

New advances in HRMS Łukasz Rajski

Practical Training - New Advances in MRM (on-line training) 21-22/01/2021

Triple quadrupole

Triple quadrupole

Int. J. Mol. Sci. 2017, 18(12), 2697; https://doi.org/10.3390/ijms18122697

EURL-FV

High-resolution mass spectrometry

QToF

QOrbitrap

Instrumentation:

- Time of flight
- Orbitrap
- Fourier transform ion cyclotron
- (electric/magnetic) sector instrument

High-resolution mass spectrometry Resolution in mass spectroscopy

- 1. (energy): By analogy with the peak width definition for mass resolution, a peak showing the number of ions as a function of their translational energy should be used to give a value for the energy resolution.
- 2. (10 per cent valley definition): Let two peaks of equal height in a mass spectrum at masses m and m Δ m be separated by a valley which at its lowest point is just 10 per cent of the height of either peak. For similar peaks at a mass exceeding m, let the height of the valley at its lowest point be more (by any amount) than ten per cent of either peak height. Then the resolution (10 per cent valley definition) is m/Δm. It is usually a function of m. The ratio m/Δm should be given for a number of values of m.
- 3. (peak width definition): For a single peak made up of singly charged ions at mass m in a mass spectrum, the resolution may be expressed as $m/\Delta m$ where Δm is the width of the peak at a height which is a specified fraction of the maximum peak height. It is recommended that one of three values 50%, 5% or 0.5% should always be used. For an isolated symmetrical peak recorded with a system which is linear in the range between 5% and 10% levels of the peak, the 5% peak width definition is technically equivalent to the 10% valley definition. A common standard is the definition of resolution based upon Δm being Full Width of the peak at Half its Maximum height, sometimes abbreviated 'FWHM'. This acronym should preferably be defined the first time it is used.

https://goldbook.iupac.org/

High-resolution mass spectrometry Resolution at FWHM - full-width half maximum

High-resolution mass spectrometry Effects of increased resolution

High-resolution mass spectrometry Effects of increased resolution

Resolution: 20 000

EURL-FV

Resolution: 50 000

Onion High-

D:\data\...\Cebolla_10ppb_AIF

EURL-FV

High-resolution mass spectrometry

Nominal mass: mass of a molecular ion or molecule calculated using the isotope mass of the most abundant constituent element isotope of each element rounded to the nearest integer value and multiplied by the number of atoms of each element.

Exact mass: calculated mass of an ion or molecule with specified isotopic composition.

Pure Appl. Chem., Vol. 85, No. 7, pp. 1515–1609, 2013

C₈H₁₆NO₅P

C₈H₁₇NO₅P⁺

	8 · 12	= 96
ł	17 · 1.0078	83 = 17.13311
N	1 · 14.003	31 = 14.0031
)	5 · 15.994	19 = 79.9745
)	1 · 30.973	8 = <u>30.9738</u>
		238.0845
		- 0.000549
		238.0840

Mass error:

- absolute (expressed in mDa)
- relative (expressed in ppm)

5ppm = 0.000005 Da = 0.005 mDa m/z 100 · 0.000005 = 0.0005 Da m/z 200 · 0.000005 = 0.001 Da m/z 400 · 0.000005 = 0.002 Da

> m/z 100.0000 ± 1 mDa = m/z 99.9990 - 100.0010 m/z 200.0000 ± 1 mDa = m/z 199.9990 - 200.0010 m/z 400.0000 ± 1 mDa = m/z 399.9990 - 400.0010

m/z 100.0000 ± 5 ppm = m/z 99.9995 - 100.0005 m/z 200.0000 ± 5 ppm = m/z 199.9990 - 200.0010 m/z 400.0000 ± 5 ppm = m/z 399.9980 - 400.0020

10/17/20 15:48:34

Cebolla_10ppb_AIF #7-6147 RT: 0.02-14.00 AV: 3071 NL: 1.07E7 T: FTMS + p ESI Full ms [100.0000-1000.0000]

EURL-FV

Onion

D:\data\...\Cebolla_10ppb_AIF

238.9

High-resolution mass spectrometry

10/17/20 15:48:34

237.7

237.8

237.9

237.6

EURL-FV

Onion

D:\data\...\Cebolla 10ppb AIF

237.2

237.3

237.4

237.5

238.0

238.3

238.4

238.5

238.6

238.7

238.8

238.2

10/17/20 15:48:34

EURL-FV

Onion

D:\data\...\Cebolla 10ppb AIF

Dicrotophos

1- central electrode 2- half of outer electrode 3- isolating ring

High-resolution mass spectrometry Orbitrap mass analyser

High-resolution mass spectrometry Orbitrap mass analyser

Orbitrap mass analyser

m/z 800
m/z 400
m/z 100

High-resolution mass spectrometry Orbitrap mass analyser

Orbitrap Exploris 240

QExactive/QE	xactive Focus	Exploris 240/ Exploris 120		
Mass resolution at mz/z 200	Scan rate	Mass resolution at mz/z 200	Scan rate	
17 500	12 Hz	15 000	22 Hz	
35 000	7 Hz	30 000	12 Hz	
		45 000*	10 Hz	
70 000	3 Hz	60 000	7 Hz	
140 000*	1.5 Hz	120 000	3 Hz	
		240 000**	1.5 Hz	

* Not available in QExactive Focus** Not available in Exploris 120

Comparison of cycle times

Target analysis 244 compounds Screening: ~900 compounds

*average value

EURL-FV

High-resolution mass spectrometry

Dodine 0.01 mg/kg in orange MS m/z 228.2434 ± 5ppm MS2 m/z 57.0700 ± 5ppm

Spinosyn D 0.50 mg/kg in pure solvent MS m/z 746.4838 ± 5ppm MS2 m/z 142.1226 ± 5ppm

244 pesticides

Target pesticides- validation

Linearity

Mass accuracy

EURL-FV

Real samples

Target list 244 pesticides

Orange	23
Onion	15
Kiwi	9
Strawberry	1
Pinapple	1
Rasisns	1
sum	50

Imazalil	12	Metalaxyl	1
Acetamiprid	9	Mandipropamid	1
Pyrimethanil	6	Indoxacarb	1
Pyriproxyfen	5	Hexythiazox	1
Thiabendazole	3	Fluxapyroxad	1
Propiconazole	2	Fluopyram	1
Phosmet	2	Flubendiamide	1
Imidacloprid	2	Famoxadone	1
Fenpyroximate	2	Etofenprox	1
Boscalid	2	Proquinazid	1
Penconazole	1	Sulfoxaflor	1
Metrafenone	1	Tebuconazole	1
Methoxyfenozide	1	Zoxamide	1
		sum	61

19 blancs

Screening

Screening criteria:

- precursor ion mass tolerance 5 ppm (900 compounds in the data-base)
- isotopic pattern fit threshold 90%
- allowed mass deviation of isotopes 5 ppm
- allowed isotopic mass deviations of ± 10%
- library search score threshold 80
- library search passing value 80

Screening

MS2 spectra (library)

MS2 spectra (sample)

Forchlorfenuron in kiwi sample

Screening

Data-base with >900 compounds

Beauvericin	6
Imidacloprid, desnitro	4
Acetamiprid-metabolite-IM-2-1	2
Forchlorfenuron	2
Penicillic-Acid	2
Imidacloprid, desnitro-olefin	1
Imidacloprid, urea	1
Thiabendazole,50H	1
sum	19

SUMMARY

