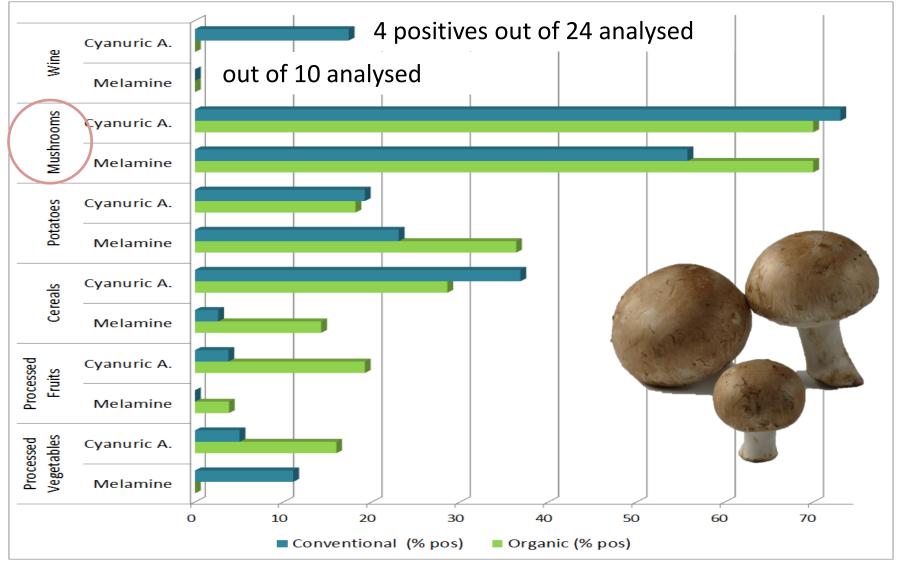
Trichloroisocyanurate

Q: Is there a correlation between

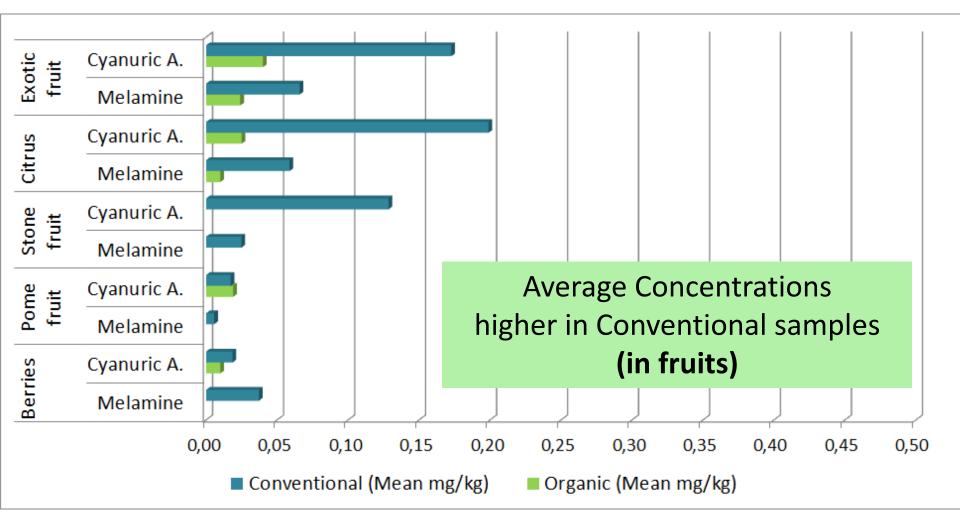




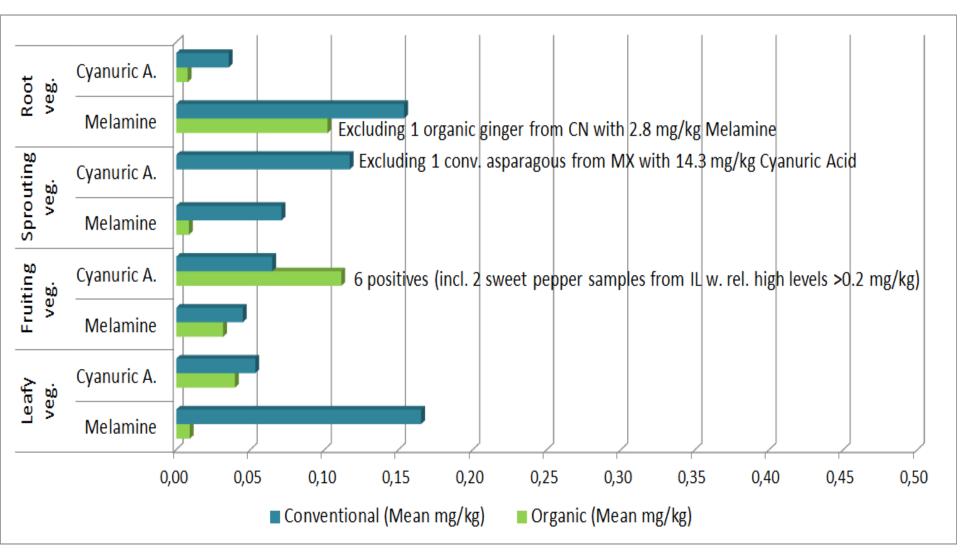
Residues of Cyanuric acid and Melamine (Fruits)



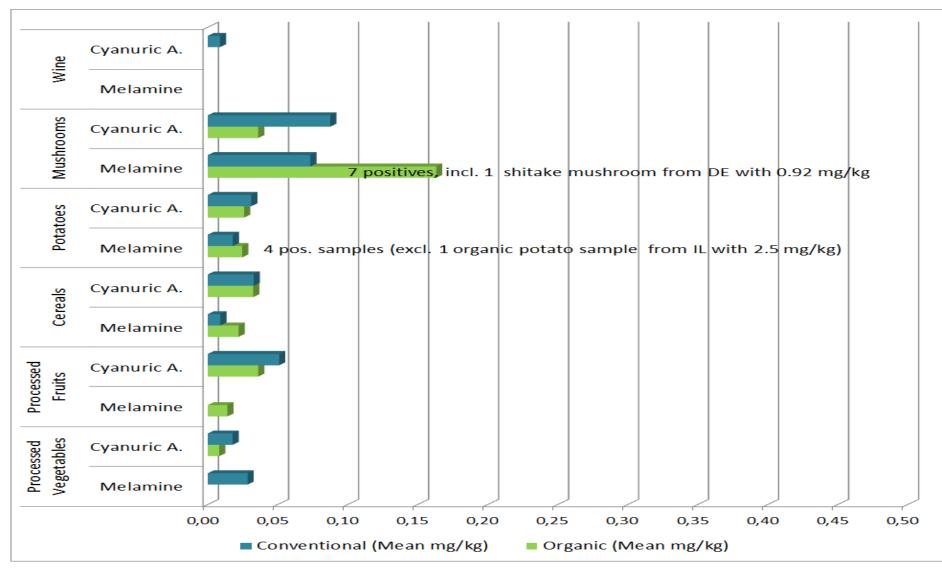
Residues of Cyanuric acid and Melamine (Vegetables)



Residues of Cyanuric acid and Melamine (other)

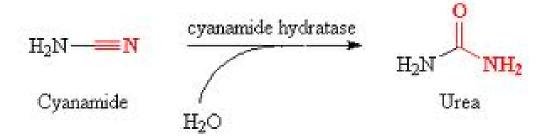


Residues of Cyanuric acid and Melamine (Fruit)



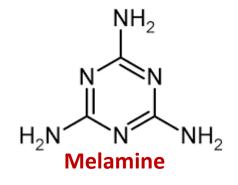
Residues of Cyanuric acid and Melamine (Veg.)

Residues of Cyanuric acid and Melamine (other)



Question?

Is there correlation btw Cyanuric A. /Melamine and fertilizers?


Cyanamide and Calcium cyanamide (CaCN₂) used as fertilizers

Cyanamide hydrolyzes to urea

At high pH /temperature it condensates ...

- Dimer: <u>Dicyandiamide</u> (nitrification inhibitor)
- Trimer: <u>Melamine</u>.

Residues of Pesticides /Contaminants in Fertilizers (mg/kg)

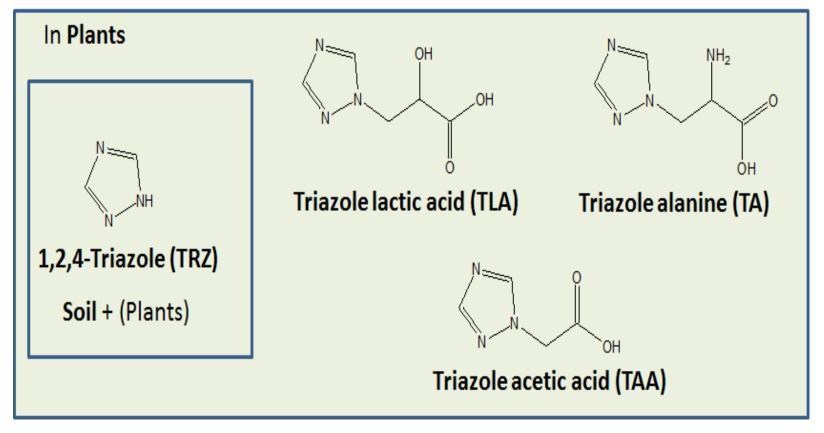
#	Melamine	Cyanuric acid	Diethanol- amine	Triethanol- amine	1,2,4- Triazole	Triazole- Alanine	Triazole Acetic acid	Triazole lactic acid	Chlorate	Perchlorate
1		0,07	80	0						0,51
2		0,09	23	0					21	37
3	0,091			0,42						
4										
5	1,7	2,4	Calcium Cyan	amide type				0,04		
6	0,39	2,7	0,04	0,05						
7				0,02						
8			13						27	14
9			0,95	0,04						
10	7,3	0,09	0,60							
11			11						15	20
12		41	0,03			0,2	0,9			
13	0,06		0,34	0,12						
14	0,02			0,05						
15										
16		0,09		16,3					8	11
17										
18	5,9	2,1	Calcium Cyana	mide type				0,03		
19			0,58	0,03						

Residues of Diethanolamine and Triethanolamine in <u>Fruit</u> (2014)

	Diethanolamine (DEA) (mg/kg)				Triethanolamine (TEA) (mg/kg)				
	No. Samples	Positive	Ave.	Min.	Max.	Positive	Ave.	Min.	Max.
Berries	197	5	0.03	0.02	0.04	11	0.06	0.02	0.20
Pome fruit	78					1	0.06	0.03	0.10
Stone fruit	99	1	0.06	0.06	0.06	8	0.14	0.02	0.48
Citrus fruit	76	2	0.25	0.03	0.46	3	0.24	0.03	0.62
Exotic fruit	98	5	0.15	0.02	0.52	9	0.09	0.02	0.30

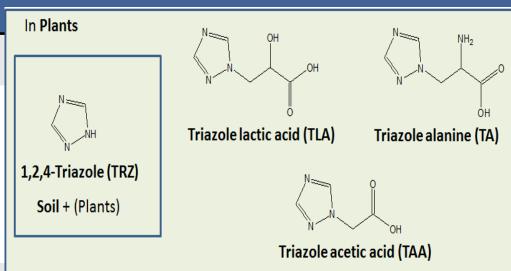
<u>Morpholine, DEA, TEA</u>: used in wax emulsions for fruit treatment (NOT in EU) <u>DEA and TEA</u>: contained in pesticide formulations (also in EU)

Residue finding of Morpholine (2014)


7 x pos. (6x stone fruit, 1x citrus fruit). Max 0.07 mg/kg.

(in the past more findings and higher levels (Citrus, apples, mango ...)

industry has reacted

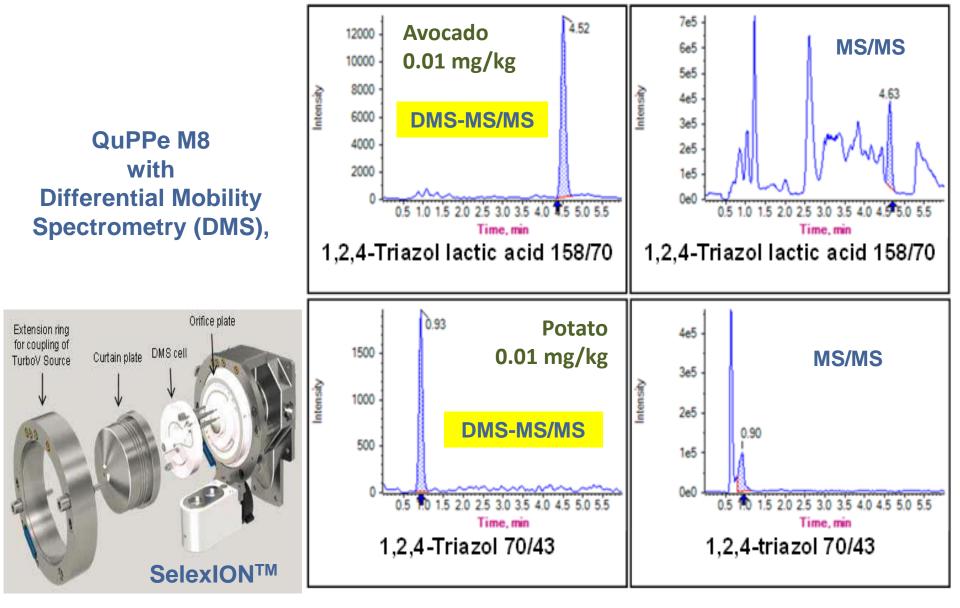

Triazole Derivative Metabolites TDMs

Triazole Derivative Metabolites (TDMs) – Short Overview

USE/OCCURANCE:

- Metabolites of Triazole fungicides (widely used)
- 1,2,4 Triazole nitrification inhibitor in fertilizers

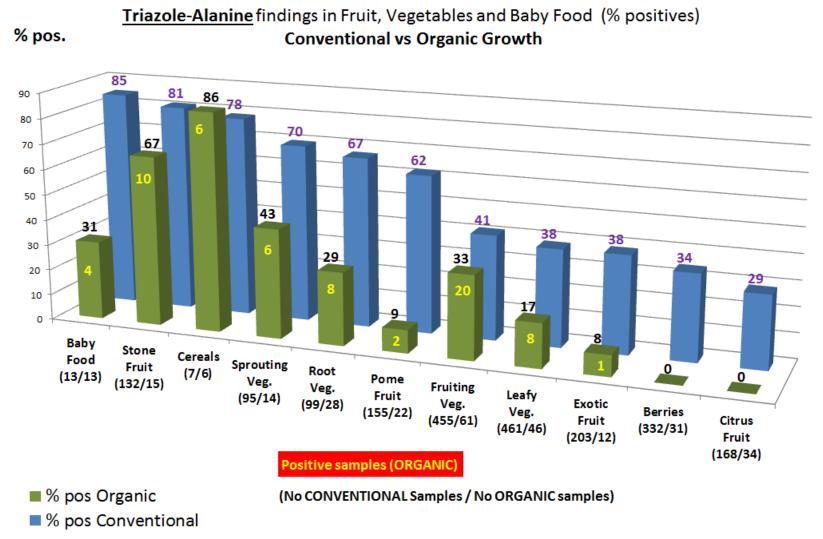
TOXICITY:


1,2,4-triazole most toxic one (ADI 0.2 mg/kg BW; ARfD 0.3 mg/kg bw) **TLA + TA + TAA** rapidly excreted (ADI 1 mg/kg BW; ARfD unnecessary)

LEGAL ASPECTS

Not yet part of RD; EFSA requested information about background levels

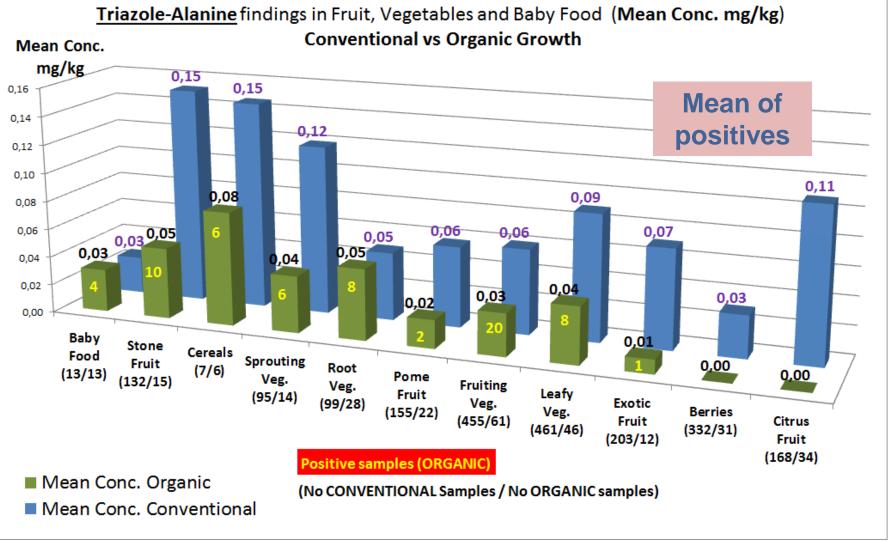
Task Force by manufacturers of Triazole fung. : Triazole Derivative Metabolite Group (TDMG)



<u>TDM – Findings in Samples ("Pilot Monitoring")</u>

Compound	No. of samples	No. of positive samples (>0.01 mg/kg)	% pos.	Minimum level (mg/kg)	Maximum level (mg/kg)	Mean of pos. samples (mg/kg)
Conventional sample	S					
1,2,4-Triazole	2468	17	0.7	0.005	0.035	0.015
Triazole alanine	2479	1138	45.9	0.005	1.4	0.084
Triazole acetic acid	2472	263	10.6	0.005	0.79	0.049
Triazole lactic acid	1398	338	24.2	0.005	0.78	0.052

Organic Samples									
1,2,4-Triazole	384	4	1.0	0.007	0.028	0.015			
Triazole alanine	385	100	26.0	0.008	1.1	0.057			
Triazole acetic acid	384	28	7.3	0.004	1	0.078			
Triazole lactic acid	185	20	10.8	0.01	0.059	0.023			


European

More frequent findings in conventional crops

Note: Total No. of positive organic samples was small !!

European

Higher levels in conventional crops

Note: Total No. of positive organic samples was small !!

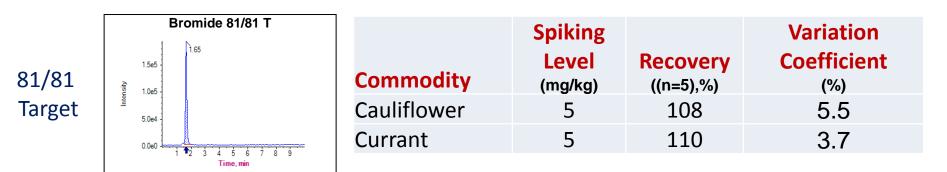
terence Laboratories for Residues of Pesticides Single Residue Methods

97

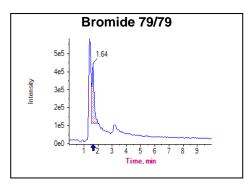
coming up: Quppe 9

Quick·Method·for·the·Analysis·of·numerous-Highly·Polar·Pesticides·in·Foods·of·Plant·Origin·via·LC-MS/MS·involving·Simultaneous·Extraction·with·Methanol·(QuPPe-Method)¶

-→ Version 9·(XX·2015, Document History, see page 57)·¶ Authors: M. Anastassiades; D. I. Kolberg; E. Eichhorn; A. Benkenstein; S. Lukačević; → D. Mack; C. Wildgrube; I. Sigalov; D. Dörk; A. Barth ¶


Note: Changes from V8 to V8.1 are highlighted in turquoise and changes from V8.1 to 9 are highlighted in yellow

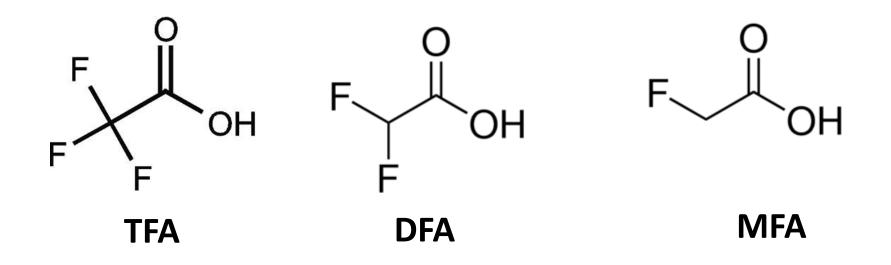
Content


	•••	
1¤	Scope and Short-Description#	2 ‡ ¤
2¤	Apparatus and Consumables ^a	21 ¹⁰
3¤	Chemicals¤	41 12
4¤	Disclaimer¤	6 ⁴ ¹²
5¤	Procedure#	7:=
5.1¤	Sample-preparation#	7:=
5.2¤	Extraction / Centrifugation / Filtration #	7:=
5.3¤	Blankextracts	91 11
5.4¤	Recovery-experiments [#]	91 11
5.5·¤	Preparation of calibration standards#	91 11
5.6¤	LC-MS/MS·Measurement¤	12¤
5.6.1¤	Method 1.1 "Glyphosate & Co. AS°11"¤	14: "
5.6.2¤	Method 1.2 "Glyphosate & Co. AS 11–HC"#	17:#
5.6.3¤	Method 1.3 "Glyphosate & Co. Hypercarb"#	20: #
5.6.4¤	Method·1.4·"PerChloPhos"¤	281 #
5.6.5¤	Method 2 "Fosetyl and Maleic Hydrazide" #	29: #
5.6.6¤	Method:3-"Amitrole-&-Co"¤	31:0
5.6.7¤	Method 4.1 "Quats & Co Obelisc R"¤	331 1
5.6.8¤	Method 4.2 "Quats & Co BEH Amide" #	35: #
5.6.9¤	Method 5-"Quats-&-CoMonoChrom-MS"#	37: #
5.6.10¤	Method 6 "Streptomycin and Kasugamycin"#	381 1
5.6.11¤	Method-7-"Morpholine, Diethanolamine-and-Triethanolamine"	391 #

Coming up: Inclusion of bromide into QuPPe (for screening)

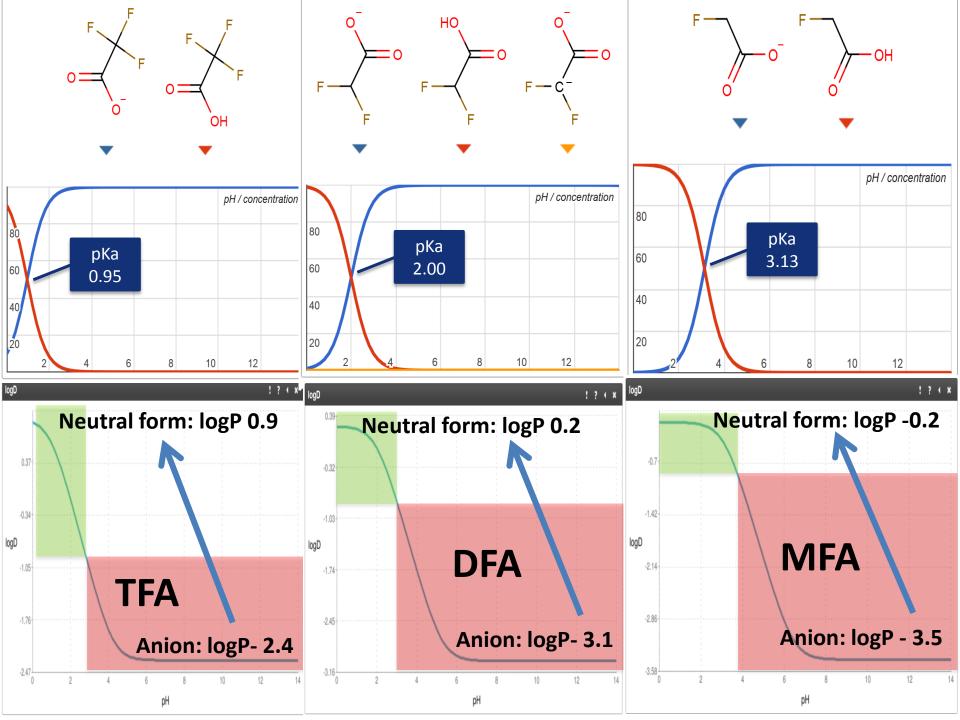
1st step: Method 1.4 "PerChloPhos" (routinely 5-fold dilution)
2nd step: Re-inject following <u>50-fold dilution</u> (eliminate matrix effects)
3rd step: in case of violations re-analysis with GC-method

79/79 Qualifier

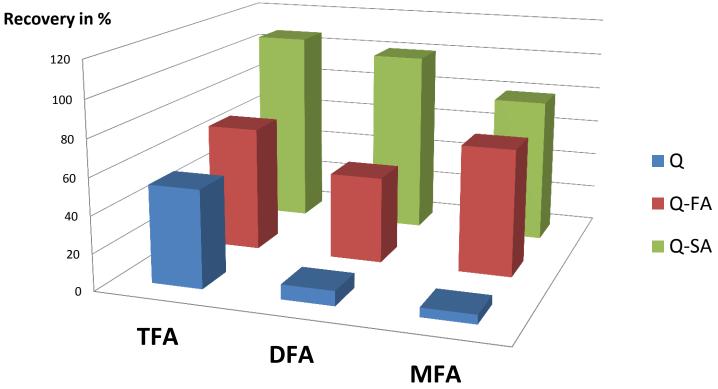


Coming up: Inclusion of bromide into QuPPe (for screening)

Commodity	LC-MS/MS (mg/kg)	GC-ECD after derivat. (mg/kg)
Lettuce	48,5	47,6
Lettuce	32,3	28,1
Thyme	31,1	27,1
Tomatoes	20,4	18,3
Selleriac	17,1	17,5
Parsley	14,1	16,3
Dill	15,5	15,7
Selleriac	14,0	14,9
Eggplant	13,8	12,6
Radish	10,8	11
Rucola	9,0	10,4


Coming up: New active substances

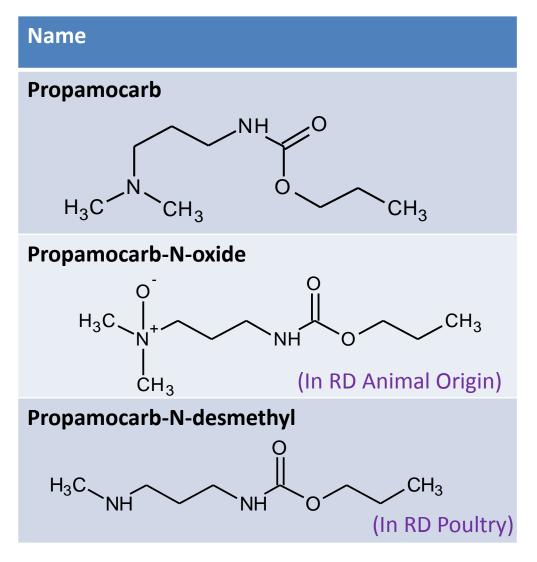
Why?


TFA: metabolite of several pesticides. e.g. Flumetraline (NAS), EFSA considers need for MRLs **DFA**: is metabolite of Flupyradifurone (NAS), EFSA considers need for MRLs

MFA: Blackmail incidence in New Zealand (baby food), Also rodenticide, also naturally in "poison peas, and other plants (Australia, Brazil, and Africa)

Coming up: TFA, DFA, MFA

Q = QuEChERS, citrate buffered Q-FA = QuEChERS w. 1% formic acid Q-SA = QuEChERS w. sulfuric acid


Impact of acidification on QuEChERS-Recoveries

Whats Next?

European

- Further develop and validate method
- Analyze market samples to asess residue situation

Coming up: Propamocarb-N-oxide, Propamocarb-N-desmethyl

How come? Metabolites are included in the RD for food of animal origin

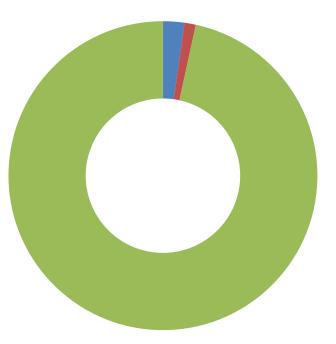
Within the frame of Art 12 work we started checking analytical behavior

Both metabolites are amenable to QuEChERS and QuPPe

Propamocarb-N-oxide, Propamocarb-N-desmethyl

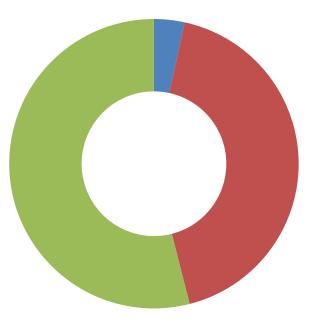
What about residues in Food of Plant Origin ?

First Findings


Commodity	Country of origin	Propamocarb-N- desmethyl mg/kg	Propamocarb-N- oxid mg/ kg	Propamocarb mg/kg			
Brussels sprout	Netherlands	0,013	0,22	0,30			
Brussels sprout	Netherlands	0,012	0,15	0,19			
Brussels sprout	Netherlands	0,009	0,14	0,18			
Spinach	Spain	0,19	0,10	8,2			
Brussels sprout	Netherlands	0,003	0,088	0,056			
Lettuce	Italy	0,061	0,075	4,5			
Lettuce	Belgium	0,046	0,067	4,2			
Lettuce	Italy	0,031	0,067	3,0			
Cauliflower, frozen	unknown	0,001	0,062	0,010			
Cucumber	Spain	0,005	0,055	0,34			
Cauliflower	France	n.n.	0,050	0,009			
Cucumber	Netherlands	n.n.	0,049	0,26			
Cucumber	Spain	0,005	0,043	0,38			
Cucumber	Spain	0,005	0,037	0,30			
Cucumber	Spain	0,002	0,025	0,28			
Lettuce	Italy	0,010	0,021	0,82			
Cucumber	Germany	0,002	0,021	0,068			
Lollo rosso	France	0,041	0,019	2,5			
Radish	unknown	0,009	0,019	2,4			
Potatoes	Germany	0,005	0,019	0,012			
Lettuce	France	0,015	0,017	0,95			
Lettuce	Germany	0,011	0,016	1,7			
Cucumber	Germany	n.n.	0,014	0,040			
Potatoes	Germany	0,003	0,011	0,009			
Potatoes	Germany	0,001	0,011	0,004			
Melons	Italy	0,002	0,010	0,030			
Cauliflower, frozen	unknown	n.n.	0,010	0,002			

First Findings

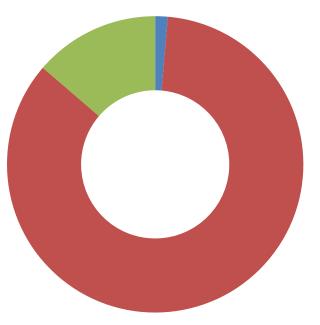
			-	
Commodity	Country of origin	Propamocarb-N- desmethyl mg/ kg	Propamocarb-N- oxid mg/ kg	Propamocarb mg/ kg
Brussels sprout	Netherlands	0,013	0,22	0,30
Brussels sprout	Netherlands	0,012	0,15	0,19
Brussels sprout	Netherlands	0,009	0,14	0,18
Spinach	Spain	0,19	0,10	8,2
Brussels sprout	Netherlands	0,003	0,088	0,056
Lettuce	Italy	0,061	0,075	4,5
Lettuce	Belgium	0,046	0,067	4,2
Lettuce	Italy	0,031	0,067	3,0
Cauliflower, frozen	unknown	0,001	0,062	0,010
Cucumber	Spain	0,005	0,055	0,34
Cauliflower	France	n.n.	0,050	0,009
Cucumber	Netherlands	n.n.	0,049	0,26
Cucumber	Spain	0,005	0,043	0,38
Cucumber	Spain	0,005	0,037	0,30
Cucumber	Spain	0,002	0,025	0,28
Lettuce	Italy	0,010	0,021	0,82
Cucumber	Germany	0,002	0,021	0,068
Lollo rosso	France	0,041	0,019	2,5
Radish	unknown	0,009	0,019	2,4
Potatoes	Germany	0,005	0,019	0,012
Lettuce	France	0,015	0,017	0,95
Lettuce	Germany	0,011	0,016	1,7
Cucumber	Germany	n.n.	0,014	0,040
Potatoes	Germany	0,003	0,011	0,009
Potatoes	Germany	0,001	0,011	0,004
Melons	Italy	0,002	0,010	0,030
Cauliflower, frozen	unknown	n.n.	0,010	0,002



- Propamocarb-N-desmethyl mg/kg
 Propamocarb-N-oxid mg/kg
- Propamocarb mg/kg

First Findings

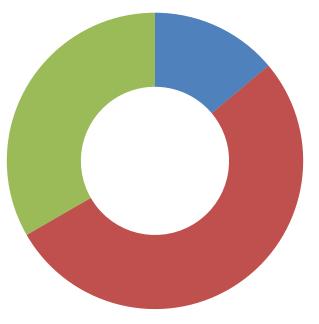
Commodity	Country of origin	Propamocarb-N- desmethylmg/kg	Propamocarb-N- oxid mg/ kg	Propamocarb mg/ kg			
Brussels sprout	Netherlands	0,013	0,22	0,30			
Brussels sprout	Netherlands	0,012	0,15	0.19			
Brussels sprout	Netherlands	0,009	0,14	0,18			
Spinach	Spain	0,19	0,10	8,2			
Brussels sprout	Netherlands	0,003	0,088	0,056			
Lettuce	Italy	0,061	0,075	4,5			
Lettuce	Belgium	0,046	0,067	4,2			
Lettuce	Italy	0,031	0,067	3,0			
Cauliflower, frozen	unknown	0,001	0,062	0,010			
Cucumber	Spain	0,005	0,055	0,34			
Cauliflower	France	n.n.	0,050	0,009			
Cucumber	Netherlands	n.n.	0,049	0,26			
Cucumber	Spain	0,005	0,043	0,38			
Cucumber	Spain	0,005	0,037	0,30			
Cucumber	Spain	0,002	0,025	0,28			
Lettuce	Italy	0,010	0,021	0,82			
Cucumber	Germany	0,002	0,021	0,068			
Lollo rosso	France	0,041	0,019	2,5			
Radish	unknown	0,009	0,019	2,4			
Potatoes	Germany	0,005	0,019	0,012			
Lettuce	France	0,015	0,017	0,95			
Lettuce	Germany	0,011	0,016	1,7			
Cucumber	Germany	n.n.	0,014	0,040			
Potatoes	Germany	0,003	0,011	0,009			
Potatoes	Germany	0,001	0,011	0,004			
Melons	Italy	0,002	0,010	0,030			
Cauliflower, frozen	unknown	n.n.	0,010	0,002			


- Propamocarb-N-desmethyl mg/kg
- Propamocarb-N-oxid mg/kg
- Propamocarb mg/kg

Commoditv	Countrv of oriain	Propamocarb-N-desmethvl ma/ka	Propamocarb-N-oxid ma/ka	Propamocarb ma/ka -
Brussels sprout	Netherlands	0,013	0,22	0,30
Brussels sprout	Netherlands	0,012	0,15	0,19
Brussels sprout	Netherlands	0,009	0,14	0,18
Spinach	Spain	0,19	0,10	8,2
Brussels sprout	Netherlands	0,003	0,088	0,056
Lettuce	Italy	0,061	0,075	4,5
Lettuce	Belgium	0,046	0,067	4,2
Lettuce	Italy	0,031	0,067	3,0
Cauliflower, frozen	unknown	0,001	0,062	0,010
Cucumber	Spain	0,005	0,055	0,34
Cauliflower	France	n.n.	0,050	0,009
Cucumber	Netherlands	n.n.	0,049	0,26
Cucumber	Spain	0,005	0,043	0,38
Cucumber	Spain	0,005	0,037	0,30
Cucumber	Spain	0,002	0,025	0,28
Lettuce	Italy	0,010	0,021	0,82
Cucumber	Germany	0,002	0,021	0,068
Lollo rosso	France	0,041	0,019	2,5
Radish	unknown	0,009	0,019	2,4
Potatoes	Germany	0,005	0,019	0,012
Lettuce	France	0,015	0,017	0,95
Lettuce	Germany	0,011	0,016	1,7
Cucumber	Germany	n.n.	0,014	0,040
Potatoes	Germany	0,003	0,011	0,009
Potatoes	Germany	0,001	0,011	0,004
Melons	Italy	0,002	0,010	0,030
Cauliflower, frozen	unknown	n.n.	0,010	0,002

First Findings

Propamocarb-N-oxide, Propamocarb-N-desmethyl

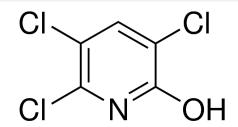


Propamocarb-N-desmethyl mg/kg
 Propamocarb-N-oxid mg/kg
 Propamocarb mg/kg

Commodity	Country of origin	Propamocarb-N- desmethyl mg/kg	Propamocarb-N- oxid mg/ kg	Propamocarb mg/ kg
Brussels sprout	Netherlands	0,013	0,22	0,30
Brussels sprout	Netherlands	0,012	0,15	0,19
Brussels sprout	Netherlands	0,009	0,14	0,18
Spinach	Spain	0,19	0,10	8,2
Brussels sprout	Netherlands	0,003	0,088	0,056
Lettuce	Italy	0,061	0,075	4,5
Lettuce	Belgium	0,046	0,067	4,2
Lettuce	Italy	0,031	0,067	3,0
Cauliflower, frozen	unknown	0,001	0,062	0,010
Cucumber	Spain	0,005	0,055	0,34
Cauliflower	France	n.n.	0,050	0,009
Cucumber	Netherlands	n.n.	0,049	0,26
Cucumber	Spain	0,005	0,043	0,38
Cucumber	Spain	0,005	0,037	0,30
Cucumber	Spain	0,002	0,025	0,28
Lettuce	Italy	0,010	0,021	0,82
Cucumber	Germany	0,002	0,021	0,068
Lollo rosso	France	0,041	0,019	2,5
Radish	unknown	0,009	0,019	2,4
Potatoes	Germany	0,005	0,019	0,012
Lettuce	France	0,015	0,017	0,95
Lettuce	Germany	0,011	0,016	1,7
Cucumber	Germany	n.n.	0,014	0,040
Potatoes	Germany	0,003	0,011	0,009
Potatoes	Germany	0,001	0,011	0,004
Melons	Italy	0,002	0,010	0,030
Cauliflower, frozen	unknown	n.n.	0,010	0,002

First Findings

- Propamocarb-N-desmethyl mg/kg
- Propamocarb-N-oxid mg/kg
- Propamocarb mg/kg

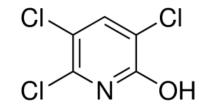

Coming up: Trichloropyridinole, TCPy

Metabolite of

European

- Chlorpyrifos,
- Chlorpyrifos-methyl
- Triclopyr

Extraction method: QuEChERS without PSA cleanup, Recovery 100% Determination: LC-MS/MS: API neg.


pKa: 8.9 Very weak acid

Coming up: Trichloropyridinole, TCPy

Commoditv	Country of Oriain	TCPv ma/ka	Chlorøvrifos ma/ka	Chlorovrifos-methvl ma/ka	Triclopyr ma/ka
Raisin	Turkey	0,048	0,006	n.n.	n.n.
Marjoram	unknown	0,040	0,016	n.n.	n.n.
Grapes	Italy	0,039	n.n.	0,002	n.n.
Grape Juice	unknown	0,031	n.n.	n.n.	n.n.
Tomato	Spain	0,026	n.n.	0,056	n.n.
Grape Juice	unknown	0,025	n.n.	n.n.	n.n.
Melons	France	0,024	n.n.	n.b.	n.n.
Raisin	Turkey	0,019	0,004	n.n.	n.n.
Grape Juice	unknown	0,018	n.n.	n.n.	n.n.
Raisin	Cyprus	0,016	n.n.	n.n.	n.n.
Tomato sauce	unknown	0,013	n.n.	n.n.	n.n.
Grapes	Egypt	0,012	0,008	n.n.	n.n.
Grapes	Italy	0,011	n.n.	n.b.	n.n.
Ginger	China	0,008	n.n.	n.n.	n.n.
Apple sauce	unknown	0,006	n.n.	n.n.	n.n.
Apple sauce	unknown	0,005	0,002	n.n.	n.n.
Plums, dried	Germany	0,004	n.n.	n.n.	n.n.
Raisin	unknown	0,004	n.n.	n.n.	n.n.
Grapes	Greece	0,003	n.n.	n.b.	n.n.

Pos. findings of SRM-compounds in Veggies (2014) CVUAS

Pesticides and Metabolites	No. of	mg/kg							
resticiues and metabolites	findings	<0,01	0.01 -<0,05	0,05 -<0,2	0,2 – <1	1 - <5	<mark>5- <20</mark>	>20	Max.
Fosetyl-(mainly phosphonic A.)	203		3	34	60	59	37	10	153
Chlorate	150	39	74	22	10	5			3,6
Propamocarb	98	41	25	14	10	6	1	1	28,4
Bromide (FEW SAMPLES)	37					29	8		12,4
Propamocarb-N-oxide	20	12	4	4					0,088
Pymetrozine	16	14	2						0,025
Chlorothalonil	15	7	4	3		1			1
Propamocarb-N-desmethyl	14	12	2			nle	5		0,046
Cyromazine	12	6	5	1	25	annh.	arown		0,075
2,4-D	8	6	2		813 5	ally	B		0,016
Folpet	6	4	2		nti	Sugar	ables		0,02
BAC	5		3	1	813 si onventig fresh	vieger			0,33
Dodine	5	4	1		sresh.	Vee			0,014
ETU	5	3	1	1	110				0,11
Prochloraz, sum	5	4	1						0,023
Clopyralid	4	3		1					0,064
DDAC	4		3		1				0,65
Dithiocarbamates (FEW SAMPLES					1	3			2,3
Maleic hydrazide	4					1	3		8,4
4-CPA	3	2	1						0,028
Daminozide	2	1	1						0,025
Ethephon	2			1		1			1,3
MCPP	2	1	1						0,011
Nereistoxin	2	1	1						0,016
PTU	2	1	1						0,017
Bromoxynil	1	1							0.008
Dicamba	1	1							0.018
HEPA, ethephon metabolite	1				1				0,35
Nicotine (FEW SAMPLES)	1				1				0,61
Trimethylsulfonium cation	1		1						0,012

Positive findings of SRM-compounds in Fruits (2014) CVUAS

Pesticides and Metabolites	No. of	mg/kg							
resticides and Metabolites	Findings	<0,01	0.01 -<0,05	0,05 -<0,2	0,2-<1	1 - <5	<u>5- <20</u>	>20	Max.
Fosetyl (mainly phosphonic A.)			14	60	104	120	97	17	82
Captan	83	21	29	16	15	2			4.8
Chlorate	70	16	48	4	2				0.65
Dithianon	67	18	20	26	3				0.37
Prochloraz, Sum	44	9	8	11	11	5			2.4
Dodine	40	31	4	3	2				0.28
Folpet	38	29	6	3					0.088
2,4-D	35	18	8	9					0.16
Gibberellic acid	26	7	14	4	1				0.25
Ethephon	19	1	10	6	1 2 8 4 74 conve				0.43
Dithiocarbamates [(FEW SAMPLES	S) 15	_		7	8		es		0.67
Fenbutatin oxide	14	5	3	2	4	n samip	arow	•	0.33
Chlormequat	11	5	5	1	74		N B.		0.067
HEPA	8	_	4	4	•	rtiona.	it		0.085
МСРА	7	7			ne	nu. h f	ruit		0.003
Morpholine	6	_	2	4	COM	fresi			0.071
BAC Bromide (FEW SAMPLES)	5	4		1					0.067
Diomide	5					4	1		9.3
CGA 304075, Met. Cyprodinil	5	2	1	2					0.19
Chlorothalonil	5	1	1	2	1				0.2
Trimethylsulfonium-Cation	5	2	3						0.031
Fluazifop, free acid	4	3	1						0.011
Nereistoxine	3	1	1	1					0.075
Triclopyr	3	3							0.008
DDAC	2		2						0.015
ETU	2	1		1					0.071
Prohexadione	2	1	1						0.018
Dinocap	1		1						0.046
Ethoxyquin	1	1							0.005
Glufosinate, Sum	1		1						0.011
Glyphosate	1			1					0.083
Meptyldinocap	1				1				0.97
Propamocarb-N-desmethyl	1	1							0.005
PTU	1	1							0.005

MRL-exceedances SRM-compounds in Veggies (CVUAS 2014)

Substance	Vegetables in which MRL exceedances occurred (country of origin)
4-CPA	Aubergine (Turkey)
Acephate	Green Beans, (Kenia)
Amitraz, sum	Chilli peppers (Malaysia) Analyzed by MRM (via metab. DMF, DMPF)
BAC	Carrot (Spain); Chilli peppers (Malaysia); Spinach (Portugal); Basil (Malaysia)
Chlorate	Sweet Peppers (Morocco, Spain 2x, Israel 2x, Hungary); Zucchini (Spain 2x, Italy, Germany); Parsley (Unknown 2x, Germany 2x); Green Beans (Spain 2x, Cambodia, Morocco 2x, Kenia, Germany); Basil (Cambodia, Germany 6x, Malaysia 2x); Dill leaves (Italy, Germany); Broccoli (Spain 3x); Melon (Honduras 2x); Asparagus (Peru); Lemon grass (Thailand); Chervil (Germany); Tomato (Unknown, Morocco 3x, Turkey, Belgium 4x, France, Germany 3x, Netherlands, Spain 3x); Rucola (Italy 2x); Endive (Italy 2x, Germany); Melon/Honeydew melon (Costa Rica); Aubergine (Spain, Thailand, Malaysia, Netherlands, France, Turkey, Belgium); Savoy Cabbage (Italy); Celeriac (Germany); Spinach (Spain, Unknown, Italy 2x); Radish (Italy, Unknown); Cucumber (Germany 4x, Netherlands); Iceberg Lettuce (Spain); Peas with pod (Spain, Simbabwe, Peru); Celery (Spain); Oakleaf Lettuce (Spain 2x, Germany); Lambs Lettuce (Germany 4x); Lettuce (Germany, Italy); Coriander (Cambodia, Germany)
Daminozide	Tomato (Germany)
DDAC	Kohlrabi (Italy); Basil (Malaysia); Cucumber (Netherlands); Green Beans (Kenia)
Ethephon Flonicamid, sum	Chilli peppers (Turkey) Sweet Peppers (Turkey)
Fosetyl-aluminium	Spinach (Italy); Basil (Germany 2x); Celeriac (Germany); Chinese cabbage (Germany)
Nicotine	Chives (Kenia)

MRL-Exceedances of SRM-compounds in Fruits (CVUAS 2014)

Substance	Vegetables in which MRL exceedances occurred (country of origin)
Chlorate	Strawberry (Spain 8x); Blackberry (Germany); White table grape (Egypt, South Africa); Cranberry (unknown, USA); Huckleberry; Blueberry (Chile); Pear (Belgium, Italy 3x, Portugal, South Africa 3x); Peach (Chile); Plum (South Africa 6x); Nectarine (Chile); Sweet cherry (Argentina, Chile, Spain 3x, Turkey); Avocado (Chile); Lemon (Spain 2x); Grapefruit (Israel); Lime (Brazil); Pomelo (China); Pineapple (Costa Rica 6x, Ghana); Mango (unknown); Pitahaya (Vietnam 2x)
DDAC	Lemon (Argentina)
Dodin	Apricot (Turkey)
Ethephon	Kumquat (unknown)
Folpet	Red table grape (Germany); White table grape (Germany 2x)
Fosetyl Sum	Blackberry (Spain); Nectarine (Chile 2x, Spain); Sweet cherry (Chile); Avocado (South Africa); Mango (Brazil); Kiwi (Italy 2x)
Propamocarb	Strawberry (Egypt)

Thanks !

www.eurl-pesticides.eu