

EU Proficiency Test on the Analysis of Rice Flour for incurred and spiked Pesticides Residues Requiring Single Residue Methods

EUPT-SRM15 February/March 2020

Final Report

Chemisches und Veterinäruntersuchungsamt Stuttgart

EU PROFICIENCY TEST EUPT-SRM15, 2020

Residues of Pesticides Requiring Single Residue Methods

Test Item: Rice Flour

Final Report

Resutls Evaluation

Michelangelo Anastassiades Pat Schreiter Anja Barth Hubert Zipper

> approved by Michelangelo Anastassiades released on 31 March, 2021

The EURL-SRM is accredited by the DAkkS according to EN ISO/IEC 17043. The accreditation is valid for the proficiency testing programs listed in the certificate.

Publication of parts of this EUPT-SRM15 final report by individuals or organizations shall always refer to the original document that can be found under: https://www.eurl-pesticides.eu/library/docs/srm/EUPT_SRM15_FinalReport.pdf

Picture on the book cover: Rice, Image by ImageParty from Pixabay

Organisers

EUPT-Coordinator:

Head of EURL-SRM (Single Residue Methods) CVUA Stuttgart Department of Residues and Contaminants Schaflandstrasse 3/2 D-70736 Fellbach

Phone: +49-711-3426-1124 Fax: +49-711-588176 E-Mail: Michelangelo.Anastassiades@cvuas.bwl.de

Organising Team:

EURL for Pesticides Requiring Single Residue Methods hosted by CVUA Stuttgart

Pat Schreiter, Senior Food Chemist Ann-Kathrin Wachtler, Food Chemist Hubert Zipper, Senior Food Chemist Anja Barth, Chemical Technician Giovanna Cerchia, Chemical Technician Birget Hanke, Chemical Technician Dorothea Mack, Chemical Technician Sonja Lachnit, Chemical Technician

Sahra Söhnholz, Chemical Technician

EURL for Pesticides in Cereals and Feedingstuff, National Food Institute, Technical University of Denmark

Anne-Mette Skovlund, Project Manager of Webtool Steen Maigaard, Senior Software Developer Sean Gomes, Software Developer Nicolaj Graversen Pedersen, Software Developer Wardan Ghazal, Software Developer

Quality Control Group:

Antonio Valverde	University of Almería, ES
Paula Medina	European Food Safety Authority (EFSA)

Advisory Group:

Amadeo Fernández-Alba	EURL-FV, University of Almería (UAL), ES
Miguel Gamón	EURL-FV, Laboratorio Agroalimentario Generalitat Valenciana (LAGV), ES
Mette Erecius Poulsen	EURL-CF, National Food Institute (DTU), Søborg, DK
Ralf Lippold	EURL-AO, CVUA Freiburg, DE
Philippe Gros	Service Commun des Laboratoires (SCL) / Laboratoire de Montpellier, FR
Magnus Jezussek	Bavarian Health and Food Safety Authority (LGL), Erlangen, DE
André de Kok	Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, NL
Sonja Masselter	Austrian Agency for Health and Food Safety (AGES), Innsbruck, AT
Finbarr O'Regan	Pesticide Control Laboratory (PCL), Department of Agriculture, Food and the Marine, IE
Tuija Pihlström	National Food Agency (Livsmedelsverket), Uppsala, SE
Patrizia Pelosi	National Institute of Health (ISS), Roma, IT
Carmelo Rodríguez	University of Almería (UAL), ES

FOREWORD

Regulation 625/2007/EC [1] defines the general tasks and duties of the EU Reference Laboratories (EURLs) for Food, Feed and Animal Health¹ including the organisation of comparative tests (proficiency tests = PTs). These PTs are carried out on an annual basis and aim to improve the quality, accuracy and comparability of the analytical results generated by EU Member States within the framework of the EU coordinated control programs as well as national monitoring programs. By participating in PTs laboratories can assess and at the same time demonstrate their analytical performance. The attention to details paid by laboratories during PT-analysis, together with the need to identify errors and to take corrective actions in cases of underperformance, typically lead to improvements in the quality of analytical results.

According to Article 28 of Regulation 396/2005/EC on maximum residue levels of pesticides in or on food and feed of plant and animal origin [2], all laboratories analysing for pesticide residues within the framework of official controls shall participate in the European Union Comparative Proficiency Tests (EUPTs) for pesticide residues. The participation of OfLs comparative tests organized by the EURLs has been more recently also layed down in Art 38 (2) of the regulation on offical controls (625/2017/EC), where it reads: "Upon request by the European Union reference laboratory or national reference laboratory, official laboratories shall take part in inter-laboratory comparative tests or proficiency tests that are organised for the analyses, tests or diagnoses they perform as official laboratories". Art 101(1)(a) of Regulation 625/2017/EC furthermore prescribes the participation of NRLs in these comparative tests: "National reference laboratories shall, in their area of competence: (a) collaborate with the European Union reference laboratories, and participate in training courses and in inter-laboratory comparative tests organised by these laboratories".

Since 2006 the EURL for pesticide residues requiring the use of Single Residue Methods, EURL-SRM, has annually conducted one scheduled Proficiency Test. Five of those 14 EUPT-SRMs were conducted in collaboration with the EURL for pesticide residues in Fruits and Vegetables (EURL-FV) with apple juice (EUPT-SRM1, 2006), carrot homogenate (EUPT-SRM3, 2008), apple purée (EUPT-SRM5, 2010), potato homogenate (EUPT-SRM8, 2013) and spinach homogenate (EUPT-SRM11, 2016) as test items. Five other EUPT-SRMs were conducted in collaboration with the EURL for pesticide residues in Cereals and Feeding Stuff (EURL-CF) with wheat flour (EUPT-C1/SRM2, 2007), oat flour (EUPT-C3/SRM4, 2009), rice flour (EUPT-C5/SRM6, 2011 and the current one EUPT-SRM15, 2020) and maize flour (EUPT-C9/SRM10, 2015) as test items. Further four EUPT-SRMs were organized by the EURL-SRM unilaterally, two of them used commodities from plant origin with low fett content : milled dry lentils (EUPT-SRM7, 2012) and strawberry homogenate (EUPT-SRM12, 2017). The EUPT-SRM9 (2014) was the first EUPT-SRM using a commodity of animal origin (cow's milk), and the EUPT-SRM15 using bovine liver homogenate as the test commodity was the first one EUPT-SRM in cooperation with the EURL for Residues of Pesticides in Food of Animal Origin (EURL-AO).

Participation in the respective EUPTs is mandatory for all NRLs for pesticides requiring Single Residue Methods (NRL-SRMs) and for all OfLs analysing pesticide residues within the framework of national or EU control programs in commodities represented by the respective EUPT test item. Laboratories in EU Member States analysing pesticide residues within the frame of import controls according to Reg. 669/2009/EC are also considered as performing official controls in the sense of Reg. 625/2007/EC and are thus also obliged to take part in EUPTs. OfLs from EFTA countries (Iceland, Norway and Switzerland) contributing data to the EU-coordinated community control programs, EU laboratories analysing official organic samples within the frame of Reg. 889/2008/EC, as well as OfLs from EU-acceding or -candidate countries (FYROM, Montenegro, Serbia and Turkey) are also invited to take part in EUPTs. A limited number of laboratories from third countries are allowed to take part in this exercise, too. However, only results submitted by labs from EU and EFTA countries are included in the calculation of the assigned values.

¹ Formerly known as Community Reference Laboratories (CRLs)

Based on information about the commodity scope and labs' NRL-status a tentative list of EU-labs considered as obliged to participate in the EUPTs is published at the beginning of each year. The pesticide scope is not taken into account in these lists. NRLs and OfLs can see their participation status on the registration page. Laboratories listed as being obliged to participate in an EUPT exercise in a given year but deciding not to take part, are always asked to state the reason(s) for their non-participation. The same applies to laboratories originally registering to participate in a certain EUPT but finally not submitting results.

DG-SANTE has full access to all data of EUPTs including the lab-code/lab-name key. The same applies to all NRLs as far as laboratories belonging to their own country networks are concerned. Results for this EUPT or a series of EUPTs, evaluated on a country by country basis, may be further presented to the European Commission Standing Committee on Plants, Animals, Food and Feed (PAFF)-Section Pesticides Residues, or during the EURL-Workshops.

CONTENT

FOF		V
INT	RODUCTION	ix
1.		1
1.1	Selection of PT-Commodity and of Compounds for the Target Pesticides List	1
1.2	Preliminary Investigation of Treated Materials	2
1.3	Investigation on the Analysis of Conjugates/Esters using QuEChERS after Alkaline Hydrolys	is .2
1.4	Production, Bottling and Packaging of the Test Item	4
1.5	Delivery of PT Materials to Participants	5
1.6	Analytical Methods	6
1.7	Homogeneity Test	6
1.8	Storage Stability Test	6
1.9	Transport Stability Test	8
1.10	Organisational Aspects	8
2.		13
2.1	False Positives and Negatives	13
2.2	Assigned Values (x_{pt}) and Calculation of the Respective Uncertainties $(u(x_{pt}))$	13
2.3	Fixed Target Standard Deviation using FFP-Approach (FFP- σ_{pt})	14
2.4	z-Scores	14
2.5	Laboratory Classification	14
3.	PARTICIPATION	17
4.	RESULTS	21
4.1	Overview of Results	21
4.2	Assigned Values and Target Standard Deviations	30
4.3	Assessment of Laboratory Performance	31
4.4	Special Topic: Method-based Evaluation	48
5.		53
6.	REFERENCES	53

7. APPENDICES

Appendix 1	List of Laboratories Registered to Participate in the EUPT-SRM15 A-1
Appendix 2	Shipment EvaluationA-4
Appendix 3	Data of Homogeneity TestA-5
Appendix 4	Data of Stability TestA-9
Appendix 5	Histograms and Kernel Density Estimates of z-score Distributions
Appendix 6	Graphic Presentation of z-ScoresA-16
Appendix 7	Possible Reasons Reported for Poor Performance
Appendix 8	General EUPT Protocol (9 th Ed.)A-58
Appendix 9	Specific Protocol of EUPT-SRM15 A-67
Appendix 10	Calendar and Target Pesticides List of EUPT-SRM15A-71
Appendix 11	Call for Registration for the EUPT-SRM15A-74
Appendix 12	Guide to EUPT-SRM15 Results Submission WebtoolA-75

EUROPEAN COMMISSION – EU-PROFICIENCY TEST ON RESIDUES OF PESTICIDES REQUIRING SINGLE RESIDUE METHODS TEST ITEM: BOVINE LIVER HOMOGENATE EUPT-SRM15, 2020

INTRODUCTION

On 28 October, 2019, all relevant National Reference Laboratories (NRLs) of the 28 EU-Member States (MS), as well as all relevant EU-Official Laboratories (OfLs) whose contact details were available to the organisers were invited to participate in the 15th European Commission's Proficiency Test Requiring Single Residue Methods (EUPT-SRM15). The EUPT-SRM15-Website contained links to the Announcement/Invitation Letter and the Calendar. Following consultation with the EUPT-Scientiffic Committee, the EUPT-SRM15 Target Pesticides List, entailing 31 compounds, was released on 13 November, 2019. The selection of the compounds considered the entries within the SANTE working document on pesticides to be considered in national control programmes¹, the relevance of compounds for rice, the availability of analytical standards, the possibility of application during cultivation and the capability of laboratories. On 6 February, 2020, an update of the Target Pesticides List, excluding bromide ion, was released. Among the selected compounds, there are 13 listed in the EU-coordinated Multiannual Control Program for Pesticide Residues and was thus considered as a mandatory compound within this PT. For each compound a residue definition valid for the PT and the minimum required reporting level (MRRL) were stipulated.

On 21 Janury 2020 an e-mail "call for registration" (see. **Appendix 11**) was sent to the participants (see Appendix 11). This e-mail also contained a link to the latest version of the "General Protocol" containing information common to all EUPTs (see **Appendix 8**) ; a link to the document "SupplementaryInformation on Analytes" entailing, among others, information on exemplary sources of analytical standards material (see **Appendix 13**); and a link to the latest version of the QuPPe-AO document, including an analytical procedure for highly polar compounds. The laboratories were able to register on-line from 18 January to 8 February 2020. Two weeks prior to the shipment of the PT material to the laboratories the "Specific Protocol" valid for the current PT was uploaded and a link sent to the participating laboratories via e-mail (see **Appendix 9**). A guide to the new webtool for the results submission (see **Appendix 12**) was provided to the participants one week before the shipment of the PT materials.

Based on commodity scope (food of animal origin) and NRL-status (NRL-SRMs) all laboratories were allocated a tentative status as regards their obligation to participate in the EUPT-SRM15. This status was stored in the DataPool, so that every participant could see it during the registration. To ensure that all relevant official laboratories were informed about this EUPT, the NRLs were asked to forward the invitation to all relevant official laboratories within their countries. It was made clear that the status of the laboratories was only tentative, and the real obligation to participate was based on the respective regulations. Obliged labs that did not intend to participate were asked to provide an explanation.

¹ SANCO/12745/2013 rev. 10(3); 26 – 27 November 2018

In total 57 participating labs from EU and EFTA countries and three laboratories outside EU submitted results of at least one compound. In addition, two laboratories from EU and EFTA countries registerted for participation but did not submit any result.

The proficiency test EUPT-SRM15 was conducted using calves' liver originated from Germany. The test itemwas prepared by spiking the finely ground liver, at around 0°C, with standard solutions containing in total 16 compounds, followed by thorrow homogenization, portionation into plastic bags, freezing, cryo-milling with dry ice and portionation into bottles. More details are given **Chapter 1 "Test Materials and Blank Material**".

1. TEST ITEM

1.1 Selection of PT-Commodity and of Compounds for the Target Pesticides List

In agreement with the EUPT-Scientic Committe and the EURL-CF, rice flour was chosen as commodity for both the EUPT-SRM15 and -CF14 and the raw material for the production of the test material for both EUPTs was organized together.

The compounds to be included in the Target Pesticides List (**Appendix 11**) were selected by the organiser and the EUPT-Scientific Committee (Advisory Group and Quality Control Group) taking the following points into account: 1) the present and upcoming scope of the EU-coordinated control program; 2) The scope of the SANTE working document on pesticides to be considered in national control programmes (SANCO/12745/2013 rev. 10(3); 26–27 November 2019); 3) the relevance of pesticides to the specific commodity; 4) the results of the survey on the analytical capabilities and intentions of the laboratories.

The minimum required reporting levels (MRRLs) were set at 0.01 mg/kg for 2,4-D (free acid), carbofuran (sum), chlormequat-chlorid, ethephon, fluazifop (free acid), haloxyfop (free acid), mepiquat-chloride, TFNA, TFNG, 2,4-D (sum), bentazone, fluazifop (sum), haloxyfop (sum), imazethapyr (free acid), MCPA (free acid), MCPA (free acid), MCPA (sum), MCPB (free acid), mecoprop (free acid), mecoprop (sum), quizalofop (free acid) and quizalofop (sum); at 0.02 mg/kg for diquat and paraquat, and at 0.03 mg/kg for glufosinate, glyphosate, MPP, N-acetyl glufosinate, AMPA and N-acetyl glyphosate.

Based on the fact that most of the rice consumed in Europe is imported from Asia and that rice can be grown in South of Europe only and that in Europe it is prohibited to apply most of the pesticides found in routine food control of rice, the production of the test material was subcontracted to a company/university in India. According to the instructions of EURL-SRM, part of the analytes were applied during cultivation and part of them post harvest. In parallel, rice without any exposure to pesticides was also grown. After harvesting, the rice grains were precessed (peeled and polished). All three parts, i.e. polished rice, husk and bran, were collected and shipped to EURL-SRM for the production of the PT Material.

There were four lots of the treated materials (Lot A1, Lot A3 Lot B1 and Lot B3) and one lot of blank material. Lots A1/B1 contained lower level of pesticides residues than that of Lots A3/B3. On Lots A other compounds were applied than on Lots B. Of all Lots we received polished rice, husks and bran. Details on portions arrived at EURL-SRM are shown in **Table 1-1**. Approximate half of each portion was delivered to EURL-CF for production of the EUPT-CF14 material.

	Lower Level of Pesticides Residues		Higher Level of Pe	Blank Rice	
	A1	A3	B1	B3	
Polished Rice [kg]	21	20.7	21.4	15.5	30
Bran [kg]	5.3	4.9	4.1	4	8.1
Hull [kg]	0.4	0.6	0.8	0.8	0.85

Table 1-1: Composition and amount of rice material arrived at EURL-SRM for preparation of the test material for the EUPT-SRM15 and EUPT-CF14

1.2 Preliminary Investigation of Treated Materials

In order to prepare spiking solutions for the PT test materials, the presence of the analytes on the Target Pesticides List as well as their residue levels were investigated in different rice and husk lots using four methods: QuEChERS entailing alkaline hydrolysis, modified QuEChERS for various compounds and QuPPe. As expected, the different lots of rice and bran contained different residue levels as shown in **Table 1-2**.

1.3 Investigation on the Analysis of Conjugates/Esters using QuEChERS after Alkaline Hydrolysis

In order to obtain satisfying results of analytes for which the full residue definition contains esters and conjugates the conditions for QuEChERS entailing alkaline hydrolysis were optimized using the following small scale studies.

1.3.1 Analysis of <u>SPIKED</u> Compounds using QuEChERS after Alkaline Hydrolysis and Determined as Free Acids

The impact of different modifications of QuEChERS entailing alkaline hydrolysis in rice matrix on the recovery rate of analytes spiked as acids, esters and glucosides was investigated. Recovery rates show satisfying yields regardless both of the modification of QuEChERS entailing alkaline hydolysis and the kind of conjugate (ester or glucoside) for compounds spiked on rice matrix. Results please see **Table 1-3**.

1.3.2 Analysis of <u>INCURRED</u> Compounds using QuEChERS after Alkaline Hydrolysis and Determined as Free Acids

The impact of different modifications of QuEChERS entailing alkaline hydrolysis in rice matrix on the yield of the sum parameters of free acids, esters and conjugates after alkaline hydrolysis was investigated. For incurred residues different modifications of QuEChERS entailing alkaline hydrolysis result in different yields of residues. There are conjugates which are easily hydrolyses to the their free acid and other conjugates need stronger conditions of alkaline hydrolysis to deliver satisfying yields. Results please see OBSERVATION and **Figure 1-1**.

Analytes spiked on test materia	Analytes spiked on test material rice in the field						
Analyte	sprayed	Extraction	A1	A3	B1	B3	
2.4-D	YES	Q + 1% FA/ Alk. Hydrol. + Q	0.066	0.14	n.n.	n.n.	
Bentazone	YES	Q + 1% FA	n.n.	n.n.	0.41	1.3	
Bispyribac-sodium	YES	Q + 1% FA	~0.006	~0.007	n.n.	n.n.	
Carbofuran	YES	Q + 1% FA	n.n.	n.n.	0.05	0.25	
Chlorothalonil	YES	Q + 1% FA	0.009	0.014	n.n.	n.n.	
Chlorothalonil 4-OH	Metabolite	Q + 1% FA	n.b.	0.001	n.n.	n.n.	
Haloxyfop (sum)	YES	Alk. Hydrol. + Q	n.n.	n.n.	0.15	0.52	
Imazethapyr	YES	Q + 1% FA	n.n.	n.n.	0.23	0.84	
Paraquat	YES	QuPPe-pos	n.n.	n.n.	0.06	0.2	
Propaquizafop	YES	Q + 1% FA	0.014	0.04	n.n.	n.n.	
Pymetrozine	YES	Q + 1% FA	0.006	0.016	n.n.	n.n.	
Quizalofop (sum)	Metabolite	Alk. Hydrol. + Q	0.028	0.052	n.n.	n.n.	

Table 1-2: Analytes of the different rice lots treated in the filed

		I) Acidic Analyte	s	
spiked as	2.4-D	Bentazone	Fluazifop	Haloxyfop	lmazethapyr
determined as	2.4-D	Bentazone	Fluazifop	Haloxyfop	lmazethapyr
A: 1 ml NaOH [5 M] + acidic QuEChERS	90%	87%	87%	89%	86%
B: 2 ml NaOH [5 M] + QuEChERS	95 %	98%	97 %	101%	86%
C: 2 ml NaOH [5 M] + acidic QuEChERS	101 %	105 %	97 %	103%	97 %
spiked as	МСРА	МСРВ	Mecoprop	Quizalofop	
determined as	МСРА	МСРВ	Mecoprop	Quizalofop	
A: 1 ml NaOH [5 M] + acidic QuEChERS	87%	89%	88%	91 %	
B: 2 ml NaOH [5 M] + QuEChERS	98%	111 %	100%	97%	
C: 2 ml NaOH [5 M] + acidic QuEChERS	98%	104%	102 %	96%	

Table 1-3: Recovery rate of spiked analytes in form of I) acidic analytes, II) esters and III) glucoside-ester in rice following various alkaline hydrolysis at 40 °C for 120 min, referred to the spiked concentration as 100 %

	II) Es	sters	
2,4-D ethylhexyl	Fluazifop butyl	Haloxyfop methyl	MCPA ethylhexyl
2.4-D	Fluazifop	Haloxyfop	МСРА
95 %	112 %	97 %	90%
99%	122 %	106 %	95%
97 %	115 %	104%	91 %
MCPB ethyl	MCPP trimethylpentyl	Propaquizafop	
МСРВ	Mecoprop	Quizalofop	
95 %	92 %	94%	
111 %	105 %	106%	
104%	104%	99%	
	2,4-D ethylhexyl 2.4-D 95% 99% 97% MCPB ethyl MCPB 95% 111% 104%	II) E2,4-D ethylhexylFluazifop butyl2.4-DFluazifop95%112%99%122%97%115%MCPB ethylMCPP trimethylpentylMCPBMecoprop95%92%111%105%104%104%	II) Esters 2,4-D ethylhexyl Fluazifop butyl Haloxyfop methyl 2.4-D Fluazifop Haloxyfop 95% 112% 97% 99% 122% 106% 97% 115% 104% MCPB ethyl MCPP trimethylpentyl Propaquizafop 95% 92% 94% 111% 105% 106% 104% 99% 99%

		III) Glucoside-Esters	
spiked as	2,4-D-Glucoside	Haloxyfop-Glucoside	MCPA-Glucoside
determined as	2.4-D	Haloxyfop	МСРА
A: 1 ml NaOH [5 M] + acidic QuEChERS	89%	97 %	84%
B: 2 ml NaOH [5 M] + QuEChERS	94 %	107 %	91 %
C: 2 ml NaOH [5 M] + acidic QuEChERS	88%	99%	81 %

Figure 1-1: Analysis of Incurred Compounds using QuEChERS after Alkaline Hydrolysis and Determined as Free Acids

1.3.3 Method Validation

The method validation for QuEChERS analytes was performed for esters of analytes of interest with QuECh-ERS entailing alkaline hydolysis. Alkaline Hydrolysis was conducted under different conditions like temperatur, time and the concentration of base during hydrolysis. The best results were obtained by alkaline hydrolysis with 2 ml NaOH [5M] at 40 °C for 120 min (**Table 1-4**, **p. 4**).

For the QuPPe-Method validation for analytes amenable to QuPPe please see: https://www.eurl-pesticides.eu/userfiles/file/meth_QuPPe_AO_V3_2.pdf.

1.4 Production, Bottling and Packaging of the Test Item

For the preparation of the test item 2 kg of rice blank material were spiked with 205 ml spiking solutions prepared according to **Table 1-5.** After evaporation the spiked rice together with 10 kg of polished rice from Lot A1, Lot A3 and Lot B1 each and 7.26 kg from Lot B3 were mixed with a drum-hoop mixer over night. Afterward, they were milled in portions with a rotor beater mill (Retsch Rotor Beater Mill SR 300) equipped with a 0.5 μ m sieve. In order to avoid overheating an process milling continuously, approximately 750 ml rice grains was manually premixed with 250 ml dry ice pellets (3 mm) prior to milling. The milled material was remixed with a drum-hoop mixer over 10h and weighted out in approx. 180 – 200 g portions into screw capped polyethylene plastic bottles. The bottles were numbered chronologically in the order of filling and sealed. After all test materials were bottled and sealed, one randomly choosen bottle with test item was packed into thermo-insulated polystyrene boxes, filled with two cooling elements and stored in a walk-in freezer at about –20 °C until packaging and dispatch to the participants. Parcel packaging was proceeded three days prior to the sample delivery, so that on the day of delivery the cooling elements were deep frozen.

Analyte	5	Rec.	RSD*	Analytes		Rec.	RSD*
spiked at 0.2 ppm	analyzed as	[%]	[%]	spiked at 0.2 ppm	analyzed as	[%]	[%]
2,4,5-T-isooctyl	2,4,5-T	92	5	Fluroxypyr meptyl	Fluroxypyr	91	3
2,4-D ethylhexyl	2,4-D	92	3	Haloxyfop methyl	Haloxyfop	96	2
2,4-DB methyl	2,4-DB	89	3	loxynil-octanoate	loxynil	96	4
2,4-DP ethylhexyl	2,4-DP	101	4	MCPA ethylhexyl	МСРА	85	4
Bromoxynil-heptanoate	Bromxynil	100	4	MCPB ethyl	МСРВ	87	3
Cyhalofop-butyl	Cyhalofop	89	3	Mecoprop trimethylpentyl	Mecoprop	96	1
Diclofop-methyl	Diclofop	98	1	Propaquizafop	Quizalofop	97	8
Fluazifop butyl	Fluazifop	98	3	Triclopyr-2-butoxyethyl ester	Triclopyr	96	4
Analytical replicates: n=3; RSI	D*: Relative Standard	d Deviatio	n				

Table 1-4: Results of method validation for analytes amenable to QuEChERS entailing alkaline hydrolysis with 2 ml NaOH [5M] at 40 °C for 120 min.

Analytes spiked using stock solutions (1 mg/ml H ₂ O), mixed with ~90 ml acetone for total approx. 40 kg test material						
Analyte	Amount [ml]	Theor. Spiked Conc. [mg/kg]	Incurred Conc. [mg/kg]	Theo. Final Conc. [mg/kg]		
Chlormequat-Cl [‡]	2.8	0.085		0.085		
Glyphosate	8.0	0.200	-	0.200		
Paraquat	7.2	0.180	~0.055	~0.235		
Analytes spiked using stock solutions (1 mg/ml ACN), mixed with ~70 ml acetone for total approx. 40 kg test material						
Analyte	Amount [ml]	Theor. Spiked Conc. [mg/kg]	Incurred Conc. [mg/kg]	Theo. Final Conc. [mg/kg]		
Carbosulfan [¶]	4.8	0.070	~0.065	~0.130		
Fluazifop-butyl [#]	3.0	0.064	-	0.064		
MCPA-Glucoside	5.5	0.076*	-	0.076*		
MCPB-methyl	2.8	0.066*	-	0.066*		
Mecoprop-trimethylpentyl	4.5	0.074*	-	0.074*		
Quizalofop	4.0	0.050	~0.020	~0.070		
TFNA	3.0	0.075	-	0.075		

Table 1-5: Analytes spiked into 2 kg blank rice for the preparation of approximate 40 kg test material

⁺ Stock solution: 1 mg chlormequate/ml; concentration in the spiked material referred to mg chlormequate-chlorid/kg

¹ Stock solution: 1 mg carbosulfan/ml; concentration in the spiked material referred to mg carbofuran/kg

[#] Stock solution: 1 mg Fluazifop / ml; concentration in the spiked material referred to mg Fluazifop-butyl/kg

* as the corresponding free acid (sum)

1.5 Delivery of PT Materials to Participants

On the day of dispatch, both PT corresponding persons of one participating laboratory received an e-mail from the shipping company (DHL Germany) entailing the individual online tracking number.

Among the 117 packages sent to laboratories in EU and EFTA countries, 105 (90 %) reached the participating labs within 24 hours, 9 packages within 48 hours and only one package arrived the recipient laboratory on the third day due to remote location. The delivery to countries outside the EU and EFTA zones was accomplished within 48 hours in three cases, 3 days in 2 cases as well as 5, 7 and 9 days for each of one case. The latter was, however, due to delays at the customs. Overall, the vast majority of the parcels arrived at the laboratories within two days. Details on the shipment duration are shown in **Appendix 2**. All dispatched material was accepted by the participants, and they reported its good condition when arriving, even arrival on the third or fourth day. Based on this results, it was judged that differences in shipment duration have had most likely no significant influence on the analyte concentrations (and the analytical results of the laboratories), and it was thus decided not to test the impact of shipment duration on analyte stability (see also **1.9 "Transport Stability Test"**).

At this point organisers would like to appeal to the participants to follow their own parcels via the online tracking tool of the shipping company in order to maintain the ability to take the necessary measures in case of delays, e.g., providing the customs with all necessary documents and asking for an acceleration of the clearance procedure or placing the parcel in a cool place until clearance is granted. The participants are furthermore encouraged to contact the local office of the shipping company to ensure optimal delivery timing.

1.6 Analytical Methods

The analytical methods used by the organisers to check the homogeneity and storage stability of the target analytes contained in the test item as well as the absence of target analytes which were neither applied in the field nor spiked in the laboratory are summarized in **Table 1-6**. For more details on the methods used, please refer to the EURL-SRM website: http://www.eurl-pesticides.eu (EURL-SRM-website \rightarrow EURL-SRM Methods or Analytical Observations).

During the investigation on analysis of conjugates/esters via alkaline hydrolysis prior to QuEChERS using the official method varying results were obtained in conjunction with the hydrolysis conditions like hydrolysis temperature and duration. Therefore, on 04.03.2020 the organizer distributed a method version for "Acidic Pesticides following hydrolysis" (SRM-43/(V1): https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EurlSrm_Observation_alkaline_hydrolysis_acidic_herbicides.pdf. The participants were welcome to use this procedure or any other methods.

1.7 Homogeneity Test

After filling the test item into the bottles, 10 bottles were randomly chosen for the homogeneity test and two analytical portions were taken from each bottle for analysis. Both the order of sample preparation and the order of extract injection into the analytical instruments were random. Matrix-matched calibration using extract prepared from blank material or procedural calibration using blank material were applied for quantification. For all compounds analytical portions of 5 g were used.

The statistical evaluation of the homogeneity test data was performed according to the International Harmonized Protocols published by IUPAC, ISO and AOAC [4, 6]. An overview of the statistical evaluations of the homogeneity test is shown in **Table 1-7**. The individual residue data of the homogeneity test is given in **Appendix 3**.

The acceptance criterion for the test item to be sufficiently homogeneous for the Proficiency Test was that s_{sam}^2 is smaller than c with s_{sam} being the between-bottle sampling standard deviation and $c = F_1 \times \sigma_{all}^2 + F_2 \times s_{an}^2$, F_1 and F_2 being constants with values of 1.88 and 1.01, respectively, and applying when duplicate samples are taken from 10 bottles. $\sigma_{all}^2 = 0.3 \times \text{FFP-RSD}$ (25%) × the analytical sampling mean of the analyte, and s_{an} is the estimate of the analytical standard deviation.

As all target compounds passed the homogeneity test, the test item was considered to be sufficiently homogenous and suitable for the EUPT-SRM15.

1.8 Storage Stability Test

In the Specific Protocol laboratories were recommended storing the samples in the freezer until analysis. The stability test samples were thus also stored under the same conditions. Shortly after the shipment of the samples to the participants, three of the spare test item bottles were chosen randomly. The portions of stability tests 1 were taken and extracted immediately. The remaining material for the stability tests 2 and 3 were placed in the freezer at -20 °C until performing the tests. The methods described in **Section 1.6** (**p. 6**) are applied for the tests**4**. The extracts of all stability tests corresponding to one method were stored in the freezer at -20 °C and measured iso-chronically (within the same sequence) at a day suitable for the laboratory.

Compound	Extraction	IS	Determinative analysis	Notes
2,4-D	Modified QuEChERS-Method (Acidic-QuECh-	Mecoprop D ₆	LC-MS/MS ESI (neg)	
TFNA	ERS):	Mecoprop D6	LC-MS/MS ESI (neg)	
Bentazone	of 10 mL water and IS / ILISs. extraction with ACN + 1 %	no IS	LC-MS/MS ESI (neg)	
Imazethapyr	formic acid (15 min), addition of partitioning salts	Mecoprop D ₆	LC-MS/MS ESI (neg)	
Quizalofop	(4 g MgSO ₄ , 1 g NaCl), 1 min shaking, centrifugation	Mecoprop D ₆	LC-MS/MS ESI (neg)	
Fluazifop*	(~4000 rpm, 5 min) and direct determination by LC-MS/	Mecoprop D ₆	LC-MS/MS ESI (neg)	
Haloxyfop*	in the Loi (heg.) mode.	Haloxyfop D_4	LC-MS/MS ESI (neg)	
TFNG*	-	Mecoprop D ₆	LC-MS/MS ESI (neg)	
MCPA*		Mecoprop D6	LC-MS/MS ESI (neg)	
MCPB*		Mecoprop D ₆	LC-MS/MS ESI (neg)	
Mecoprop*		Mecoprop D ₆	LC-MS/MS ESI (neg)	
			Dotorminativo	
Compound	Extraction	IS	analysis	Notes
Carbofuran sum	QuEChERS entailing Acidic Hydrolyses : Using the extract of QuEChERS method. Addition of 10 μ L H ₂ SO ₄ 5 N to 1 mL extract in a vial before heating for 3 h at 80 °C. Direct determination by LC-MS/MS in the ESI (pos)	Propyzamide D ₃	LC-MS/MS ESI (pos)	SRM-33
	mode.			
Compound	Extraction	IS	Determinative analysis	Notes
2,4-D sum	Modified QuEChERS Method (Acidic QuECh-	Mecoprop D ₆	LC-MS/MS ESI (neg)	SRM-43/(V1)
2,4-D sum Fluazifop sum	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses) :	Mecoprop D ₆ Propyzamide D ₃	LC-MS/MS ESI (neg) LC-MS/MS ESI (neg)	SRM-43/(V1) SRM-43/(V1)
2,4-D sum Fluazifop sum Haloxyfop sum	Modified QuECHERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses) : weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄	LC-MS/MS ESI (neg) LC-MS/MS ESI (neg) LC-MS/MS ESI (neg)	SRM-43/(V1) SRM-43/(V1) SRM-43/(V1)
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses) : weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min.	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆	LC-MS/MSESI (neg)LC-MS/MSESI (neg)LC-MS/MSESI (neg)	SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1)
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses) : weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ Mecoprop D ₆	LC-MS/MSESI (neg)LC-MS/MSESI (neg)LC-MS/MSESI (neg)LC-MS/MSESI (neg)	SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1)
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Mecoprop sum	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses) : weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H_2SO_{4r} addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4 g MgSO4, 1 g NaCl), 1 min shaking, centrifugation	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ Mecoprop D ₆	LC-MS/MS ESI (neg)	SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1)
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Mecoprop sum Quizalofop sum	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses) : weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4 g MgSO4, 1 g NaCl), 1 min shaking, centrifugation (~4000 rpm, 5 min) and direct determination by LC-MS/MS in the ESI (neg).	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆	LC-MS/MS ESI (neg)	SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1)
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Mecoprop sum Quizalofop sum	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses) : weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4 g MgSO4, 1 g NaCl), 1 min shaking, centrifugation (~4000 rpm, 5 min) and direct determination by LC-MS/MS in the ESI (neg).	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆	LC-MS/MS ESI (neg)	SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1)
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Mecoprop sum Quizalofop sum	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses) : weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4g MgSO4, 1g NaCl), 1 min shaking, centrifugation (~4000 rpm, 5 min) and direct determination by LC-MS/MS in the ESI (neg).	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆	LC-MS/MS ESI (neg)	SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) Notes
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Mecoprop sum Quizalofop sum Compound Chlormequat	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses): weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4 g MgSO4, 1 g NaCl), 1 min shaking, centrifugation (~4000 rpm, 5 min) and direct determination by LC-MS/MS in the ESI (neg). Extraction	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆ IS Chlormequat D ₄	LC-MS/MS ESI (neg)	SRM-43/(V1)
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Mecoprop sum Quizalofop sum Compound Chlormequat Glyphosate	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses): weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4 g MgSO4, 1 g NaCl), 1 min shaking, centrifugation (~4000 rpm, 5 min) and direct determination by LC-MS/MS in the ESI (neg). Extraction QuPPe-AO Method []: weighing of 5 g rice homogenate into a sealable vessel, addi- tion of Museument of the partition of a sealable vessel, addi- tion of Museument of the partition of a sealable vessel, addi- tion of Museument of the partition of a sealable vessel, addi- tion of Museument of the partition of a sealable vessel, addi- tion of Museument of the partition of the partin of the partition of the partition of the partition	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆ IS Chlormequat D ₄ Glyphosate ¹³ C ¹⁵ N	LC-MS/MS ESI (neg)	SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) QuPPe M4.1 QuPPe M1.6
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Quizalofop sum Quizalofop sum Compound Chlormequat Glyphosate Paraquat	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses): weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4 g MgSO4, 1 g NaCl), 1 min shaking, centrifugation (~4000 rpm, 5 min) and direct determination by LC-MS/MS in the ESI (neg). Extraction QuPPe-AO Method []: weighing of 5 g rice homogenate into a sealable vessel, addi- tion of ILISs, water adjustment, addition of methanol contain- ing 1% formic acid, addition of formic acid and EDTA, shaking,	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆ Chlormequat D ₄ Glyphosate ¹³ C ¹⁵ N Paraquat D ₈	LC-MS/MS ESI (neg) LC-MS/MS ESI (neg)	SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) QuPPe M4.1 QuPPe M4.1 QuPPe M4.1
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Mecoprop sum Quizalofop sum Compound Chlormequat Glyphosate Paraquat Ethephon*	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses): weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4 g MgSO4, 1 g NaCl), 1 min shaking, centrifugation (~4000 rpm, 5 min) and direct determination by LC-MS/MS in the ESI (neg). Extraction QuPPe-AO Method []: weighing of 5 g rice homogenate into a sealable vessel, addi- tion of ILISs, water adjustment, addition of methanol contain- ing 1% formic acid, addition of formic acid and EDTA, shaking, freeze-out, centrifugation, clean-up/ precipitation with	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆ Chlormequat D ₄ Glyphosate ¹³ C ¹⁵ N Paraquat D ₈ Ethephone D ₄	LC-MS/MS ESI (neg) LC-MS/MS ESI (neg)	SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) QuPPe M1.6 QuPPe M1.6 QuPPe M1.6
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Quizalofop sum Quizalofop sum Compound Chlormequat Glyphosate Paraquat Ethephon* Glufosinate*	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses): weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4 g MgSO4, 1 g NaCl), 1 min shaking, centrifugation (~4000 rpm, 5 min) and direct determination by LC-MS/MS in the ESI (neg). Extraction Weighing of 5 g rice homogenate into a sealable vessel, addi- tion of ILISs, water adjustment, addition of methanol contain- ing 1% formic acid, addition of formic acid and EDTA, shaking, freeze-out, centrifugation, clean-up/ precipitation with C18 and ACN, filtration with Ultrafiltration filters and direct determination by LC-MS/MS in the ESI (neg.).	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆ Chlormequat D ₄ Glyphosate ¹³ C ¹⁵ N Paraquat D ₈ Ethephone D ₄ Glufosinate D ₃	LC-MS/MS ESI (neg)	SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) SRM-43/(V1) QuPPe M4.1 QuPPe M1.6 QuPPe M1.6 QuPPe M1.6 QuPPe M1.6
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Quizalofop sum Quizalofop sum Compound Chlormequat Glyphosate Paraquat Ethephon* Glufosinate* Mepiquat*	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses): weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4 g MgSO4, 1 g NaCl), 1 min shaking, centrifugation (~4000 rpm, 5 min) and direct determination by LC-MS/MS in the ESI (neg).	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₈ Chlormequat D ₄ Glyphosate ¹³ C ¹⁵ N Paraquat D ₈ Ethephone D ₄ Glufosinate D ₃	LC-MS/MSESI (neg)LC-MS/MSESI (neg)	SRM-43/(V1) QuPPe M4.1 QuPPe M1.6 QuPPe M1.6 QuPPe M4.1 QuPPe M4.1
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Quizalofop sum Quizalofop sum Compound Chlormequat Glyphosate Paraquat Ethephon* Glufosinate* Mepiquat* MPP*	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses): weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4 g MgSO4, 1 g NaCl), 1 min shaking, centrifugation (~4000 rpm, 5 min) and direct determination by LC-MS/MS in the ESI (neg).	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆ Chlormequat D ₄ Glyphosate ¹³ C ¹⁵ N Paraquat D ₈ Ethephone D ₄ Glufosinate D ₃ Mepiquat D ₃	LC-MS/MSESI (neg)LC-MS/MSESI (neg)	SRM-43/(V1) QuPPe M1.6 QuPPe M1.6 QuPPe M1.6 QuPPe M1.6
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Quizalofop sum Quizalofop sum Compound Chlormequat Glyphosate Paraquat Ethephon* Glufosinate* Mepiquat* MPP* N-acetyl-glufosinate*	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses): weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4 g MgSO4, 1 g NaCl), 1 min shaking, centrifugation (~4000 rpm, 5 min) and direct determination by LC-MS/MS in the ESI (neg).	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₇ Mecoprop D ₈ Chlormequat D ₄ Glyphosate ¹³ C ¹⁵ N Paraquat D ₈ Ethephone D ₄ Glufosinate D ₃ Mepiquat D ₃ N-acetyl-glufosinate D ₃	LC-MS/MSESI (neg)LC-MS/MSESI (neg)	SRM-43/(V1) QuPPe M4.1 QuPPe M1.6
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Quizalofop sum Quizalofop sum Compound Chlormequat Glyphosate Paraquat Ethephon* Glufosinate* Mepiquat* MPP* N-acetyl-glufosinate* AMPA*	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses) : weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of JS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4 g MgSO4, 1 g NaCl), 1 min shaking, centrifugation (~4000 rpm, 5 min) and direct determination by LC-MS/MS in the ESI (neg).	Mecoprop D6 Propyzamide D3 Haloxyfop D4 Mecoprop D6 IS Glyphosate 13C15N Paraquat D8 Ethephone D4 Glufosinate D3 Mepiquat D3 MPP D3 N-acetyl-glufosinate D3 AMPA 13C15N	LC-MS/MSESI (neg)LC-MS/MSESI (neg)	SRM-43/(V1) QuPPe M1.6 QuPPe M1.6 QuPPe M1.6 QuPPe M1.6 QuPPe M1.6 QuPPe M1.6
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Quizalofop sum Quizalofop sum Compound Chlormequat Glyphosate Paraquat Ethephon* Glufosinate* Mepiquat* MPP* N-acetyl-glufosinate* AMPA* Diquat*	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses) : weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4 g MgSO4, 1 g NaCl), 1 min shaking, centrifugation (~4000 rpm, 5 min) and direct determination by LC-MS/MS in the ESI (neg).	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ IS Chlormequat D ₄ Glyphosate ¹³ C ¹⁵ N Paraquat D ₈ Ethephone D ₄ Glufosinate D ₃ Mepiquat D ₃ N-acetyl-glufosinate D ₃ AMPA ¹³ C ¹⁵ N Diquat D ₈	LC-MS/MSESI (neg)LC-MS/MSESI (neg)	SRM-43/(V1) Support <
2,4-D sum Fluazifop sum Haloxyfop sum MCPA sum MCPB sum Quizalofop sum Quizalofop sum Compound Chlormequat Glyphosate Paraquat Ethephon* Glufosinate* Mepiquat* MPP* N-acetyl-glufosinate* AMPA* Diquat* N-acetyl-glyphosate	Modified QuEChERS Method (Acidic QuECh- ERS entailing Alkaline Hyadolyses) : weighing of 5 g rice homogenate into a sealable vessel, optional addition of ILISs, water adjustment, addition of ACN and NaOH 5N. Extraction at 40°C in a waterbath for 120 min. Neutralisation with H ₂ SO ₄ , addition of IS, acidification with 100 µl formic acid and addition of partitioning salts without buffer (4 g MgSO4, 1 g NaCl), 1 min shaking, centrifugation (~4000 rpm, 5 min) and direct determination by LC-MS/MS in the ESI (neg).	Mecoprop D ₆ Propyzamide D ₃ Haloxyfop D ₄ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₆ Mecoprop D ₇ Mecoprop D ₈ Chlormequat D ₄ Chlormequat D ₄ Chlormequ	LC-MS/MSESI (neg)LC-MS/MSESI (neg)	SRM-43/(V1) QuPPe M1.6

Table 1-6: Analytical methods used by the organisers to check for the homogeneity and storage-stability of the pesticides present in the test item and to demonstrate the absence of other pesticides in the blank material.

Stability test 1 (extraction shortly before shipment):

14 February 2020 (analytes via QuPPe-AO-Method)
02 March 2020 (analytes via Acidic QuEChERS-Method/ QuEChERS + Acidic Hydolysis)
02 March 2020 (analytes via QuEChERS entailing Alkaline Hydrolysis)

Stability test 2 (extraction 10 days after shipment):

13 March 2020 (analytes via QuPPe-AO-Methods)
24 March 2020 (analytes via Acidic QuEChERS-Method/ QuEChERS + Acidic Hydolysis)
24 March 2020 (analytes via Acidic QuEChERS-Method/ QuEChERS + Acidic Hydolysis)
24 March 2020 (analytes via QuPPe-AO-Methods)
24 March 2020 (analytes via QuEChERS entailing Alkaline Hydrolysis)

Stability test 3 (extraction at the end of PT):

22 April 2020 (analytes via QuPPe-AO-Methods)
07 May 2020 (analytes via Acidic QuEChERS-Method/ QuEChERS + Acidic Hydolysis)
12 May 2020 (analytes via QuEChERS entailing Alkaline Hydrolysis)

A target compound is considered to be sufficiently stable if $|y_i - y| \le 0.3 \times \sigma_{pi}$, where y_i is the mean value of the last period of the stability test, y is the mean value of the first period of the stability test and σ_{pi} the standard deviation used for proficiency assessment, typically 25 % of the assigned value. Within the stability test, in which the samples were stored at -18 °C (= recommended conditions) over a period exceeding the duration of the PT, all analytes contained in the test item were shown to be sufficiently stable (**Table 1-8**, **p. 10**). For the compounds passing the test it was assumed that, if the recommended storage conditions were followed, the influence of sample storage on the results of these analytes was negligible at least throughout the duration of the EUPT.

The detailed results of all analyses conducted within the framework of the stability test are shown in **Table 1-8 (p. 10)** and **Appendix 4**.

1.9 Transport Stability Test

Except three laboratories outside the EU and EFTA all other participants received the sample packages within three days and in very good conditions. The results reported by the three laboratories having received the material on the fifth, seventh and ninth day did not imply any degradation of compounds. For these reasons, the organizer decided to skip the transport stability test in this PT.

1.10 Organisational Aspects

1.10.1 Laboratory Status – Mandatory and Optional Participation

Based on available information on NRL-status and commodity scope as recorded in the EURL-DataPool, the EU and EFTA OfLs and NRLs were preliminarily divided into those that were obliged to participate in the particular PT and those whose participation was voluntary. The available information on the pesticide scope covered by the laboratories was not considered due to concerns that it might not be up-to-date and/ or not applicable to the present commodity (rice). The OfLs were asked to update their status and scope several months prior to the PT. The NRLs were furthermore reminded of their responsibility of ensuring that the information concerning their network is up-to-date and that all obliged OfLs within their network were

			COMPULSORY	OPTIONAL COMPOUNDS						
	2,4-D (free acid)	Carbofuran (sum)	Chlormequat-Cl	Glyphosate	TFNA	2,4-D (sum)	Bentazone (free acid)	Fluazifop (sum)		
Analytical portion size [g]	5	5	5	5	5	5	5	5		
Mean [mg/kg]	0.056	0.097	0.083	0.20	0.064	0.055	0.339	0.067		
S _{sam} ²	6.5 x 10 ⁻⁷	0 x 10 ⁻⁰	5 x 10 ⁻⁷	0 x 10 ⁻⁰	0 x 10 ⁻⁰	5.5 x 10 ⁻⁷	6.2 x 10 ⁻⁶	0 x 10 ⁻⁰		
с	0.0042	0.0073	0.0062	0.015	0.0048	0.0041	0.025	0.005		
Passed/Failed	passed	passed	passed	passed	passed	passed	passed	passed		
				OPTIONAL C	OMPOUNDS					
	Haloxyfop (sum)	lmazethapyr (free acid)	MCPA (sum)	MCPB (sum)	MCPP (sum)	Paraquat	Quizalofop (free acid)	Quizalofop (sum)		
Analytical portion size [g]	5	5	5	5	5	5	5	5		
Mean [mg/kg]	0.15	0.22	0.064	0.058	0.068	0.233	0.046	0.063		
S _{sam} ²	2.4 x 10 ⁻⁶	5.9 x 10 ⁻⁶	0 x 10⁻⁰	0 x 10 ⁻⁰	1.4 x 10-7	1.8 x 10-5	0 x 10 ⁻⁰	0 x 10 ⁻⁰		
с	0.012	0.016	0.0048	0.0043	0.0051	0.017	0.0035	0.0047		
Passed/Failed	passed	passed	passed	passed	passed	passed	passed	passed		

Table 1-7: Statistical evaluation of homogeneity test data (n = 10), details please see Appendix 3.

informed of this EUPT. All NRLs and OfLs were informed that the division into "obliged" and "voluntary" was tentative and the real obligation for participation is derived from the respective regulations and their real scope.

Following DG-SANTE instructions, obliged labs that were not intending to participate in the EUPT-SRM15 were instructed to provide explanations for their non-participation.

1.10.2 Announcement / Invitation and EUPT-SRM15-Website

The EUPT-SRM15 was firstly scheduled to run from 27 January till 25 February, 2020. Within the EURL-Web-Portal an EUPT-SRM15-Website was set up on 14 October 2019 with links to all documents relevant to this EUPT (i.e., Announcement/Invitation Letter, Calendar, Target Pesticides List, Specific Protocol and General EUPT Protocol). These documents were uploaded to the EURL-Web-Portal and the CIRCA BC.

On 29 October 2019 the Announcement/Invitation Letter for the EUPT-SRM15 was published on the EUPT-SRM15-Website and sent to all NRL-SRMs, all OfLs analysing pesticide residues in food and feeding stuff within the framework of official controls, all laboratories performing import controls according to Reg. 669/2009/EC, as far as they were tracked in the EURL-DataPool, as well as to EU laboratories analys-

		Comp	Optional Compounds						
	2,4-D (free acid)	Carbofuran (sum)	Chlormequat-Cl	Glyphosate	TFNA	2,4-D (sum)	Bentazone (free acid)	Fluazifop (sum)	
		Storage	e at –18 °C (n	nean values i	in mg/kg)				
Analysis 1	0.059	0.096	0.082	0.202	0.066	0.055	0.35	0.066	
Analysis 2	0.056	0.095	0.079	0.205	0.063	0.058	0.35	0.069	
Analysis 3	0.056	0.10	0.084	0.205	0.063	0.058	0.34	0.065	
Deviation [mg/kg] ([%]) Analysis 3 vs. Analysis 1	0.003 (-5.1%)	0.004 (4.2%)	0.002 (2.4%)	0,003 (1.3%)	0.003 (-4.1%)	0.003 (5.1%)	0.011 (-3.2%)	0.0006 (-1.0%)	
$0.3 \times \sigma_{pt} [mg/kg]$	0.0039	0.00795	0.0069	0.015	0.0045	0.004	0.025	0.005	
Passed/Failed	passed	passed	passed	passed	passed	passed	passed	passed	
				Optional C	ompounds				
	Haloxyfop (sum)	Imazethapyr (free acid)	MCPA (sum)	MCPB (sum)	MCPP (sum)	Paraquat	Quizalofop (free acid)	Quizalofop (sum)	
		Storage	e at –18 °C (n	nean values i	in mg/kg)				
Analysis 1	0.15	0.22	0.063	0.057	0.068	0.23	0.047	0.062	
Analysis 2	0.15	0.21	0.066	0.059	0.073	0.22	0.048	0.061	
Analysis 3	0.15	0.21	0.067	0.059	0.072	0.23	0.048	0.059	
Deviation [mg/kg] ([%]) Analysis 3 vs. Analysis 1	0.005 (3.1%)	0.007 (-2.9%)	0.004 (5.8%)	0.002 (3.5%)	0.004 (5.9%)	0.009 (-3.9%)	0.0008 (1.8%)	0.003 (-4.6%)	
$0.3 \times \sigma_{pt} [\mathrm{mg/kg}]$	0.011	0.015	0.005	0.004	0.005	0.015	0.003	0.005	
Passed/Failed	passed	passed	passed	passed	passed	passed	passed	passed	

Table 1-8: Results of storage stability test (storage at -18°C). Please see the text or Appendix 4 for the dates of analysis for each analytes.

ing official organic samples within the frame of Reg. 889/2008/EC. The latter laboratories were considered eligible but not obliged to participate. It was indicated to the OfLs that their obligation to participate in EUPTs arises from the respective regulations, irrespective of the content of the tentative list of obliged laboratories. NRLs and OfLs from EFTA and EU-candidate countries were also invited if their contact data was available. Eight laboratories outside EU having registered for this PT were accepted to take part in this exercise. As always the results from laboratories outside EU and EFTA were not taken into accout for the establishment of the assigned values.

Due to difficulties to obtain suitable rice material with incurred pesticides for production of the test material for EUPT-SRM15 and EUPT-CF14 and in agreement with EURL-CF, -FV and -AO, the period for the EUPT-SRM15 was shifted from 10 February to 10 March 2020 that was communicated with the SRM15 participants on 19 December 2019. Due to delayed access to the webtool and in order to overcome some technical difficulties, the SRM15 deadline was firstly postponed to 17 March 2020 and finally to 31 March 2020 in order to take account of movement restrictions in conjunction with corona virus outbreak. During this extended submission period the participants had the possibility of accessing to the webtool from their home office and were asked to correct inconclusive/inconsistent method information entries.

1.10.3 Registration

Like in the previous EUPTs since 2017 the participants were able to register for this EUPT via a website connected to the EURL-DataPool. All laboratories being obliged to participate in the current EUPT, regardless of whether they were intending to participate in this exercise or not, were requested to either register or to state their reasons for non-participation using the same website. Upon registration or change of registration status, the labs received an electronic confirmation about their participation or non-participation in the current PT.

1.10.4 Additional Information provided to the participants

On 5 March, following some requests, the participants were provided with a document dealing with the analysis of acidic pesticides following alkaline hydrolysis and with links to other recently published documents by the EURL-SRM.

1.10.5 Distribution of the Test Items and the Blank Material

Except one participating laboratory with special agreement with the organiser to which the PT material was dispatched on 12 February, one deeply frozen bottle of test item (approx. 200 g) packed in a thermoinsulated polystyrene box including two gel-packs was shipped on 10 February, 2020 to each participating laboratory.

On 23 January, detailed instructions on how to treat the test item and blank material upon receipt were provided to the participating laboratories in the Specific Protocol (**Appendix 10**).

1.10.6 Webtool for Results Submission and Confidentiality

The "Webtool", an online submission tool allowing participants to submit sample acknowledgement and their results via a web browser, was constructed and used 2019 for the first time for all EUPTs on pesticides residues. This Webtool is utilized onwards. The login credentials unique to the registered email address of the PT responsible person are created after registration in the Webtool for the first time. They were sent to the registered email address before the Webtool was open for sample acknowledgement for a certain PT. Using his personal login credentials, the participant has an overview of all EUPTs on pesticides residues under this account and has access to results submission during the PT period.

The lab code of a laboratory for a certain PT is obtained when a participant, either as PT main or alternative contact person, login to this PT. The personal login credentials and the unique lab code for a certain PT warrantee the confidentiality. For further information on confidentiality please refer to the General EUPT Protocol (**Appendix 9**).

Due to unexcepted technical difficulties the Webtool became accessible one week after sample dispatch and the participants have received their login credentials from the programmer at the DTU. Via the Webtool all participants had access to the sample acknowledgement and results submission until the result submission deadline (31 March 2020). One week prior to the sample shipment the organizer provided the A guideline on the Webtool, including how to login to the webtool, how to get the lab code for the EUPT-SRM15, as well as all fields to be filled in., was provided as a link to the participants together with the Specific Protocol on 23 January. After the deadline, participants were informed on the presence of the spiked pesticides and if they had false negative results. In the latter case, they should report method details for compounds of false negative results via the Webtool.

The schedule of sample shipment and submission deadline was embedded in a workflow of the Webtool. Based on these two dates a reminder of certain activity is automatically sent to the participants. The Webtool for a dry matrix operated for the first time, contained a few errors and once started, the workflow could be stopped only hardly. Due to an error in query, the participants received incorrect information on false negative results. The software developer are working on improvement. In addition, five analytes (free acid of Fluazifop, Haloxyfop, MCPA, MCPB and Mecoprop) were present in the test material but at levels closed to the MRRL and the reporting limits of the most laboratories. The organizers have informed the participants having analysed for but not found these analytes and receiving false negative results that they should not regarded as false negative results.

1.10.7 Actions following Results Submission, Preliminary Report and Survey

Four EU-Laboratories and 1 EFTA-laboratory had originally registered to participate in the current PT but finally were not able to submit results due to corona crisis. One laboratory having started to submit its results was not able to complete its submission due to corona-shotdown. It was going to use its PT-results for internal quality control. Its results were not included in the establishment of the assigned values, and the *z*-scores of this laboratory were calculated for informative purpose only.

On 5 June, 2020, the preliminary report on the EUPT-SRM15 with the preliminary assigned values was released and sent to the participants. Due to an error that the results form the two participating laboratories in Serbia were not excluded from the results population for the establishment of the assigned values, the assigned values and z-scores in the preliminary report may differ slightly from those in the present Final Report. As the difference is not significant, no update report was followed.

The preliminary report contained comments from the organizers driven from the method information given by the participating laboratory. Those can be helpful to the participants to identify the error sources. Laboratories having submitted false positive or negative results were asked to provide information on the methods used for analysing those compounds. In addition, participants were asked to investigate the reasons for results with | z-score | > 2 and to report them.

In order to make method-based evaluation, 63 selected laboratories were additionally asked for more detailed information about their analytical methods for carbofuran (sum).

2. EVALUATION RULES

2.1 False Positives and Negatives

2.1.1 False Positives (FPs)

Any reported result with a concentration at or above the Minimum Required Reporting Level (MRRL) of an analyte in the Target Pesticides List which was (a) not detected by the organiser, even following repetitive analysis, and/or (b) not detected by the overwhelming majority (e.g. > 95 %) of the participants that analysed for this compound, is treated as a false positive result. Results of an analyte absent in the test item but with a value lower than the MRRL are excluded by the organiser and not considered as false positives. No z-scores are calculated for false positive results.

2.1.2 False Negatives (FNs)

These are results of target analytes reported as "analysed" but without reporting numerical values, although they were used by the organiser to prepare the test item and were detected, at or above the MRRL, by the organiser and the overwhelming majority of the participating laboratories. In accordance with the General Protocol z-scores for false negatives are calculated using the MRRL as the result, or using the lab's reporting-limit (RL), if this is lower than MRRL. Any RLs that are higher than the MRRL are not taken into account. Following the General Protocol, results reported as "< RL" without providing a numerical value are also judged as false negatives if the RL exceeds the MRRL.

2.2 Assigned Values (x_{pt}) and Calculation of the Respective Uncertainties $(u(x_{pt}))$

In accordance with EUPT-General Protocol (**Appendix 8**) the assigned values x_{pt} of each pesticide in the PT is established using the mean value of robust statistics using Algorithms A (x^*) [6] of all reported results from EU and EFTA countries. Results associated with obvious mistakes and gross errors may be excluded from the population for the establishment of the assigned values. The add-in "RobStat" provided by Royal Society of Chemistry was used to calculate the assigned values with the convergence criterion = 10^{-6} .

The uncertainty of the assigned values of each analyte is calculated according to ISO 13528:2015 [6] using the following equation:

$$u(x_{pt}) = 1.25 \times [(s^*)/\sqrt{p}]$$

Where $u(x_{pv})$ is the uncertainty of the assigned value in mg/kg, s^* is the robust standard deviation estimate in mg/kg and p is the number of data points considered (= the number of results used to calculate the assigned value). The factor 1.25 is based on the standard deviation of the median, or the efficiency of the median as an estimate of the mean, in a large set of results drawn from a normal distribution.

The tolerance for the uncertainty of the assigned value of each pesticide is calculated as $0.3 \times FFP$ - σ_{pt} , where FFP- σ_{pt} is the target standard deviation of the assigned value derived using a fixed standard deviation of 25 % (see **Section 2.3**). If $u(x_{pt}) < 0.3 \times FFP$ - σ_{pt} , is met, then the uncertainty of the assigned value is considered to be negligible and not needed to be considered in the interpretation of the proficiency test results.

Using the assigned value derived by robust mean, the z-scores of the participants' results were calculated

using the formula in **Section 2.4**. All Results achieving z-scores > 5 are regarded as outliers and excluded from the results population for the establishment of the assigned value, and the corresponding analyte is calculated again without those outliers.

2.3 Fixed Target Standard Deviation using FFP-Approach (*FFP*- σ_{pt})

Based on experience from previous EU Proficiency Tests on fruit and vegetables and cereals, the EUPT-Scientific Committee agreed to apply a fixed fit-for-purpose relative standard deviation (FFP-RSD) of 25 % for calculating the z-scores. The fixed target standard deviation using the fit-for-purpose approach (*FFP*- σ_{pt}), for each individual target analyte is calculated by multiplying the assigned value by the FFP-RSD of 25 %. In addition, the robust relative standard deviation of the assigned value (*CV**) is calculated for informative purposes.

2.4 z-Scores

For each combination of laboratory and target analyte a z-score is calculated according to the following equation:

$$z_i = (x_i - x_{pt}) / FFP - \sigma_{pt}$$

Where

- x_i is the result for the target analyte (i) as reported by the participant
 (For results considered as false negatives, x_i is set as equal to the respective minimum required reporting level (MRRL) or the laboratory reporting level (RL), if RL < MRRL.)
- x_{pt} is the assigned value for the target analyte (i)
- $FFP-\sigma_{pl}$ is the standard deviation for proficiency assessment using the fit-for-purpose approach (see above).

Any z-scores > 5 are set at 5 in calculations of combined z-scores (see 2.5.2).

The z-scores are classified as follows:

z ≤ 2	acceptable
2 < z < 3	questionable
z ≥ 3	unacceptable

For results considered as false negatives, z-scores are calculated using the MRRL or the RL, if RL < MRRL. No z-scores are allocated to false positive results.

2.5 Laboratory Classification

Based on the scope of target analytes covered by the laboratories in this exercise, laboratories are subdivided into Categories (A and B) in accordance with the rules in the General Protocol (Appendix 8). To be classified into Category A a laboratory should

- a) have analysed at least 90 % of the compulsory pesticides on the Target Pesticides List,
- b) have correctly reported concentration values for at least 90 % of the compulsory pesticides present in the test item,
- c) not have reported any false positive results.

2.5.1 Combined z-Scores

For informative purposes and to allow comparison of the overall performance of the laboratories the Average of the Absolute z-Scores (AAZ) is calculated for laboratories with 5 or more z-scores. **Combined z-scores are, however, considered to be of lesser importance than the individual z-scores**.

Average of the Absolute z-Scores (AAZ)

The AAZ is calculated using the following formula:

$$AAZ = \frac{\sum_{i=1}^{n} |z_i|}{n}$$

where "n" is the number of each laboratory's z-scores that are considered in this formula. This includes z-scores assigned for false negative results. For the calculation, any z-score > 5 is set at 5.

3. PARTICIPATION

122 laboratories from 37 countries (27 EU-Member States, 3 EFTA-countries, 1 EU candidate country and 6 countries outside Europa) originally registered for participation in the EUPT-SRM15. An overview of the participating laboratories and countries is given in **Table 3-1**. A list of all individual laboratories that registered for this EUPT is presented in **Appendix 1**. Malta was represented by its proxy-NRL-SRM based in the United Kingdom and one laboratory based in Germany with two subsidiaries for its routine analysis.

Among the 114 EU and EFTA OfLs having registered for participation in the current PT one obliged laboratory in France (SRM15-10) was not able to complete its submission due to COVID-19 lockdown. The results reported by this laboratory was not included in the establishment of the assigned values and their evaluation in Chapter 4 was for informative purpose only. From the same reason, two other obliged laboratories (each one from IT and ES) and two voluntary laboratories (each one from PL and ES) and one EFTA laboratory (CH) failed to submit any results. Finally, there were 108 EU/EFTA laboratories having submitted at least one result for this PT.

All 8 laboratories from non-EU/EFTA countries (2 from one EU candidate country and 6 from countries outside Europa) submitted results. The results submitted by these 8 laboratories located outside EU and EFTA countries were not taken into account when calculating the assigned values.

In total, 155 EU-OfLs, including NRL-SRMs, regardless of their commodity scope, as well as all EU-OfLs analysing for pesticide residues in food and feed of plant origin, were originally considered as being obliged to participate in the present EUPT. These laboratories were invited to register on the online registration page for their participation in the current PT or to provide an explanation for their non-participation.

30 obliged laboratories explained their non-participation with the fact that the matrix (rice) or the SRM15 target pesticides or both were out of their routine scope. Another one obliged laboratory (IT) was not able to participate in the surrent PT due to lack of personnel. Excluding those 31 laboratories that provided sufficient explanations and the additional 3 EU-OfLs that due to COVID-19 lockdown were not able to complete submission or report any results, the number of EU-laboratories considered as being obliged decreased to 121. Among the 98 obliged laboratories that have registered for this PT 98 laboratories finally submitted result. In addition, 13 EU-OfLs registered for participation on voluntary basis, and 11 of them submitted results. Out of the 155 obliged OfLs 26 (17 %) did neither register for the PT nor provide any explanation for non-participation. These laboratories originated from 8 countries as follows: IT (10×), each 4 from PL and ES, each 3 from DE and RO as well as each one from FR and UK.

EU: NRLs and OfLs												
	Ъе				Registered for Participation obliged + [on voluntary basis]			nitted sults				
Contracting Country ¹⁾	Labs originally considered to be obliged (*based on sco and NRL)	Labs providing expl. for non-participation	Obliged labs non particip. w/o giving expl.	Finally considered to be obliged	AII	NRL-SRMs	All	NRL-SRMs	Notes			
AT	1	0	0	1	1	1	1	1				
BE	6	1	0	5	5+[1]	1	5+[1]	1				
BE; NL	1	0	0	1	1	0	1	0				
BE; BG; FR; LU	1	0	0	1	1	0	1	0				
BG	2	1	0	1	1	1	1	1				
СҮ	2	1	0	1	1	1	1	1				
CZ	3	0	0	3	3	1	3	1				
DE	22	2	3	20	17+[2]	1	17+[2]	1				
DK	2	1	0	1	1	1	1	1				
EE	2	0	0	2	2	1	2	1				
FI	2	0	0	2	2	2	2	2				
FR	9	0	1	9	8+[1]	1	7+[1]	1	1 none submission (obliged)			
GR	3	1	0	2	2	2	2	2				
HR	8	3	0	5	5	1	5	1				
HU	4	0	0	4	4	1	4	1				
IE	1	0	0	1	1	1	1	1				
IT	25	6	10	19	9+[1]	1	8+[1]	1	1 none submission (obliged)			
LT	2	0	0	2	2	1	2	1				
LU	1	0	0	1	1	1	1	1				
LV	1	0	0	1	1	1	1	1				
MT	3	2	0	1	1+[1]		1+[1]		MT: subcontracts UK-NRL-SRM as Proxy-NRL + one lab in DE with two subsidiaries for routine controls			
NL	1	0	0	1	1	1	1	1				
PL	11	5	4	6	2+[4]	1	2+[3]	1	1 none submission			
PT	4	1	0	3	3	1	3	1				
RO	7	2	3	5	2	1	2	1				
SE	2	0	0	2	2	1	2	1				
SI	3	1	0	2	2	1	2	1				
SK	1	0	0	1	1	1	1	1				
ES	23	4	4	19	15+[2]	2	14+[1]	2	2 none submission (one of them obliged)			
UK	1	0	1	1								
UK; MT	1	0	0	1	1	1	1	1	UK-NRL-SRM functions also for MT-NRL-SRM			
EU Total	155	31	26	124*	98+[13]	30	95+[11]	30				
* Excluding 3 number redu	obliged uced to 12	EU OfLs t 21.	hat due t	o COVID	-19 lockdown	were not able	to complet	e submissio	on or report any result, the			

Table 3-1: Number of laboratories listed as being obliged to participate in the EUPT-SRM15, labs that registered to participate, and labs that finally submitted results (grouped by contracting country)

EFTA: NRLs and OfLs													
	id NRL)				Registered for obliged + [on v	r Participation voluntary basis]	Subn Res	nitted ults					
Contracting Country ¹⁾	Lists undered to be obliged ("based on scope a		Finally considered to be obliged	Obliged labs non particip. w/o giving expl.	AII	NRL-SRMs	AII	NRL-SRMs	Notes				
СН					[1]	0	0	0	1 none submission				
IS					[1]	0	[1]	0					
NO					1	1	1	1					
EU+EFTA Total					99+[15]		96+[12]						
Countries outsi	ide Europa												
BR	1				1		1						
BY	1				1		1						
HK/CN	1				1		1						
CR	1				1		1						
RS	2				2		2						
SG	1				1		1						
TH	1				1		1						
Countries outsi	de Europa	Total			8		8						

 Table 3-1 (cont.): Number of laboratories listed as being obliged to participate in the EUPT-SRM15, labs that registered to participate, and labs that finally submitted results (grouped by contracting country)

4. **RESULTS**

4.1 Overview of Results

An overview of the percentage of laboratories having targeted each of the analytes present in the Target Pesticides List is shown in **Table 4-1**. **Table 4-2** (**p. 21**) gives an overview of all results submitted by each laboratory. The individual numerical results reported by the laboratories are shown in **Table 4-8** (**p. 21**).

			Labs analysed for the compound									
		Present	EU	¹⁾ - and EFTA-Labs	EU Obliged Labs only							
Com	pounds	in Test Item	No. ²⁾	% (based on <i>n</i> =108 ³⁾)	No. ²⁾	% (based on <i>n</i> = 121 ⁴⁾)						
	2,4-D (free acid)	Yes	89	82%	81	67%						
	Carbofuran (sum)	Yes	92	85%	81	67 %						
	Chlormequat-Cl	Yes	88	81 %	78	64%						
spu	Ethephon	No	73	68%	64	53%						
nod	Fluazifop (free acid)	Trace	85	79%	77	64%						
l mo	Glufosinate	No	70	65%	63	52%						
2	Glyphosate	Yes	84	78%	76	63%						
Isol	Haloxyfop (free acid)	Trace	87	81 %	78	64%						
ndu	Mepiquat-Chloride	No	87	81 %	78	64%						
Cor	MPP (= MPPA)	No	55	51 %	49	40 %						
	N-Acetyl glufosinate	No	51	47 %	45	37 %						
	TFNA	Yes	72	67%	64	53 %						
	TFNG	No	71	66%	63	52%						
	2,4-D (sum)	Yes	66	61 %	58	48%						
	АМРА	No	70	65 %	62	51 %						
	Bentazone	Yes	77	71%	68	56%						
	Diquat, expr. as dication	No	37	34%	30	25%						
	Fluazifop (sum)	Yes	66	61 %	58	48%						
ds	Haloxyfop (sum)	Yes	65	60%	57	47 %						
ůn	Imazethapyr (free acid)	Yes	40	37%	33	27%						
du	MCPA (free acid)	Trace	77	71 %	70	58%						
ē	MCPA (sum)	Yes	66	61 %	58	48%						
nal	MCPB (free acid)	Trace	66	61 %	59	49%						
ptic	MCPB (sum)	Yes	60	56%	52	43 %						
0	Mecoprop (free acid)	Trace	67	62%	61	50%						
	Mecoprop (sum)	Yes	59	55%	52	43 %						
	N-Acetyl glyphosate	No	34	31 %	31	26%						
	Paraquat	Yes	34	31 %	28	23%						
	Quizalofop (free acid)	Yes	64	59%	58	48%						
	Quizalofop (sum)	Yes	54	50 %	48	40%						

Table 4-1: Percentage of EU and EFTA laboratories that have analysed for the compounds in the Target Pesticides List

1) Including official laboratories participating on voluntary basis

2) Laboratories representing more than one country were counted only once.

3) 108 OfLs from EU and EFTA countries (incl. NRLs and OfLs participating on voluntary basis) have submitted at least one result.

4) 121 OfLs (including NRLs) from EU countries were finally considered as obliged to participate in the EUPT-SRM15 (taking into account any explanations for non-participation).

			Compulsory Compounds														Option	al Comp		
Comp listed Target	ound on th t List	ls 1e	2,4-D (free acid)	Carbofuran (sum)	Chlormequat-Cl	Ethephon	Fluazifop (free acid)	Glufosinate	Glyphosate	Haloxyfop (free acid)	Mepiquat-Chloride	MPP (= MPPA)	N-Acetyl glufosinate	TFNA	TFNG	ind (Compulsory Compounds)	2,4-D (sum)	AMPA	Bentazone	
within	MAG	СР	МАСР	МАСР	MACP + WD	МАСР	МАСР	МАСР	MACP + WD	МАСР	MACP + WD	МАСР	МАСР	МАСР	МАСР	/ fou	МАСР	WD*		
prese	nt in		Yes	Yes	Yes	No	Trace	No	Yes	Trace	No	No	No	Yes	No	rectly	Yes	No	Yes	
evalua	em ated i	in	Yes	Vec	Vec	No	No	No	Yes	No	No	No	No	Yes	No	/cori	Yes	No	Ves	
this P	ſ		163	163	163	NO	NO		Tes	NO		NO	NO	Tes	NO	ysed	163		ies	
Code SRM15-	NRL	Cat.														anal				
5		В	FN													1/0	v			
8	×	В		V	V	ND		ND	V		ND	ND	ND	V	ND	10/4	V	ND	V	
9	×	В	V	V	V	ND	ND	ND	V	ND	ND	ND	ND			11/4	V	ND	V	
11		В	V	V	V		ND		V	ND	ND					7/4				
12	×	A	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
13	×	A		V	V	ND	ND	ND	V	ND	ND	ND		V	ND	12/5	V	ND	V	
10	×	A D	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
10		Δ	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	17/1	V	ND	V	
20	×	B	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	v	ND	6/4	V	ND	V	
21	×	A	v	v	v	ND	ND	ND	v	ND	ND	ND	ND	V	ND	13/5	v	ne	v	
22	×	В	v	V	V	ND	ND		V	ND	ND			V	ND	10/5	V		V	
23	×	Α	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5		ND	V	
24		Α	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
25		В	V	V	V		ND			ND	ND					6/3	V		V	
26		А	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	٧	
27		Α	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V		۷	
28		Α	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5		ND	V	
30		В	V	V	V	ND	ND	ND	V	ND	ND			V	ND	11/5	V	ND	V	
31		A	V		V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	12/4	V	ND	V	
32		A		V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
33		D A		V	V		ND		V	ND		ND	ND	V	ND	0/3	V		V	
34		A	V	V	V	ND	ND	ND	v	ND	ND	ND	ND	V		13/5	V	ND	V	
36		В	v	V	v	ND		n.D	V	n.D	ND			4		1/1		ND		
37		В	V	V	V	ND	ND		v	ND	ND			V	ND	10/5	V		V	
38		В		V	V						ND				_	3/2				
39		А	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5		ND	V	
40		В	V	V			ND			ND				V	ND	6/3	V		V	
41	×	В	FN	V		ND		ND	V		ND					6/2				
*. C+	ro roci	iduo c	lofinitio	» MAC	D Dom	DECUL		11) 2010	/522 of	20 Marc	h 2010.		D. Work	ina dac	umonto	n nostici	doc to b			

Table 4-2: Scope and categorization of participating laboratories (including third country laboratories and one laboratory having started submission but was not able to complete it due to COVID-19 lockdown)

*: Future residue definition; MACP-Reg.: REGULATION (EU) 2019/533 of 28 March 2019; NCP-WD: Working document on pesticides to be considered for inclusion in the national control programmes to ensure compliance with maximum residue levels of pesticides residues in and on food of plant and animal origin; SANCO/12745/2013; 26–27 November 2018rev. 10(3)

V = analysed for and submitted concentration \underline{V} alue > "MRRL" for a pesticide present in the test item; ND = analysed for and correctly reported as " \underline{N} ot \underline{D} etected"; **Empty cells**: not analysed; **FN** = analysed for but falsely not detected (<u>False N</u>egative result); **FN** = analysed for a compound present in the test material and reported not detected due to lab's RL > assigned value, therefore judged as FN; **FP** = false positive result; (*FP*) = Result reported as " \leq MRRL" and, therefore, not regarded as FP

				Optional Compounds Tota														Total	
Compounds listed on the Target List within MACP present in Test Item evaluated in this PT		ls ie CP	o N B Diquat, expr. as dication	(mazifop (sum) Macb Acs Acs	(uns) Haloxitob (snm) Yes	se A Imazethapyr (free acid)	MCPA (free acid) MCPA (free acid)	VestVe		A Quizalofop (free acid)	(moto (sum) Yes Yes	sed / correctly found (Optional Compounds)	sed / correctly found (Total)						
	Lab- Code	NDI	Cat															analy	analy
	5 SKM15-	NKL	B															1/1	2/1
	8	×	B	ND	V	v	V		V		V		FN	ND	V		FN	13/8	23/12
	9	×	В		V	V		ND	V			ND	V			V	V	11/8	22/12
	11		В															0/0	7/4
	12	×	Α	ND	V	V	V	ND	V	ND	V	ND	V	ND	V	V	V	17/11	30/16
	13	×	А	ND	V	V		ND	V	ND	V	ND	V	ND	V	V	V	16/10	28/15
	16	×	А	ND	V	V	V	ND	V	ND	V	ND	V	ND	V	V	V	17/11	30/16
	18		В															0/0	1/1
	19		Α	ND	V	FN		ND	V	ND	V	ND	V	ND	V	V	V	16/9	29/14
	20	×	В		V			ND				ND				V		6/3	12/7
	21	×	Α	ND	V	V		ND	V	ND	V	ND	FN		V	V	V	14/9	27/14
	22	×	В		V	V		ND	V	ND	V	ND	V			V	V	12/9	22/14
	23	×	Α					ND		ND		ND		ND		V		7/2	20/7
	24		A	ND	V	V		ND	V	ND	V	ND	FN	ND	V	V	V	16/9	29/14
	25		В		V	V		ND	V	ND	V	ND	V			V	V	12/9	18/12
	26		A	ND	V	V	V	ND	V	ND	V	ND	V	ND	V	V	V	17/11	30/16
	27		A		V	V		ND	V	ND	V	ND	V	ND				11/7	24/12
	28		A				V	ND		ND		ND				V		7/3	20/8
	30		B	ND	V	V	V	ND	V	ND	FN	ND	FN	ND	V	V		15/8	26/13
	31		A		V	V		ND	V	ND		ND		ND		V	V	10//	22/11
	32		A		V	V		ND	V	ND	V	ND	V	ND		V	V	14/9	27/14
	33		B	ND	V	V	V	ND		ND		ND		ND	V	ENI	V	9/5	15/8
	34		A	ND	V	V	V	ND	FIN	ND	FN	ND	FN		V		V	0/2	30/12
	35		R				v	ND		ND		ND		ND		v		0/3	21/0
	37		B		V	V		ND	V	ND	V	ND	FN			V	V	12/8	27/13
	38		B		V	v			v		v					V		0/0	3/2
	39		A									ND						3/1	16/6
	40		B		V	V		ND	V									6/5	12/8
	41	×	B		V	v			•									2/2	8/4
	*: Futu	re resi	due d	efinitior	n; MACP	- Reg. : R	EGULAT	FION (EU)) 2019/5	33 of 28	March 2	2019; NC	P-WD: V	Vorking	docum	ent on p	esticide	s to be cor	nsidered
						-			-					5					

Table 4-2 (cont.): Scope and categorization of participating laboratories (including third country laboratories and one laboratory having started submission but was not able to complete it due to COVID-19 lockdown)

for inclusion in the national control programmes to ensure compliance with maximum residue levels of pesticides residues in and on food of plant

and animal origin; SANCO/12745/2013; 26-27 November 2018rev. 10(3) V = analysed for and submitted concentration Value > "MRRL" for a pesticide present in the test item; ND = analysed for and correctly reported as "Not Detected"; Empty cells: not analysed; FN = analysed for but falsely not detected (Ealse Negative result); FN* = analysed for a compound present in the test material and reported not detected due to lab's RL > assigned value, therefore judged as FN; **FP** = false positive result; (*FP*) = Result reported as " \leq MRRL" and, therefore, not regarded as FP

				Compulsory Compounds													Option	al Comp		
Comp listed Target	ounc on th t List	ds ne	2,4-D (free acid)	Carbofuran (sum)	Chlormequat-Cl	Ethephon	Fluazifop (free acid)	Glufosinate	Glyphosate	Haloxyfop (free acid)	Mepiquat-Chloride	MPP (= MPPA)	N-Acetyl glufosinate	TFNA	TFNG	ind (Compulsory Compounds)	2,4-D (sum)	AMPA	Bentazone	
within	MA	СР	МАСР	МАСР	MACP + WD	МАСР	МАСР	МАСР	MACP + WD	МАСР	MACP + WD	МАСР	МАСР	MACP	MACP	y fou	МАСР	WD*		
presei Test It	nt in em		Yes	Yes	Yes	No	Trace	No	Yes	Trace	No	No	No	Yes	No	rrect	Yes	No	Yes	
evalua	ated r	in	Yes	Yes	Yes	No	No	No	Yes	No	No	No	No	Yes	No	d / co	Yes	No	Yes	
Lab- Code																nalyse				
SRM15-	NRL	Cat. B			V						ND					r o 2/1				
44		A	v	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	v	ND	V	
45	×	Α	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5		ND	V	
46	×	Α	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
47		В		V	V	ND		ND	V		ND	ND	ND	V	ND	10/4	V	ND	V	
48		A	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
49		A		V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
50		Δ	V	V	V	ND			V			ND	ND	V EN*		10/5	V		V	
54		B		v	V	ND	ND	ND	V	ND	ND	ND	ND	114	ND	3/1	V	ND	v	
55		B	V	V	V	ND	ND	ND	V	ND	ND			V	ND	11/5	V		V	
56		Α	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
57		Α	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
58		В	V	V		ND	ND	ND	V	ND		ND	ND			9/3	V	ND		
59		В	V	V	V		ND		V	ND	ND					7/4	V		V	
60		В	V	V			ND			ND						4/2			V	
61	×	B		V	V	ND	ND	ND	V	ND	ND	ND	ND		ND	7/4		ND	N/	
62	×	R	V	V	V		ND		V	ND	ND			V	ND	5/1	V		V	
64		B	V	V	V	ND	ND	ND	V	ND	ND			V	ND	11/5	V	ND	V	
65	×	A	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	FN	ND	13/4		ND	V	
66		Α	v	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
67		Α	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
68	×	В	V		V		ND		V	ND	ND			V	ND	8/4	V	ND		
69		В	V	V				ND	V							4/3		ND	V	
70		В		V												1/1				
71	×	В	V	V	V	ND	ND			ND	ND			V	ND	9/4	V		V	
74	×	A	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
75		B	V	V	V	ND	ND		V	ND	ND			V	ND	10/5		ND		
* Eutu	X re rec	B	V lefinitio	۷ n· MAC	V P-Rog	REGULA		U) 2010)/522 of	ND 28 Marc	ND h 2010-	NCP.W	D: Work	V ing doc		8/4	des to b	e con-		
	reres	iuuet	iem nuo	I, WAC	i -neg.:			.0, 2015	וט ככב ה		.11 2019;	NCP-W		ing uoc	unent	n pesuci	ues 10 D			

Table 4-2 (cont.): Scope and categorization of participating laboratories (including third country laboratories and one laboratory having started submission but was not able to complete it due to COVID-19 lockdown)

sidered for inclusion in the national control programmes to ensure compliance with maximum residue levels of pesticides residues in and on food of plant and animal origin; SANCO/12745/2013; 26–27 November 2018rev. 10(3) \mathbf{V} = analysed for and submitted concentration <u>V</u>alue > "MRRL" for a pesticide present in the test item; \mathbf{ND} = analysed for and correctly re-

V = analysed for and submitted concentration Value > "MRRL" for a pesticide present in the test item; ND = analysed for and correctly reported as "Not Detected"; **Empty cells**: not analysed; **FN** = analysed for but falsely not detected (False Negative result); **FN** = analysed for a compound present in the test material and reported not detected due to lab's RL > assigned value, therefore judged as FN; **FP** = false positive result; (*FP*) = Result reported as " \leq MRRL" and, therefore, not regarded as FP
									Ор	tiona	l Coi	mpou	Inds						Total
	Comp listed Targe	ound on th t List	ls ie	Diquat, expr. as dication	Fluazifop (sum)	Haloxyfop (sum)	Imazethapyr (free acid)	MCPA (free acid)	MCPA (sum)	MCPB (free acid)	MCPB (sum)	Mecoprop (free acid)	Mecoprop (sum)	N-Acetyl glyphosate	Paraquat	Quizalofop (free acid)	Quizalofop (sum)	ound (Optional Compounds)	ound (Total)
	within	n MAG	LP	WD	МАСР	МАСР		WD	WD	WD	WD			WD*	wD	wD	WD*	tly fo	tly f
	Test It	em		No	Yes	Yes	Yes	Trace	Yes	Trace	Yes	Trace	Yes	No	Yes	Yes	Yes	orred	orred
	evalua this P	ated i T	in	No	Yes	Yes	Yes	No	Yes	No	Yes	No	Yes	No	Yes	Yes	Yes	ed / c	ed / c
	Lab- Code SRM15-	NRL	Cat.															analys	analys
	42	×	В	ND											V			2/1	4/2
	44		А	ND	V	V	V	ND	V	ND	V	ND	V	ND	V	V	V	17/11	30/16
_	45	×	Α	ND				ND		ND								5/1	18/6
	46	×	A		V	V		ND	V	ND	V	ND	FN			V	V	13/8	26/13
	47		В	ND	V	V	V		V		V		FN		V		V	12/9	22/13
	48		A		V	V	V	ND	V	ND	V	ND	V	ND		V	V	15/10	28/15
	49		A	ND	V	V	V	ND	V	ND	V	ND	V	ND	V	V	V	17/11	30/16
	50		В	ND	V	V	V	ND	V	ND	V	ND				V		10/11	26/16
	54		R	ND	V	V	V	ND	V	ND	V	ND	FN	ND	FN	V	FN	1//8	30/12
	55		B		V	V	V	ND	V	ND	V	ND	V			V	V	13/10	4/1
	56		A	ND	V	V	v	ND	v	ND	v	ND	v	ND		v	v	16/10	29/15
_	57		A	ND	V	v	V	ND	v	ND	V	ND	v	ND	V	V	V	17/11	30/16
	58		В		V	V		ND	V	ND	V			ND		V	V	11/7	20/10
	59		В		V	V		ND	V	ND	V	ND	V			V	V	12/9	19/13
	60		В				V	ND				ND						4/2	8/4
	61	×	В					ND				ND						3/0	10/4
	62	×	Α		V	V		ND	V	ND	V	ND	V					11/7	24/12
	63		В															1/0	6/1
	64		В	ND	V	V	V		V		V		FN		V	V		12/9	23/14
_	65	×	Α	ND			V	ND		ND		ND		ND	V	V		10/4	23/8
	66		A	ND				ND	V	ND			FN		V	V	V	11/6	24/11
_	67		A	ND	V	V		ND	V			ND	V		V	V	V	13/9	26/14
	68	×	B		V	V		ND	V	ND	V	ND	FN					10/5	18/9
	69		B					ND										3/1	1/4
	70		B			V	V	ND	1/	ND	1/	ND				. V	V	0/0	1/1
	71	X	D	ND	EN	V	V		V		V		EN	ND	V	V	V	17/0	20/12
	74	×	P	ND	FN	V	V	ND	V	ND	V	ND	FN	ND	V	V	V	1/9	30/14
	75	¥	B															0/0	8/4
	*: Futu	ire resi	idue d	efinitio	n; MACP	- Reg. : R	EGULAT	ION (EU)	2019/5	33 of 28	March 2	2019; NC	P-WD: V	Vorkina	docume	ent on p	esticide	s to be co	nsidered
	1													5					

Table 4-2 (cont.): Scope and categorization of participating laboratories (including third country laboratories and one laboratory having started submission but was not able to complete it due to COVID-19 lockdown)

*: Future residue definition; MACP-Reg.: REGULATION (EU) 2019/533 of 28 March 2019; NCP-WD: Working document on pesticides to be considered for inclusion in the national control programmes to ensure compliance with maximum residue levels of pesticides residues in and on food of plant and animal origin; SANCO/12745/2013; 26–27 November 2018rev. 10(3)

V = analysed for and submitted concentration \underline{V} alue > "MRRL" for a pesticide present in the test item; ND = analysed for and correctly reported as "Not \underline{D} etected"; **Empty cells**: not analysed; **FN** = analysed for but falsely not detected (<u>Ealse Negative result</u>); **FN*** = analysed for a compound present in the test material and reported not detected due to lab's RL > assigned value, therefore judged as FN; **FP** = false positive result; (*FP*) = Result reported as " \leq MRRL" and, therefore, not regarded as FP

							Со	mpu	lsory	Con	npou	nds					Option	al Comp	ounds	
Comp listed Target	ound on th t List	ds ne	2,4-D (free acid)	Carbofuran (sum)	Chlormequat-Cl	Ethephon	Fluazifop (free acid)	Glufosinate	Glyphosate	Haloxyfop (free acid)	Mepiquat-Chloride	MPP (= MPPA)	N-Acetyl glufosinate	TFNA	TFNG	ound (Compulsory Compounds)	2,4-D (sum)	AMPA	Bentazone	
within	MAG	СР	MACP	MACP	WD	MACP	MACP	MACP	WD	MACP	WD	MACP	MACP	MACP	MACP	iy fe	MACP	WD*		
preser Test It	nt in em		Yes	Yes	Yes	No	Trace	No	Yes	Trace	No	No	No	Yes	No	orrect	Yes	No	Yes	
evalua this P1	nted i	in	Yes	Yes	Yes	No	No	No	Yes	No	No	No	No	Yes	No	sed / c	Yes	No	Yes	
Lab- Code SRM15-	NRL	Cat.														analy				
79		В		V	V				V							3/3				
80		В			V		ND			ND	ND					4/1				
82		В		V	V		ND			ND						4/2			V	
84		В	V				ND			ND						3/1	V			
85		В														0/0				
87	×	A	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
88	×	B		V	V	ND	ND	ND	V	ND	ND				ND	9/4		ND	V	
90		В	V	V	V	ND	ND	ND	V	ND	ND			V	ND	12/5	V	ND	V	
91	×	R	V	V	V				V			ND	ND	V		10/4	V	ND	V	
92		B	V	V	v	ND	ND	ND	V	ND	ND			V	ND	6/3	V	ND	V	
94		B	v	V	V	ND	ND	ND	V	ND	ND			FN	ND	11/4	V		V	
95	×	B	v	v	V	ne.	ND		v	ND	ND			v	ND	9/5			v	
96		В	V	V	V	ND	ND	ND	V	ND	ND	ND		-		10/4	v	ND	V	
97		В	v	V			ND			ND				V	ND	6/3				
98		Α	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
99		В	FN	V	V	ND	ND	ND	V	ND	ND			V	ND	11/4	V	ND	V	
100		В		V	V	ND		ND	V	ND	ND	ND	ND	V	ND	11/4	V	ND	V	
101		В			V	ND	ND		V	ND	ND					6/2			V	
102		В	V	V	V	ND	ND		V	ND	ND					8/4				
103	×	Α	V	V	V	ND	ND	ND	V	ND	ND	ND		V	ND	12/5	V		V	
104		В		V												1/1				
105	×	B	V	V	V		ND			ND	ND			V	ND	8/4				
107		B	V	V	V	ND	ND	ND	V	ND	ND	ND	ND		ND	11/4		ND		
108	×	A	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND		
109		R	V	V	v	ND	ND	ND	V	ND	ND	ND	ND	V	ND	15/5		ND		
111		D A	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
112	×	A	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	12/5	v	ND	V	
113	^	A	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V	
								110 2010	1522	20.14	1.2010									

Table 4-2 (cont.): Scope and categorization of participating laboratories (including third country laboratories and one laboratory having started submission but was not able to complete it due to COVID-19 lockdown)

*: Future residue definition; MACP-Reg.: REGULATION (EU) 2019/533 of 28 March 2019; NCP-WD: Working document on pesticides to be considered for inclusion in the national control programmes to ensure compliance with maximum residue levels of pesticides residues in and on food of plant and animal origin; SANCO/12745/2013; 26–27 November 2018rev. 10(3)

V = analysed for and submitted concentration Value > "MRRL" for a pesticide present in the test item; ND = analysed for and correctly reported as "<u>Not Detected</u>"; **Empty cells**: not analysed; **FN** = analysed for but falsely not detected (<u>False N</u>egative result); **FN** * = analysed for a compound present in the test material and reported not detected due to lab's RL > assigned value, therefore judged as FN; **FP** = false positive result; (*FP*) = Result reported as " \leq MRRL" and, therefore, not regarded as FP

									Ор	tiona		mpou	ınds						Total
	Comp listed Targe	ounc on tł t List	ls ne	Diquat, expr. as dication	Fluazifop (sum)	Haloxyfop (sum)	Imazethapyr (free acid)	MCPA (free acid)	MCPA (sum)	MCPB (free acid)	MCPB (sum)	Mecoprop (free acid)	Mecoprop (sum)	N-Acetyl glyphosate	Paraquat	Quizalofop (free acid)	Quizalofop (sum)	ind (Optional Compounds)	ind (Total)
	withir	n MA	CP	WD	МАСР	МАСР		WD	WD	WD	WD			WD*	WD	WD	WD*	ly fot	ly fou
	prese Test It	nt in tem		No	Yes	Yes	Yes	Trace	Yes	Trace	Yes	Trace	Yes	No	Yes	Yes	Yes	rrect	rrect
	evalua	ated	in	No	Yes	Yes	Yes	No	Yes	No	Yes	No	Yes	No	Yes	Yes	Yes	d / coi	d / coi
	Lab- Code		6-4															inalyse	inalyse
	79	NKL	B															0/0	3/3
	80		B															0/0	4/1
	82		В		V	V												3/3	7/5
	84		В		V	V		ND	V	ND	V	ND	V			V	V	11/8	14/9
	85		В												V			1/1	1/1
	87	×	А		V	V	V	ND	V	ND	V	ND	V	ND		V	V	15/10	28/15
	88	×	В															2/1	11/5
	90		В	ND	V	V	V	ND	V	ND	V	ND	V		V	V	V	16/11	27/16
_	91	×	A		FN	V		ND	V	ND	FN	ND	FN	ND		V	V	13/6	26/11
	92		В		V	V	V	ND	V	ND	V	ND	V			V	V	14/10	24/14
	93		B		V	V	V	ND	V	ND	V	ND	V			V	V	13/10	19/13
	94		B		V			ND		ND		ND				V		5/2	16/6
	95	×	B	ND	V	V	V		V		V		V			V	V	0/2	24/14
	97		B		V	v	v	ND	v	ND	v		v			V	V	3/1	9/4
	98		A	ND	V	V	V	ND	V	ND	V	ND	V		V	V	V	16/11	29/16
_	99		В	ND	V	V	V	ND	V	ND	V				FN	FN	-	13/7	24/11
	100		В		V	V	FN		V		V		V				V	10/8	21/12
	101		В													V		2/2	8/4
	102		В															0/0	8/4
	103	×	Α		V	V	V	ND	V	ND	V	ND	FN			V	V	13/9	25/14
	104		В															0/0	1/1
	105	×	В															0/0	8/4
	107		В					ND						ND				3/0	14/4
	108	×	Α		V	V		ND	V	ND	V	ND	V	ND				11/6	24/11
	109		A					ND		ND		ND						4/0	17/5
	110		B		V			.		1.15		1.15						1/1	2/2
	111		A		V	V	V	ND	V	ND	V	ND	V	ND		V	V	14/10	27/15
	112	×	A	ND		V	14	ND	V	ND	14	ND	14	ND				3/0	15/5
	113 *. E	10 10-	A	ND		V Rog : D			V	ND	V			ND	V	V	V	1//11	30/16
	- rutu	ine res	iuue a	emitio	, MACP	-neg.: R	LGULAI	IOIN (EU)	2019/5	55 01 28	iviai CI1 4	2019; NC		vorking	uocume	ent on p	esuciue	3 10 DE CO	isideled

Table 4-2 (cont.): Scope and categorization of participating laboratories (including third country laboratories and one laboratory having started submission but was not able to complete it due to COVID-19 lockdown)

for inclusion in the national control programmes to ensure compliance with maximum residue levels of pesticides residues in and on food of plant and animal origin; SANCO/12745/2013; 26–27 November 2018rev. 10(3)

V = analysed for and submitted concentration Value > "MRRL" for a pesticide present in the test item; ND = analysed for and correctly reported as "Not Detected"; Empty cells: not analysed; FN = analysed for but falsely not detected (Ealse Negative result); FN* = analysed for a compound present in the test material and reported not detected due to lab's RL > assigned value, therefore judged as FN; FP = false positive result; (FP) = Result reported as "≤ MRRL" and, therefore, not regarded as FP

Table 4-2 (cont.): Scope and categorization of participating laboratories (including third country laboratories and one laboratory
having started submission but was not able to complete it due to COVID-19 lockdown)

							Со	mpu	lsory	/ Con	npou	ınds					Option	nal Com	pounds
Comp listed Target	ounc on th t List	ls 1e	2,4-D (free acid)	Carbofuran (sum)	Chlormequat-Cl	Ethephon	Fluazifop (free acid)	Glufosinate	Glyphosate	Haloxyfop (free acid)	Mepiquat-Chloride	MPP (= MPPA)	N-Acetyl glufosinate	TFNA	TFNG	und (Compulsory Compounds)	2,4-D (sum)	AMPA	Bentazone
within	MA	СР	МАСР	MACP	MACP + WD	МАСР	MACP	MACP	MACP + WD	МАСР	MACP + WD	МАСР	MACP	МАСР	MACP	ily fo	МАСР	WD*	
presei Test It	nt in em		Yes	Yes	Yes	No	Trace	No	Yes	Trace	No	No	No	Yes	No	orrect	Yes	No	Yes
evalua this P1	ated i F	in	Yes	Yes	Yes	No	No	No	Yes	No	No	No	No	Yes	No	ed / co	Yes	No	Yes
Lab- Code	ND	C-4-														nalys			
114	NRL	B	V	V	V	ND	ND	ND	V	ND	ND			V	ND	11/5	V	ND	V
115		А	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V
116	×	В	V	V			ND			ND				V	ND	6/3	V		V
118	×	А	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V
119	×	В	V	V	V	ND	ND	ND	V	ND	ND	ND		V	FP	12/5	V	ND	V
120		В		V	_											1/1			
121		В	V	V		ND	ND	ND	V	ND				V	ND	9/4		ND	V
122		A		V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5		ND	V
123		A	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V
124		Δ	V	V	V	ND			V					V	ND	9/5	V		V
125		B	V	V	V	ND	ND	ND	v	ND	ND	ND	ND	V	ND	7/3	V	ND	V
128		A	v	v	v	ND	ND	ND	V	ND	ND	ND	ND	v	ND	13/5	v	ND	V
129		Α	V	V	V	ND	ND	ND	V	ND	ND	ND	ND	V	ND	13/5	V	ND	V
130		В			V				V		ND					3/2		ND	
132		В	V		V	ND				ND	ND					5/2	V		V
133		В	V	V	V		ND				ND					5/3			V
137		В	V	V	V	ND	ND		V	ND	ND		ND	V	ND	11/5	V	ND	V
3rd-29		В	V				ND			ND						3/1	V		V
3rd-43		B	V		V			ND	V		ND					5/3		ND	V
3rd-72		B	V			NR	ND	NIS		NO	NO			V	ND	4/2		NIS	
3rd-73		B	V	V	V	ND	ND	ND	V	ND	ND			V	ND	11/5	V	ND	V
3rd 85		В	V		V	ND	ND	ND	V	ND	ND					2/2		ND	V
3rd-13/		B	V				ND		V	ND						2/2	V	ND	V
3rd-135		B	V	V		ND	ND	ND		ND						5/1		ND	
Info-10		В	V	V	V	ND			V	ND	ND			V	ND	9/5	V		V
: Futu sidered food o V = and	re resi d for ii f plan alvsec	idue c nclusi t and l for a	definitio on in th animal o and sub	n; MAC e nation origin; S mitted	P-Reg. nal cont SANCO/ [] concen	REGUL/ rol prog 12745/20 tration	ATION (E rammes)13; 26–2 Value > '	U) 2019 to ensu 27 Nove MRRI "	/533 of ure com mber 2 for a pe	28 Marc pliance 018rev.	h 2019; with m 10(3)	NCP-W aximum	D : Work residue	ing doc e levels	ument of pestic	on pestic ides resi	, ides to b dues in a d correc	e con- and on	

V = analysed for and submitted concentration Value > "MRRL" for a pesticide present in the test item; ND = analysed for and correctly reported as "Not Detected"; **Empty cells**: not analysed; **FN** = analysed for but falsely not detected (<u>False Negative result</u>); **FN** = analysed for a compound present in the test material and reported not detected due to lab's RL > assigned value, therefore judged as FN; **FP** = false positive result; (*FP*) = Result reported as " \leq MRRL" and, therefore, not regarded as FP

Table 4-2 (cont.): Scope and categorization of participating laboratories (including third country laboratories and one laboratory having started submission but was not able to complete it due to COVID-19 lockdown)

									Ор	tiona	l Coi	mpou	ınds						Total
	Comp listed Targe	ounc on th t List	ls 1e	Diquat, expr. as dication	Fluazifop (sum)	Haloxyfop (sum)	Imazethapyr (free acid)	MCPA (free acid)	MCPA (sum)	MCPB (free acid)	MCPB (sum)	Mecoprop (free acid)	Mecoprop (sum)	N-Acetyl glyphosate	Paraquat	Quizalofop (free acid)	Quizalofop (sum)	und (Optional Compounds)	und (Total)
	withir	n MA	CP	WD	MACP	МАСР		WD	WD	WD	WD			WD*	WD	WD	WD*	tly fo	ily fo
	prese Test It	nt in :em		No	Yes	Yes	Yes	Trace	Yes	Trace	Yes	Trace	Yes	No	Yes	Yes	Yes	orrect	irrect
	evalua this P	ated T	in	No	Yes	Yes	Yes	No	Yes	No	Yes	No	Yes	No	Yes	Yes	Yes	ed / co	sd / co
	Lab- Code SRM15-	NRL	Cat.															analyse	analyse
	114		В	ND	V	V	V	ND	V	ND	V	ND	V		V	V	V	16/11	27/16
	115		Α	ND	V	V	FN	ND	V	ND	V	ND			V	V	V	15/9	28/14
	116	×	В		V	V		ND	V	ND	V	ND	V			FN*	V	12/8	18/11
	118	×	А	ND	V	V	V	ND	V	ND	V	ND	V	ND	V	V	V	17/11	30/16
	119	×	В		V	V		ND	V	ND	V	ND	FN			V	V	13/8	25/13
	120		В															0/0	1/1
	121		В					ND								FN		4/1	13/5
	122		А		V	V	V	ND	V	ND	V	ND	FN	ND		V	V	15/9	28/14
	123		Α	ND	V	V	V	ND	V	ND	V	ND	V	ND	V	V	V	17/11	30/16
	124		В		V	V		ND	V	ND	V	ND	V			V	V	13/9	22/12
_	125		А	ND	V	V	V	ND	V	ND	V	ND	V	ND	V	V	V	17/11	30/16
	127		В															1/0	8/3
	128		Α	ND	V	V	V	ND	V	ND	V	ND	V	ND	V	V	V	17/11	30/16
	129		Α		V	V		ND	V	ND	V	ND	V			V	V	13/9	26/14
	130		В															1/0	4/2
	132		В	ND				ND	V	ND	V	ND	V					9/5	14/7
	133		В			V			V									3/3	8/6
	137		В	ND	V	V		ND	V	ND	FN*	ND	FN	ND	V	V		15/7	26/12
	3rd-29		В		V	V	V	ND	V	ND	V	ND	V			V	V	13/10	16/11
	3rd-43		В	ND			V					ND			V			6/3	11/6
_	3rd-72		В				V			ND		ND				V		4/2	8/4
	3rd-73		В	ND	V	V	V	ND	V	ND	V	ND	V		FN			14/8	25/13
_	3rd-83		В	ND			V	ND		ND		ND						7/2	14/4
	3rd-86		B	ND			V	ND							V			6/3	8/5
_	3rd-134		B		FN	FN		ND		ND								5/1	8/2
	3rd-135		B	NE			FN	NB				NB		ND				2/0	7/1
	Into-10		B	ND	V	V			V	22.405			FN	ND	FN			11/5	20/10
	∣ *: Futu	ire res	aue d	ennitio	n; MACP	'- кед. : К	EGULA	ION (EU)) 2019/5	33 OT 28	warch 2	2019; NC	r-wD: V	vorking	aocume	ent on p	esticide	s to be col	nsidered

V = analysed for and submitted concentration \underline{V} alue > "MRRL" for a pesticide present in the test item; ND = analysed for and correctly reported as "Not Detected"; **Empty cells**: not analysed; **FN** = analysed for but falsely not detected (Ealse Negative result); **FN*** = analysed for a compound present in the test material and reported not detected due to lab's RL > assigned value, therefore judged as FN; **FP** = false positive result; (*FP*) = Result reported as " \leq MRRL" and, therefore, not regarded as FP

4.2 Assigned Values and Target Standard Deviations

The assigned value (x_{pl}) of each analyte present in the test item was established as the mean of robust statistics (x^*) of all numerical results submitted by laboratories from EU and EFTA countries, excluded outliers and calculated using Algorithm A [6, **Appendix 8**]. Results from laboratories outside EU and EFTA countries (i.e. 3rd countries and EU Candidate Countries) should not be taken into account. Unfortunately, results submitted by two laboratories outside EU and EFTA countries were by mistake included in the establishment of the assigned values. Based on these assigned values, z-scores were calculated for all submitted results using the FFP-approach (**Section 4.4.3, p. 28**), and a preliminary report was released on 5 June 2020.

[Corrigendum]

Immediately after the preliminary report was released, the organizer noticed that the results submitted by two laboratories outside EU and EFTA countries were by mistake included in the establishment of the assigned values. As this error has only minor influence on the concerned assigned values, no revised version of the preliminary report was released. Hence, the assigned values and z-scores in the present final report can differ slightly from those in the preliminary report.

Before setting the assigned values, the results within a population of each analyte were checked for outlier based on the z-scores calculated using robust mean from the entire population. Results obtained z-scores >5 are regarded as outliers and excluded from the population for establishment of assigned values. No further criteria were applied to investigation of outliers. Following exclusion of outliers the robust mean of each analyte was calculated again using the remaining results and established as the assigned value.

The uncertainties $(u(x_{pt}))$ of the assigned values were calculated as described under Section 2.2, p. 29.

In the case of *fluazifop (sum)*, *MCPB (sum)* and *mecoprop (sum)* the distribution of the participants' results was quite broad and visibly not unimodal. Looking at methodological patterns and considering the results obtained for the PT sample by the organizer (EURL-SRM) using different hydrolysis conditions, the participants' results were divided into subpopulations according to their hydrolysis conditions. For the various subpopulations, robust statistics calculations were applied to derive the robust mean and the relative standard deviation (CV*). As expected, the robust mean of subpopulations applying stronger hydrolysis conditions, thus ensuring nearly quantitative conversion rates, were overall closer to the expected (e.g. spiked) levels compared to subpopulations using weak or no hydrolysis. It was therefore decided using the robust means of results generated by methods involving moderate or strong hydrolysis conditions for *fluazifop (sum)*, *MCPB (sum)* and results generated by methods involving strong hydrolysis conditions only for *mecoprop (sum)* as the assigned values in the preliminary report. After consultation with the Scientific Committee, these criteria were also applied to establish the final assigned values for these three compounds.

Due to the similar situation the assigned value of *carbofuran (sum)* in the preliminary report was calculated using results generated by methods involving acidic hydrolysis only, although the organizer was well aware of the fact that results from laboratories having analyzed carbofuran and carbosulfan separately could also have been added to this group. But as carbosulfan analysis is quite challenging and error-prone, results driven from this analytical approach were firstly not included. After releasing the Preliminary Report, the organizer started a survey on detailed information about the analytical method for *carbofuran (sum)*. Based on the survey results and after consultation with the Scientific Committee, it was finally decided to use the robust mean of *carbofuran (sum)* results generated by hydrolysis or analysis of carbofuran and carbosulfan separately as the final assigned value for *carbofuran (sum)*.

For details please see also method-based evaluation Section 4.4 "Special Topic: Method-based Evaluation" (p. 48).

	Assigned Value	and CV	* Based on t	the Entire Pop	ulation of I	Results from	EU and EFTA	Laboratories	
	Compound	No. of FNs / Outlier	No. of numerical results (EU+EFTA)	Result Popu- lation for AV n=	Assigned Value [mg/kg]	<i>u(x_{pt})</i> ¹⁾ [mg/kg]	$u(x_{pt})$ Tolerance [mg/kg]	Judgement for UAV-test	CV* ²⁾ [%]
	2,4-D (free acid)	4/0	85	entire 85	0.052	+/- 0.0015	0.0039	passed	20.8
₽Ş	Carbofuran (sum)	0/2	92	part* 63	0.107	+/- 0.0032	0.0080	passed	22.8
oln	Chlormequat-Cl	0/3	88	entire 88	0.092	+/- 0.0021	0.0069	passed	16.8
dua	Glyphosate	0/0	84	entire 84	0.203	+/- 0.0066	0.0152	passed	23.7
°, ç	TFNA	3/1	69	entire 69	0.060	+/- 0.0025	0.0045	passed	27.8
	Average ³⁾ CV*								22.4
	2,4-D (sum)	0/3	66	entire 66	0.059	+/- 0.0017	0.0044	passed	18.9
	Bentazone	0/1	77	entire 77	0.334	+/- 0.0092	0.0251	passed	19.4
	Fluazifop (sum)	2/0	64	part [#] 42	0.060	+/- 0.0022	0.0045	passed	18.8
ds	Haloxyfop (sum)	1/0	64	entire 64	0.151	+/- 0.0038	0.0113	passed	16.2
uno	Imazethapyr (free acid)	2/0	38	entire 38	0.206	+/- 0.0073	0.0155	passed	17.6
dmo	MCPA (sum)	1/2	65	entire 65	0.068	+/- 0.0021	0.0051	passed	20.2
al C	MCPB (sum)	4/1	56	part [#] 40	0.057	+/- 0.0034	0.0043	passed	29.4
tion	Mecoprop (sum)	18/1	41	part [‡] 20	0.067	+/- 0.0043	0.0050	passed	22.4
do	Paraquat	2/1	32	entire 32	0.195	+/- 0.0125	0.0146	passed	28.9
	Quizalofop (free acid)	4/0	60	entire 60	0.044	+/- 0.0012	0.0033	passed	16.4
	Quizalofop (sum)	2/0	52	entire 52	0.062	+/- 0.0025	0.0046	passed	22.9
	Average ³⁾ CV*								21.0

Table 4-3: Assigned values, uncertainties of assigned values and CV* values calculated for all compounds present in the test item

1: $u(x_{pl})$: Uncertainty of assigned value calculated as shown under Section 2.2 (p. 38)

2: CV*: Relative standard deviation based on robust statistics

3: The average CV* is given for information purposes only. CV*s of individual compounds or average CV*s of individual compounds or related compounds over many PTs are more meaningful and conclusive.

*: Sub population for carbofuran (sum) consisted of results generated by methods involving acidic hydrolysis or analysis of carbofuran and carbosulfan separately.

*: Sub population for fluazifop (sum) and MCPA (sum) consisted of results generated by methods involving moderate or strong hydrolysis conditions. †: Sub population for mecoprop (sum) consisted of results generated by methods involving strong hydrolysis conditions only.

The assigned values and their uncertainties are shown in **Table 4-3**. Except *MCPB (sum*) (29.4 %), *paraquat* (28.9 %) and *TFNA* (27.8 %) the *CV**-values of all other analytes were lower than the FFP-RSD (25 %). The average *CV**s of all compulsory analytes based on the results population of EU-and EFTA-laboratories was 22.4 %. In particular *chlormequat-Cl* with *CV** of 16.8 % was significantly lower than the FFP-RSD. The average *CV**s of all optional analytes based on the results population of EU-and EFTA-laboratories was 21.0 % with *CV** of 16.2 % for *haloxyfop (sum)* and 16.4 % for *quizalofop (free acid)* as the lowest values.

4.3 Assessment of Laboratory Performance

4.3.1 False Positives

In this PT, only one numerical result concerning *TFNG* was submitted by one EU laboratory for target compounds being not spiked to the test material and not detected by the organizer or by the overwhelming majority of the participants. The reported value was slightly above the MRRL and lab's reporting limit and was therefore judged as a false positive result (**Table 4-4**).

	Compound	PT-Code	Analysed	Reported Result [mg/kg]	RL [mg/kg]	MRRL [mg/kg]	Judgement
Compulsory	TFNG	SRM15-119	Yes	0.011	0.01	0.01	FP

Table 4-4: The only one false positive result reported in EURL-SRM15

4.3.2 False Negatives

In the case of compulsory compounds 7 laboratories reported in 7 cases (4× 2,4-D (free acid) and 3× TFNA) "analysed, but not detected" for target compounds which were spiked to the test item and detected by the majority of the laboratories targeting them (Table 4-5, p. 33). Among them, one laboratory's reporting limit for TFNA (0.1 mg/kg) was higher then the assigned value (0.06 mg/kg). According to the rules in the General Protocol this result was still judged as false negative. This laboratory is encouraged to improve its RL for TFNA. The 7 false negative results accounted for 1.6% of the total 425 results reported by the EU/ EFTA laboratories for the compulsory target compounds.

In the case of optional compounds 36 cases (18× *mecoprop (sum)*, each 4 cases for *quizalofop (free acid)* and *MCPB (sum)*, each 2 cases for *paraquat, quizalofop (sum), imazethapyr (free acid)* and *fluazifop (sum)*, each one case for *MCPA (sum)* and *haloxyfop (sum)*) reported by 24 laboratories were judged as false negative results (**Table 4-5**, **p. 33**), since those target compounds which the participating laboratories analysed for but not detected were spiked to the test item and detected by the majority of the laboratories targeting them. Among them, one laboratory's reporting limit for *MCPB (sum)* (0.05 mg/kg) was equal to the assigned value (0.05 mg/kg) and another one laboratory had a higher reporting limit for *quizalofop (free acid)* (0.05 mg/kg) then the assigned value (0.044 mg/kg). In accordance with the General Protocole these two results were judged as false negative, and the laboratories are encouraged to improve their RLs for the corresponding analytes. The 36 false negative results accounted for 5.5 % of the total 651 results reported by the EU/EFTA laboratories for the optional target compounds. In the case of *mecoprop (sum)* the main reason for the 18 false negative result resulted from too weak hydrolysis (14 cases) accompanied by lacking experiences (4 cases) or the analytical procedure was not properly performed.

4.3.3 Laboratory Performance Based on z-Scores

All individual z-scores were calculated using the FFP-RSD of 25 % and the assigned values derived from the entire population and in the case of *carbofuran (sum), fluazifop (sum), MCPB (sum)* and *mecoprop (sum)* from the subpopulation of results reported by the EU/EFTA laboratories excluding outliers as described in Section 4.2 (p. 30). Table 4-6 (p. 34) shows the overall classification of z-scores achieved by all laboratories for compulsory and optional compounds based on the rules given in Section 2.4 (p. 31).

In average, 89% of the reported results by EU/EFTA laboratories for the compulsory compounds achieved the "acceptable" z-scores. It ranged from 86% for *carbofuran (sum)* to 94% for *chlormequate-Cl*. Considering only the optional compounds and regardless of *MCPB (sum)* and *mecoprop (sum)*, "acceptable" z-scores were achieved by EU/EFTA-laboratories from 82% for *fluazifop (sum)* and *paraquat* till 95% for *bentazone* and in average 88% of the reported results for the optional compounds were able to be classified as acceptable. Considering the results reported by the participating laboratories from EU Candidate or 3rd countries 95% and 83% of them could be classified into "acceptable" for the compulsory and optional compounds, respectively.

	Compounds	PT-Code	Analysed	Detected	RL [mg/kg]	MRRL [mg/kg]	Assigned Value [mg/kg]	Judgement
	2,4-D (free acid)	SRM15-5	Yes	No	0.025	0.01	0.052	False Negative
>		SRM15-33	Yes	No	0.01	0.01	0.052	False Negative
sory		SRM15-41	Yes	No	0.05	0.01	0.052	False Negative
bul		SRM15-99	Yes	No	0.01	0.01	0.052	False Negative
E C	TFNA	SRM15-51	Yes	No	0.1	0.01	0.060	False Negative*
Ŭ		SRM15-65	Yes	No	0.01	0.01	0.060	False Negative
		SRM15-94	Yes	No	0.01	0.01	0.060	False Negative
	Fluazifop (sum)	SRM15-74	Yes	No	0.01	0.01	0.057	False Negative
		SRM15-91	Yes	No	0.01	0.01	0.057	False Negative
		SRM15-134 ^[3rd]	Yes	No	0.01	0.01	0.057	False Negative
	Haloxyfop (sum)	SRM15-19	Yes	No	0.01	0.01	0.152	False Negative
		SRM15-134 ^[3rd]	Yes	No	0.01	0.01	0.152	False Negative
	Imazethapyr (free acid)	SRM15-100	Yes	No	0.01	0.01	0.207	False Negative
		SRM15-115	Yes	No	0.01	0.01	0.207	False Negative
		SRM15-135 ^[3rd]	Yes	No	0.01	0.01	0.207	False Negative
	MCPA (sum)	SRM15-34	Yes	No	0.01	0.01	0.068	False Negative
	MCPB (sum)	SRM15-30	Yes	No	0.01	0.01	0.050	False Negative
		SRM15-34	Yes	No	0.01	0.01	0.050	False Negative
		SRM15-91	Yes	No	0.01	0.01	0.050	False Negative
		SRM15-137	Yes	No	0.05	0.01	0.050	False Negative*
	Mecoprop (sum)	SRM15-8	Yes	No	0.05	0.01	0.051	False Negative
		SRM15-21	Yes	No	0.01	0.01	0.051	False Negative
		SRM15-24	Yes	No	0.01	0.01	0.051	False Negative
		SRM15-30	Yes	No	0.01	0.01	0.051	False Negative
		SRM15-34	Yes	No	0.01	0.01	0.051	False Negative
-		SRM15-37	Yes	No	0.02	0.01	0.051	False Negative
ion		SRM15-46	Yes	No	0.01	0.01	0.051	False Negative
Opt		SRM15-47	Yes	No	0.01	0.01	0.051	False Negative
		SRM15-51	Yes	No	0.01	0.01	0.051	False Negative
		SRM15-64	Yes	No	0.01	0.01	0.051	False Negative
		SRM15-66	Yes	No	0.01	0.01	0.051	False Negative
		SRM15-68	Yes	No	0.01	0.01	0.051	False Negative
		SRM15-74	Yes	No	0.01	0.01	0.051	False Negative
		SRM15-91	Yes	No	0.01	0.01	0.051	False Negative
		SRM15-103	Yes	No	0.01	0.01	0.051	False Negative
		SRM15-119	Yes	No	0.01	0.01	0.051	False Negative
		SRM15-122	Yes	No	0.01	0.01	0.051	False Negative
		SRM15-137	Yes	No	0.01	0.01	0.051	False Negative
	Paraquat	SRM15-51	Yes	No	0.01	0.02	0.193	False Negative
		SRM15-73 ^[3rd]	Yes	No	0.01	0.02	0.193	False Negative
		SRM15-99	Yes	No	0.02	0.02	0.193	False Negative
	Quizalotop (free acid)	SRM15-34	Yes	No	0.01	0.01	0.044	False Negative
		SKM15-99	Yes	No	0.01	0.01	0.044	False Negative
		SRM15-116	Yes	No	0.05	0.01	0.044	False Negative*
		SRM15-121	Yes	No	0.01	0.01	0.044	False Negative
	Quizalotop (sum)	SRM15-8	Yes	NO	0.01	0.01	0.062	False Negative
*: Labor	ratory's RL >> MRRL; in accordar	SKIM15-51	Yes al Protocol jud	NO ged as false ne	0.01 egative.	0.01	0.062	False Negative

Table 4-5: Overview of false negative results reported by participating laboratories (including 4 results from 3rd country laboratories)

	EU	and EFTA l	aboratories			
	Compound	No. of	Acceptable	Questionable	Unacceptable ¹⁾	FNs
	Compound	results ¹⁾	No. (%)	No. (%)	No. (%)	No.
	2,4-D (free acid)	89	77 (87%)	5 (6%)	7 (8%)	4
Σsb	Carbofuran (sum)	92	79 (86 %)	9 (10 %)	4 (4 %)	0
ollso	Chlormequat-Cl	88	83 (94%)	0 (0 %)	5 (6%)	0
	Glyphosate	84	77 (92 %)	3 (4 %)	4 (5 %)	0
00	TFNA	72	64 (89%)	3 (4 %)	5 (7%)	3
	Subtotal	425	380 (89%)	20 (5 %)	25 (6 %)	7
	2,4-D (sum)	66	56 (85 %)	5 (8%)	5 (8%)	0
	Bentazone	77	73 (95 %)	1 (1 %)	3 (4 %)	0
	Fluazifop (sum)	66	54 (82%)	6 (9 %)	6 (9 %)	2
<u>v</u>	Haloxyfop (sum)	65	58 (89%)	5 (8%)	2 (3 %)	1
pun	Imazethapyr (free acid)	40	34 (85 %)	3 (8%)	3 (8 %)	2
odu	MCPA (sum)	66	61 (92 %)	1 (2%)	4 (6%)	1
Co	MCPB (sum)	60	43 (72%)	10 (17 %)	7 (12 %)	4
onal	Mecoprop (sum)	59	28 (47 %)	7 (12%)	24 (41 %)	18
ptio	Paraquat	34	28 (82 %)	0 (0 %)	6 (18%)	2
	Quizalofop (free acid)	64	57 (89%)	1 (2%)	6 (9%)	4
	Quizalofop (sum)	54	48 (89%)	2 (4 %)	4 (7 %)	2
	Subtotal excl. MCPB (sum) and Mecoprop (sum)	532	469 (88%)	24 (5 %)	25 (5 %)	14
	Subtotal incl. MCPB (sum) and Mecoprop (sum)	651	540 (83%)	41 (6 %)	70 (11 %)	36
Overa	ll EU/EFTA (Average)	1076	920 (86 %)	61 (6%)	95 (9%)	43
	3 ^r	^{.d} country la	boratories			
	Compound	No. of results ¹⁾	Acceptable No. (%)	Questionable No. (%)	Unacceptable ¹⁾ No. (%)	FNs No.
	Compound 2,4-D (free acid)	No. of results ¹⁾ 7	Acceptable No. (%) 6 (86%)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%)	FNs No. 0
Z,	Compound 2,4-D (free acid) Carbofuran (sum)	No. of results ¹⁾ 7 2	Acceptable No. (%) 6 (86%) 2 (100%)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%)	FNs No. O
llsory	Compound 2,4-D (free acid) Carbofuran (sum) Chlormequat-Cl	No. of results ¹⁾ 7 2 3	Acceptable No. (%) 6 (86%) 2 (100%) 3 (100%)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%)	FNs No. 0 0
mpulsory mpounds	Compound 2,4-D (free acid) Carbofuran (sum) Chlormequat-Cl Glyphosate	No. of results ¹⁾ 7 2 3 3 3	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 3 (100 %)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%)	FNs No. 0 0 0 0
Compulsory Compounds	Compound 2,4-D (free acid) Carbofuran (sum) Chlormequat-Cl Glyphosate TFNA	No. of results ¹⁾ 7 2 3 3 3 2	Acceptable No. (%) 6 (86%) 2 (100%) 3 (100%) 3 (100%) 2 (100%)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)	FNs No. 0 0 0 0 0 0
Compulsory Compounds	Compound 2,4-D (free acid) Carbofuran (sum) Chlormequat-Cl Glyphosate TFNA Subtotal	No. of results ¹⁾ 7 2 3 3 2 2 17	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 3 (100 %) 2 (100 %) 16 (94 %)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (6%)	FNs No. 0 0 0 0 0 0 0 0
Compulsory Compounds	Compound 2,4-D (free acid) Carbofuran (sum) Chlormequat-Cl Glyphosate TFNA Subtotal 2,4-D (sum)	No. of results ¹⁾ 7 2 3 3 3 2 2 17 3	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 3 (100 %) 2 (100 %) 16 (94 %) 2 (67 %)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (6%) 1 (33%)	FNs No. 0 0 0 0 0 0 0 0 0
Compulsory Compounds	Compound 2,4-D (free acid) Carbofuran (sum) Chlormequat-Cl Glyphosate TFNA Subtotal 2,4-D (sum) Bentazone	No. of results ¹⁾ 7 2 3 3 3 2 2 17 3 3 5	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 2 (100 %) 2 (100 %) 16 (94 %) 2 (67 %) 5 (100 %)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (6%) 1 (33%) 0 (0%)	FNs No. 0 0 0 0 0 0 0 0 0 0 0
Compulsory Compounds	Compound 2,4-D (free acid) Carbofuran (sum) Chlormequat-Cl Glyphosate TFNA Subtotal 2,4-D (sum) Bentazone Fluazifop (sum)	No. of results ¹⁾ 7 2 3 3 3 2 2 17 17 3 5 5 3	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 3 (100 %) 2 (100 %) (16 (94 %) 2 (67 %) 5 (100 %) 2 (67 %)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 1 (6%) 1 (33%) 0 (0%) 1 (0%)	FNs No. 0 0 0 0 0 0 0 0 0 0 0 1
s Compulsory Compounds	Compound 2,4-D (free acid) Carbofuran (sum) Chlormequat-Cl Glyphosate TFNA Subtotal 2,4-D (sum) Bentazone Fluazifop (sum) Haloxyfop (sum)	No. of results ¹⁾ 7 2 3 3 3 2 17 3 3 5 3 3 3	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 3 (100 %) 2 (100 %) (16 (94 %) 2 (67 %) 2 (67 %) 2 (67 %)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (6%) 1 (33%) 0 (0%) 1 (0%) 1 (0%)	FNs No. 0 0 0 0 0 0 0 0 0 0 1 1
unds Compulsory Compounds	Compound 2,4-D (free acid) Carbofuran (sum) Chlormequat-Cl Glyphosate TFNA Subtotal 2,4-D (sum) Bentazone Fluazifop (sum) Haloxyfop (sum) Imazethapyr (free acid)	No. of results ¹⁾ 7 2 3 3 2 3 2 2 17 3 5 3 3 3 3 3 7	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 2 (100 %) 2 (100 %) 16 (94 %) 2 (67 %) 2 (67 %) 2 (67 %) 6 (86 %)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 1 (6%) 1 (33%) 0 (0%) 1 (0%) 1 (0%) 1 (0%)	FNs No. 0 0 0 0 0 0 0 0 1 1 1 1
npounds Compulsory Compunds	Compound 2,4-D (free acid) Carbofuran (sum) Chlormequat-Cl Glyphosate TFNA Subtotal 2,4-D (sum) Bentazone Fluazifop (sum) Haloxyfop (sum) Imazethapyr (free acid) MCPA (sum)	No. of results ¹⁾ 7 2 3 3 2 2 17 3 3 5 3 3 3 3 3 7 2	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 3 (100 %) 2 (100 %) (2 (67 %) 2 (67 %) 2 (67 %) 2 (67 %) 6 (86 %) 2 (100 %)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 1 (6%) 1 (33%) 0 (0%) 1 (0%) 1 (0%) 1 (0%) 0 (0%)	FNs No. 0 0 0 0 0 0 0 0 1 1 1 1 1 0
Compounds Compulsory	Compound 2,4-D (free acid) Carbofuran (sum) Chlormequat-Cl Glyphosate TFNA Subtotal 2,4-D (sum) Bentazone Fluazifop (sum) Haloxyfop (sum) Imazethapyr (free acid) MCPA (sum) MCPB (sum)	No. of results ¹⁾ 7 2 3 3 2 3 2 17 3 5 5 3 3 3 3 7 7 2 2 2	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 2 (100 %) (2 (100 %) 2 (67 %) 2 (67 %) 2 (67 %) 6 (86 %) 2 (100 %) 2 (100 %)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (6%) 1 (33%) 0 (0%) 1 (0%) 1 (0%) 1 (0%) 1 (0%) 0 (0%) 0 (0%)	FNs No. 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
onal Compounds Compulsory	Compound 2,4-D (free acid) Carbofuran (sum) Chlormequat-Cl Glyphosate TFNA Subtotal 2,4-D (sum) Bentazone Fluazifop (sum) Haloxyfop (sum) Imazethapyr (free acid) MCPA (sum) MCPB (sum)	No. of results ¹⁾ 7 2 3 3 2 2 17 3 3 5 5 3 3 3 7 2 2 2 2 2	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 2 (100 %) (2 (67 %) 2 (67 %) 2 (67 %) 2 (67 %) 2 (67 %) 2 (67 %) 2 (100 %) 2 (100 %)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 1 (6%) 1 (33%) 0 (0%) 1 (0%) 1 (0%) 1 (0%) 1 (0%) 0 (0%) 0 (0%) 0 (0%)	FNs No. 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
ptional Compounds Compulsory	Compound 2,4-D (free acid) Carbofuran (sum) Chlormequat-Cl Glyphosate TFNA Subtotal 2,4-D (sum) Bentazone Fluazifop (sum) Haloxyfop (sum) Imazethapyr (free acid) MCPA (sum) MCPB (sum) MCPB (sum)	No. of results ¹⁾ 7 2 3 3 2 2 17 3 3 5 3 3 3 3 3 7 2 2 2 2 2 2 3	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 2 (100 %) (2 (100 %) 2 (67 %) 2 (67 %) (2 (67 %) 6 (86 %) 2 (100 %) 2 (100 %) 2 (100 %) 2 (100 %)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 1 (6%) 1 (33%) 0 (0%) 1 (0%) 1 (0%) 1 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (0%)	FNs No. 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1
Optional Compounds Compulsory	Compound2,4-D (free acid)Carbofuran (sum)Chlormequat-ClGlyphosateTFNASubtotal2,4-D (sum)BentazoneFluazifop (sum)Haloxyfop (sum)Imazethapyr (free acid)MCPA (sum)McCPB (sum)ParaquatQuizalofop (free acid)	No. of results ¹⁾ 7 2 3 3 2 2 17 3 5 5 3 3 5 5 3 3 5 7 2 2 2 2 2 2 2 2 2 3 3 2	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 2 (100 %) (2 (100 %) 2 (67 %) 2 (67 %) 2 (100 %) 2 (100 %) 2 (100 %) 2 (100 %) 2 (100 %)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 1 (6%) 1 (33%) 0 (0%) 1 (0%) 1 (0%) 1 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (0%) 0 (0%)	FNs No. 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0
Optional Compounds Compulsory	Compound2,4-D (free acid)Carbofuran (sum)Chlormequat-ClGlyphosateTFNASubtotal2,4-D (sum)BentazoneFluazifop (sum)Haloxyfop (sum)Imazethapyr (free acid)MCPA (sum)McCPB (sum)ParaquatQuizalofop (free acid)Quizalofop (sum)	No. of results ¹⁾ 7 3 3 3 2 17 3 3 5 3 3 3 3 3 3 7 2 2 2 2 2 3 3 2 2 3 2 1	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 2 (100 %) (2 (100 %) 2 (67 %) 2 (67 %) 2 (67 %) 2 (100 %) 2 (100 %) 2 (100 %) 2 (100 %) 1 (100 %)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 1 (6%) 1 (33%) 0 (0%) 1 (0%) 1 (0%) 1 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (0%) 0 (0%) 0 (0%)	FNs No. 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0
Optional Compounds Compulsory	Compound2,4-D (free acid)Carbofuran (sum)Chlormequat-ClGlyphosateTFNASubtotal2,4-D (sum)BentazoneFluazifop (sum)Haloxyfop (sum)Imazethapyr (free acid)MCPA (sum)McPB (sum)ParaquatQuizalofop (free acid)Quizalofop (sum)Subtotal excl. MCPB (sum) and Mecoprop (sum)	No. of results ¹⁾ 7 2 3 3 2 17 3 3 5 3 3 3 3 3 3 7 2 2 2 2 2 2 2 3 3 2 2 3 2 2 1 2 2 3 2 2 3 2 2 3 3 2 2 3 3 2 2 3	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 2 (100 %) (2 (100 %) 2 (67 %) 2 (67 %) 2 (67 %) 2 (100 %) 2 (10	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 1 (6%) 1 (33%) 0 (0%) 1 (0%) 1 (0%) 1 (0%) 0 (0%) 0 (0%) 1 (0%) 0 (0%) 1 (0%) 1 (0%) 0 (0%) 1 (0%)	FNs No. 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 4
Optional Compounds Compulsory	Compound2,4-D (free acid)Carbofuran (sum)Chlormequat-ClGlyphosateTFNASubtotal2,4-D (sum)BentazoneFluazifop (sum)Haloxyfop (sum)Imazethapyr (free acid)MCPA (sum)McPB (sum)ParaquatQuizalofop (free acid)Quizalofop (sum)Subtotal excl. MCPB (sum) and Mecoprop (sum)Subtotal excl. MCPB (sum) and Mecoprop (sum)	No. of results ¹) 7 2 3 2 17 3 5 3 7 2 3 5 3 2 3 2 3 2 3 3 2 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 2 3 2 3 2 3 2 3 2 3 3 3 3 3 3	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 2 (100 %) (2 (100 %) 2 (67 %) 2 (67 %) 2 (67 %) 2 (100 %) 2 (100 %) 2 (100 %) 2 (100 %) 1 (100 %) 24 (83 %)	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 1 (6%) 1 (33%) 0 (0%) 1 (0%) 1 (0%) 1 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (0%) 0 (0%) 1 (0%) 1 (0%) 0 (0%) 1 (0%) 5 (3%)	FNs No. 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 4 4
Optional Compounds Compulsory	Compound 2,4-D (free acid) Carbofuran (sum) Chlormequat-Cl Glyphosate TFNA Subtotal 2,4-D (sum) Bentazone Fluazifop (sum) Haloxyfop (sum) Imazethapyr (free acid) MCPA (sum) MCPB (sum) MCPB (sum) Paraquat Quizalofop (free acid) Quizalofop (sum) Subtotal excl. MCPB (sum) and Mecoprop (sum) Subtotal incl. MCPB (sum) and Mecoprop (sum)	No. of results ¹⁾ 7 2 3 3 2 17 3 3 5 3 3 3 3 3 3 7 2 2 2 2 2 2 2 3 3 2 2 3 3 2 2 1 1 2 9 3 3 3 2 5 5 3 3 5 5 3 3 5 5 5 5 5 5 5 5	Acceptable No. (%) 6 (86 %) 2 (100 %) 3 (100 %) 2 (100 %) 2 (100 %) 2 (67 %) 2 (67 %) 2 (67 %) 2 (67 %) 2 (100 %) 3 (100	Questionable No. (%)	Unacceptable ¹⁾ No. (%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 1 (6%) 1 (33%) 0 (0%) 1 (0%) 1 (0%) 1 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (0%) 0 (0%) 1 (0%) 0 (0%) 1 (3%) 5 (3%) 6 (4%)	FNs No. 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 4 4 4

Table 4-6: Overall performance based on z-score classification

СОМР	ULSOI	RY C	ompounds	2,4 (free	4-D acid)	C	Carbofura (sum)	n	Chlorm	equat-Cl	Glypł	nosate	TFI	NA
		MR	RL [mg/kg]	(0.01	(0.01	0.01	(0.01	(0.03	c	0.01
Ass	igned	l Val	ue [mg/kg]	(0.052	(0.107*	0.106#	C	0.092	(0.203	C	0.060
			CV*	2(0.8%	22	2.8%*	22.1 %#	16	5.8%	23	3.7%	27	7.8%
Lab code SRM15-	NRL- SRM	Cat	Analysed / corr. found, max. 13 / 5	Conc. [mg/kg]	z-Score (FFP-RSD = 25 %)	Conc. [mg/kg]	z-Score (FFP-RSD = 25 %)	z-Score# (FFP-RSD = 25 %)	Conc. [mg/kg]	z-Score (FFP-RSD = 25 %)	Conc. [mg/kg]	z-Score (FFP-RSD = 25 %)	Conc. [mg/kg]	z-Score (FFP-RSD = 25 %)
5		В	1/0	FN	-3.2									
8	х	В	10/4			0.142	1.3	1.3	0.0501	-1.8	0.0651	-2.7	0.101	2.7
9	x	В	11/4	0.096	3.4	0.106	0.0	0.0	0.119	1.2	0.181	-0.4		
11		В	7/4	0.050	-0.1	0.105	-0.1	-0.1	0.070	-1.0	0.183	-0.4		
12	x	А	13 / 5	0.047	-0.4	0.108	0.0	0.1	0.091	-0.1	0.159	-0.9	0.039	-1.4
13	х	А	12 / 5	0.0557	0.3	0.113	0.2	0.3	0.0675	-1.1	0.205	0.0	0.0381	-1.5
16	x	А	13 / 5	0.060	0.7	0.124	0.6	0.7	0.102	0.4	0.214	0.2	0.077	1.1
18		В	1/1			0.062	-1.7	-1.7						
19		А	13 / 5	0.038	-1.1	0.098	-0.3	-0.3	0.082	-0.5	0.26	1.1	0.046	-0.9
20	х	В	6/4	0.043	-0.7	0.069	-1.4	-1.4	0.096	0.2	0.136	-1.3		
21	х	Α	13 / 5	0.0577	0.5	0.0738	-1.2	-1.2	0.0873	-0.2	0.286	1.6	0.0577	-0.2
22	х	В	10 / 5	0.053	0.1	0.116	0.3	0.4	0.096	0.2	0.189	-0.3	0.068	0.5
23	x	А	13 / 5	0.0503	-0.1	0.123	0.6	0.6	0.0788	-0.6	0.249	0.9	0.0610	0.1
24		А	13 / 5	0.034	-1.4	0.28	6.5	6.8	0.065	-1.2	0.15	-1.1	0.059	-0.1
25		В	6/3	0.052	0.0	0.116	0.3	0.4	0.092	0.0				
26		А	13 / 5	0.050	-0.1	0.119	0.5	-0.3#	0.098	0.2	0.20	-0.1	0.058	-0.2
27		А	13 / 5	0.050	-0.1	0.074	-1.2	-1.2	0.109	0.7	0.187	-0.3	0.066	0.4
28		А	13 / 5	0.0557	0.3	0.0841	-0.9	-0.8	0.0521	-1.8	0.239	0.7	0.0684	0.5
30		В	11 / 5	0.046	-0.4	0.099	-0.3	0.0#	0.095	0.1	0.207	0.1	0.061	0.1
31		А	12 / 4	0.0474	-0.3				0.103	0.5	0.227	0.5	0.0737	0.9
32		Α	13 / 5	0.0602	0.7	0.131	0.9	0.9	0.111	0.8	0.177	-0.5	0.0734	0.9
33		В	6/3	FN	-3.2	0.0488	-2.2	-2.2	0.0982	0.3	0.233	0.6		
34		Α	13 / 5	0.10	3.8	0.053	-2.0	-2.0	0.11	0.8	0.23	0.5	0.07	0.7
35		Α	13 / 5	0.0427	-0.7	0.0820	-0.9	-0.9	0.0813	-0.5	0.129	-1.5	0.0420	-1.2
36		В	1/1								0.196	-0.1		
37		В	10 / 5	0.0374	-1.1	0.0645	-1.6	-1.6	0.0916	0.0	0.215	0.2	0.0648	0.3
38		В	3/2			0.046	-2.3	-2.3	0.097	0.2				
39		Α	13 / 5	0.063	0.9	0.049	-2.2	-2.2	0.106	0.6	0.254	1.0	0.045	-1.0
40		В	6/3	0.0612	0.8	0.0894	-0.7	-0.6					0.0661	0.4
41	x	В	6/2	FN	-3.2	0.105	-0.1	0.0			0.112	-1.8		
42	X	В	2/1						0.128	1.5				
44		A	13 / 5	0.045	-0.5	0.098	-0.3	-0.3	0.063	-1.3	0.172	-0.6	0.064	0.3
45	X	Α	13/5	0.0498	-0.1	0.103	-0.1	-0.1	0.0763	-0.7	0.242	0.8	0.0858	1.7
46	X	A	13/5	0.054	0.2	0.095	-0.4	-0.4	0.088	-0.2	0.193	-0.2	0.061	0.1
47		В	10/4			0.027	-3.0	-3.0	0.063	-1.3	0.195	-0.2	0.030	-2.0
48		Α	13 / 5	0.028	-1.8	0.099	-0.3	-0.3	0.114	0.9	0.20	-0.1	0.046	-0.9
49		A	13 / 5	0.056	0.3	0.073	-1.3	-1.2	0.084	-0.4	0.225	0.4	0.086	1.7
50		B	10/5	0.050	-0.1	0.101	-0.2	-0.3#	0.083	-0.4	0.2303	0.5	0.21	10.0
51		A	13 / 4	0.039	-1.0	0.061	-1.7	-1.4#	0.086	-0.3	0.409	4.1	FN	-3.3
54		B	3/1								0.220	0.3		

Table 4-7: Results reported and z-scores achieved by all participating laboratories for the COMPULSORY compounds

* based on subpopulation consisting of results generated by methods involving acidic hydrolysis or analysis of carbofuran and carbosulfan separately [†] due to COVID-19 lockdown lab was not able to complete its submission, evaluation for informative purpose only

[#] based on corrected values, for details please see Section **4.4.2 (p. 51)**. Z-scores were calculated for informative purpose only.

COMP	COMPULSORY Compo MRRL [mg Assigned Value [mg			2,4 (free	l-D acid)	C	arbofuraı (sum)	n	Chlorme	equat-Cl	Glyph	iosate	TFI	NA
		MR	RL [mg/kg]	(0.01	(0.01	0.01	C	0.01	(0.03	ç	0.01
Ass	igned	Val	ue [mg/kg]	(0.052	(0.107*	0.106#	C	0.092	(0.203	C	0.060
			CV^*	2(0.8%	22	2.8%*	22.1 %#	16	5.8%	23	3.7%	27	7.8%
Lab	NRL-	Cat	Analysed /	Conc.	z-Score	Conc.	z-Score	z-Score#	Conc.	z-Score	Conc.	z-Score	Conc.	z-Score
code SRM15-	SRM		corr. found, max. 13 / 5	[mg/kg]	(FFP-RSD = 25 %)	[mg/kg]	(FFP-RSD = 25 %)	(FFP-RSD = 25 %)	[mg/kg]	(FFP-RSD = 25 %)	[mg/kg]	(FFP-RSD = 25 %)	[mg/kg]	(FFP-RSD = 25 %)
55		В	11 / 5	0.0400	-0.9	0.179	2.7	2.7	0.0846	-0.3	0.162	-0.8	0.0553	-0.3
56		А	13 / 5	0.042	-0.7	0.084	-0.9	-0.8	0.103	0.5	0.172	-0.6	0.061	0.1
57		А	13 / 5	0.052	0.0	0.132	0.9	1.0	0.102	0.4	0.210	0.1	0.059	-0.1
58		В	9/3	0.0535	0.2	0.0788	-1.1	-1.0			0.206	0.1		
59		В	7/4	0.077	2.0	0.108	0.0	0.1	0.077	-0.7	0.272	1.4		
60		В	4/2	0.0285	-1.8	0.0805	-1.0	-1.0						
61	х	В	7/4	0.059	0.6	0.103	-0.1	-0.1	0.229	5.9	0.248	0.9		
62	х	А	13 / 5	0.015	-2.8	0.0976	-0.3	-0.3	0.0875	-0.2	0.201	0.0	0.064	0.3
63		В	5/1								0.092	-2.2		
64		В	11 / 5	0.063	0.9	0.202	3.6	3.6	0.080	-0.5	0.258	1.1	0.046	-0.9
65	х	А	13 / 4	0.0350	-1.3	0.111	0.2	0.2	0.0917	0.0	0.274	1.4	FN	-3.3
66		А	13 / 5	0.088	2.8	0.051	-2.1	-2.1	0.096	0.2	0.103	-2.0	0.030	-2.0
67		А	13 / 5	0.043	-0.7	0.093	-0.5	-0.5	0.086	-0.3	0.022	-3.6	0.077	1.1
68	х	В	8/4	0.050	-0.1				0.091	-0.1	0.248	0.9	0.061	0.1
69		В	4/3	0.0526	0.1	0.074	-1.2	-1.2			0.021	-3.6		
70		В	1/1			0.091	-0.6	-0.6						
71	х	В	9/4	0.0520	0.0	0.104	-0.1	-0.1	0.128	1.5			0.0694	0.6
74	х	А	13 / 5	0.064	1.0	0.099	-0.3	-0.3	0.089	-0.2	0.199	-0.1	0.057	-0.2
75		В	10/5	0.012	-3.1	0.15	1.6	1.7	0.075	-0.8	0.21	0.1	0.015	-3.0
77	х	В	8/4	0.051	-0.1	0.11	0.1	0.1	0.076	-0.7			0.071	0.7
79		В	3/3			0.109	0.1	0.1	0.0861	-0.3	0.220	0.3		
80		В	4/1						0.07	-1.0				
82		В	4/2			0.0982	-0.3	-0.3	0.0963	0.2				
84		В	3/1	0.0495	-0.2									
85		В	0/0											
87	х	А	13 / 5	0.053	0.1	0.081	-1.0	-0.9	0.107	0.6	0.235	0.6	0.054	-0.4
88	х	В	9/4	0.078	2.1	0.050	-2.1	-1.9#	0.113	0.9	0.20	-0.1		
90		В	11 / 5	0.056	0.3	0.12	0.5	0.5	0.1	0.3	0.2	-0.1	0.08	1.3
91	х	А	13 / 5	0.0520	0.0	0.127	0.7	0.8	0.0832	-0.4	0.191	-0.2	0.0647	0.3
92		В	10/4	0.061	0.7				0.085	-0.3	0.220	0.3	0.053	-0.5
93		В	6/3	0.0513	0.0	0.0755	-1.2	-1.2					0.0678	0.5
94		В	11/4	0.020	-2.5	0.078	-1.1	-1.1	0.078	-0.6	0.246	0.8	FN	-3.3
95	х	В	9/5	0.0385	-1.0	0.071	-1.3	-1.8#	0.782	29.9	0.133	-1.4	0.0310	-1.9
96		В	10/4	0.0500	-0.1	0.107	0.0	0.0	0.122	1.3	0.122	-1.6		
97		В	6/3	0.0562	0.4	0.0520	-2.1	-2.0					0.0690	0.6
98		А	13 / 5	0.047	-0.4	0.087	-0.7	-0.7	0.099	0.3	0.22	0.3	0.041	-1.3
99		В	11 / 4	FN	-3.2	0.06	-1.8	-1.9#	0.09	-0.1	0.18	-0.5	0.06	0.0

Table 4-7 (cont.): Results reported and z-scores achieved by all participating laboratories for the COMPULSORY compounds

* based on subpopulation consisting of results generated by methods involving acidic hydrolysis or analysis of carbofuran and carbosulfan separately [‡] due to COVID-19 lockdown lab was not able to complete its submission, evaluation for informative purpose only

* based on corrected values, for details please see Section **4.4.2 (p. 51)**. Z-scores were calculated for informative purpose only.

СОМР	ULSOI	RY C	ompounds	2,4 (free	4-D acid)	c	arbofura (sum)	n	Chlorm	equat-Cl	Glypł	nosate	TF	NA
		MR	RL [mg/kg]	(0.01	(0.01	0.01	(0.01	(0.03	(0.01
Ass	igned	l Val	ue [mg/kg]	(0.052	(0.107*	0.106#	(0.092	(0.203	(0.060
			CV^*	20	0.8%	22	2.8%*	22.1 %#	16	5.8 %	23	8.7%	27	7.8%
Lab code SRM15-	NRL- SRM	Cat	Analysed / corr. found, max. 13 / 5	Conc. [mg/kg]	z-Score (FFP-RSD = 25 %)	Conc. [mg/kg]	z-Score (FFP-RSD = 25 %)	z-Score# (FFP-RSD = 25 %)	Conc. [mg/kg]	z-Score (FFP-RSD = 25 %)	Conc. [mg/kg]	z-Score (FFP-RSD = 25 %)	Conc. [mg/kg]	z-Score (FFP-RSD = 25 %)
100		В	11 / 4			0.090	-0.6	-0.6	0.075	-0.8	0.210	0.1	0.040	-1.3
101		В	6/2						0.087	-0.2	0.202	0.0		
102		В	8/4	0.054	0.2	0.071	-1.3	-1.3	0.194	4.4	0.196	-0.1		
103	x	Α	12 / 5	0.036	-1.2	0.105	-0.1	0.0	0.324	10.0	0.176	-0.5	0.070	0.7
104		В	1/1			0.066	-1.5	-1.5						
105	x	В	8/4	0.0556	0.3	0.135	1.0	1.1	0.101	0.4			0.0708	0.7
107		В	11 / 4	0.063	0.9	0.081	-1.0	-0.9	0.020	-3.1	0.052	-3.0		
108	x	Α	13 / 5	0.061	0.7	0.093	-0.5	-0.5	0.103	0.5	0.199	-0.1	0.060	0.0
109		A	13 / 5	0.057	0.4	0.065	-1.6	-1.6	0.079	-0.6	0.104	-2.0	0.065	0.3
110		В	1/1			0.051	-2.1	-2.1						
111		A	13 / 5	0.039	-1.0	0.060	-1.8	-1.7	0.088	-0.2	0.245	0.8	0.087	1.8
112	X	A	12/5	0.0520	0.0	0.139	1.2	1.2	0.0870	-0.2	0.240	0.7	0.0420	-1.2
113		A	13/5	0.058	0.5	0.081	-1.0	-0.9	0.097	0.2	0.264	1.2	0.064	0.3
114		B	11/5	0.055	0.3	0.113	0.2	0.3	0.092	0.0	0.200	-0.1	0.072	0.8
115		A	13/5	0.055	0.3	0.060	-1.8	-1./	0.10	0.3	0.24	0.7	0.056	-0.3
110	X		0/5	0.0562	0.5	0.127	0.7	0.0	0.000	0.2	0.140	11	0.051	-1.9
110	X	R	15/5	0.062	-0.0	0.150	1.0	0.0	0.099	0.5	0.149	-1.1	0.009	-0.0
120	^	B	1/1	0.040	-0.9	0.0645	-1.6	-16	0.112	0.9	0.299	1.9	0.047	-0.9
120		B	9/4	0.015	-2.8	0.0045	5.7	5.8			0.280	15	0.093	22
122		A	13/5	0.0479	-0.3	0.125	0.7	0.7	0.104	0.5	0.232	0.6	0.0547	-0.4
123		A	13/5	0.063	0.9	0.104	-0.1	-0.1	0.097	0.2	0.205	0.0	0.044	-1.1
124		В	9/3	0.054	0.2				0.099	0.3	0.247	0.9		
125		А	13 / 5	0.057	0.4	0.112	0.2	0.2	0.087	-0.2	0.210	0.1	0.052	-0.6
127		В	7/3	0.040	-0.9				0.091	-0.1			0.088	1.9
128		А	13 / 5	0.065	1.0	0.101	-0.2	-0.2	0.119	1.2	0.200	-0.1	0.102	2.8
129		А	13 / 5	0.076	1.9	0.166	2.2	2.3	0.112	0.9	0.063	-2.8	0.032	-1.9
130		В	3/2						0.122	1.3	0.227	0.5		
132		В	5/2	0.054	0.2				0.094	0.1				
133		В	5/3	0.056	0.3	0.14	1.2	1.3	0.089	-0.2				
137		В	11 / 5	0.0611	0.7	0.147	1.5	1.6	0.0960	0.2	0.215	0.2	0.0651	0.3
3rd-29		В	3 / 1	0.0598	0.6									
3rd-43		В	5/3	0.071	1.5				0.087	-0.2	0.230	0.5		
3rd-72		В	4/2	0.0579	0.5								0.0708	0.7
3rd-73		В	11 / 5	0.048	-0.3	0.104	-0.1	-0.1	0.123	1.3	0.211	0.2	0.066	0.4
3rd-83		В	7/2	0.110	4.5				0.098	0.2				
3rd-86		В	2/2	0.0529	0.1						0.114	-1.8		
3rd-134		В	3/1	0.04	-0.9									
3rd-135		B	5/1			0.11	0.1	0.1						
10 [‡]		В	9/5	0.064	1.0	0.064	-1.6	-1.6	0.094	0.1			0.058	-0.2

Table 4-7 (cont.): Results reported and z-scores achieved by all participating laboratories for the COMPULSORY compounds

* based on subpopulation consisting of results generated by methods involving acidic hydrolysis or analysis of carbofuran and carbosulfan separately [‡] due to COVID-19 lockdown lab was not able to complete its submission, evaluation for informative purpose only

* based on corrected values, for details please see Section 4.4.2 (p. 51). Z-scores were calculated for informative purpose only.

0	PTION	IALC	ompounds	2,4 (su	I-D Im)	Benta	azone	Flua: (su	zifop ım)	Halo: (su	kyfop Im)	Imaze (free	thapyr acid)	
		MF	RL [mg/kg]	0	.01	0	.01	0	.01	0	.01	0	.01	
As	siane	d Va	lue [ma/ka]	0	.059	0	.334	0	.060*	0	.151	0	.206	
	- 3		CV*	18	.9%	19	4%	18	8%*	16	.2%	17	.6%	
Lab code	NRL- SRM	Cat	Analysed / corr. found,	Conc. [mg/kg]	z-Score (FFP-RSD									
SRM15-			max. 17 / 11		= 25 %)		= 25 %)		= 25 %)		= 25 %)		= 25 %)	
5		В	1/1	0.028	-2.1									
8	x	В	13/8	0.0406	-1.2	0.768	5.2	0.0141	-3.1	0.162	0.3	0.222	0.3	
9	x	В	11/8	0.198	9.5	0.384	0.6	0.096	2.4	0.205	1.4			
11		В	0/0											
12	x	А	17 / 11	0.047	-0.8	0.323	-0.1	0.061	0.1	0.168	0.4	0.198	-0.2	
13	x	Α	16 / 10	0.0578	-0.1	0.329	-0.1	0.0579	-0.1	0.150	0.0			
16	x	Α	17 / 11	0.060	0.1	0.403	0.8	0.050	-0.7	0.158	0.2	0.220	0.3	
18		В	0/0											
19		Α	16/9	0.037	-1.5	0.26	-0.9	0.046	-0.9	FN	-3.7			
20	х	В	6/3			0.270	-0.8	0.056	-0.3					
21	x	Α	14/9	0.0581	0.0	0.337	0.0	0.0174	-2.8	0.129	-0.6			
22	х	В	12/9	0.060	0.1	0.347	0.2	0.065	0.3	0.135	-0.4			
23	х	Α	7/2			0.369	0.4							
24		Α	16/9	0.090	2.1	0.127	-2.5	0.056	-0.3	0.27	3.1			
25		В	12/9	0.057	-0.1	0.326	-0.1	0.052	-0.5	0.134	-0.5			
26		Α	17 / 11	0.081	1.5	0.281	-0.6	0.059	-0.1	0.144	-0.2	0.095	-2.2	
27		Α	11 / 7	0.056	-0.2	0.305	-0.4	0.056	-0.3	0.153	0.1			
28		Α	7/3			0.375	0.5					0.211	0.1	
30		В	15 / 8	0.048	-0.7	0.704	4.4	0.041	-1.3	0.048	-2.7	0.199	-0.1	
31		Α	10/7	0.0452	-0.9	0.308	-0.3	0.0152	-3.0	0.163	0.3			
32		Α	14/9	0.0653	0.5	0.339	0.1	0.0741	0.9	0.171	0.5			
33		В	9/5	0.187	8.8	0.315	-0.2							
34		Α	17 / 7	0.1	2.8	0.35	0.2	0.063	0.2	0.14	-0.3	0.21	0.1	
35		Α	8/3			0.436	1.2					0.194	-0.2	
36		В	1/0											
37		В	12/8	0.0508	-0.5	0.198	-1.6	0.0511	-0.6	0.115	-1.0			
38		В	0/0											
39		А	3 / 1			0.392	0.7							
40		В	6/5	0.0498	-0.6	0.4200	1.0	0.0698	0.7	0.1354	-0.4			
41	х	В	2/2					0.068	0.5	0.066	-2.3			
42	х	В	2/1											
44		Α	17 / 11	0.09	2.1	0.69	4.3	0.055	-0.3	0.187	1.0	0.23	0.5	
45	x	Α	5 / 1			0.381	0.6							
46	х	Α	13 / 8	0.064	0.4	0.342	0.1	0.020	-2.7	0.199	1.3			
47		В	12/9	0.076	1.2	0.329	-0.1	0.033	-1.8	0.152	0.0	0.194	-0.2	
48		Α	15 / 10	0.070	0.8	0.325	-0.1	0.055	-0.3	0.133	-0.5	0.214	0.2	
49		А	17 / 11	0.058	0.0	0.269	-0.8	0.076	1.1	0.146	-0.1	0.185	-0.4	
50		В	16 / 11	0.0655	0.5	0.342	0.1	0.0622	0.1	0.1528	0.0	0.1989	-0.1	
51		Α	17 / 8	0.050	-0.6	0.288	-0.6	0.010	-3.3	0.146	-0.1	0.221	0.3	
54		В	1/0											
55		В	13 / 10	0.137	5.4	0.388	0.7	0.0811	1.4	0.222	1.9	0.264	1.1	
* based or	n subpo	pulat	tion, for fluazif	op (sum), M	CPB (sum) su	ubpopulatio	on consisting	g results ger	erated by m	nethods invo	olving mode	erate or stroi	ng hydroly-	

Table 4-8: Results reported and z-scores achieved by all participating laboratories for OPTIONAL compounds

oprop (sum) consisting results generated by methods involving strong hydrolysis only sis, for me

Optional Compounds		МСРА	(sum)	МСРВ	(sum)	Meco (su	prop m)	Para	quat	Quiza (free	lofop acid)	Quiza (su	lofop m)		
		MR	RL [mg/kg]	0.	.01	0	.01	0.	.01	0	.02	0.	.01	0.	.01
Assi	igned	l Val	ue [mg/kg]	0.	.068	0	.057*	0.	.067*	0	.195	0.	.044	0.	.062
			CV*	20.	.2%	29	.4%*	22.	.4%*	28	.9%	16.	.4%	22.	9%
Lab code SRM15-	NRL- SRM	Cat	Analysed / corr. found, max. 17 / 11	Conc. [mg/ kg]	z-Score (FFP- RSD = 25 %)	Conc. [mg/ kg]	z-Score (FFP- RSD = 25 %)	Conc. [mg/ kg]	z-Score (FFP- RSD = 25 %)	Conc. [mg/ kg]	z-Score (FFP- RSD = 25 %)	Conc. [mg/ kg]	z-Score (FFP- RSD = 25 %)	Conc. [mg/ kg]	z-Score (FFP- RSD = 25 %)
5		В	1/1												
8	Х	В	13 / 8	0.0850	1.0	0.0202	-2.6	FN	-3.4	0.478	5.8			FN	-3.4
9	X	В	11 / 8	0.206	8.2			0.096	1.7			0.091	4.2	0.136	4.8
11		В	0/0												
12	X	Α	17 / 11	0.075	0.4	0.055	-0.1	0.020	-2.8	0.183	-0.3	0.049	0.4	0.062	0.0
13	Х	Α	16 / 10	0.0628	-0.3	0.0580	0.1	0.0653	-0.1	0.180	-0.3	0.0389	-0.5	0.0604	-0.1
 16	Х	Α	17 / 11	0.071	0.2	0.063	0.4	0.076	0.5	0.241	0.9	0.046	0.1	0.062	0.0
18		В	0/0												
19		Α	16/9	0.067	0.0	0.055	-0.1	0.039	-1.7	0.13	-1.3	0.043	-0.1	0.063	0.1
20	Х	В	6/3									0.039	-0.5		
21	Х	Α	14/9	0.0663	-0.1	0.0232	-2.4	FN	-3.4	0.174	-0.4	0.0441	0.0	0.0544	-0.5
22	Х	В	12 / 9	0.070	0.2	0.074	1.2	0.073	0.4			0.048	0.3	0.062	0.0
23	Х	Α	7/2									0.0505	0.6		
24		Α	16/9	0.091	1.4	0.060	0.2	FN	-3.4	0.124	-1.5	0.042	-0.2	0.084	1.4
25		В	12 / 9	0.061	-0.4	0.021	-2.5	0.033	-2.0			0.043	-0.1	0.053	-0.6
26		Α	17 / 11	0.068	0.0	0.070	0.9	0.043	-1.4	0.220	0.5	0.020	-2.2	0.057	-0.3
27		Α	11 / 7	0.065	-0.2	0.053	-0.3	0.024	-2.6						
28		Α	7/3									0.0414	-0.3		
30		В	15 / 8	0.053	-0.9	FN	-3.3	FN	-3.4	0.200	0.1	0.036	-0.8		
31		Α	10 / 7	0.0536	-0.8							0.0453	0.1	0.0636	0.1
32		Α	14/9	0.0808	0.8	0.0657	0.6	0.0823	0.9			0.0518	0.7	0.0599	-0.1
33		В	9/5	0.212	8.6	0.122	4.6	0.202	8.1						
34		Α	17 / 7	FN	-3.4	FN	-3.3	FN	-3.4	0.36	3.4	FN	-3.1	0.066	0.3
35		Α	8/3									0.0470	0.2		
36		В	1/0												
37		В	12 / 8	0.0564	-0.7	0.042	-1.1	FN	-3.4			0.0243	-1.8	0.0404	-1.4
38		В	0/0												
39		Α	3 / 1												
40		В	6/5	0.0512	-1.0										
41	Х	В	2/2												
42	х	В	2/1							0.358	3.3				
44		Α	17 / 11	0.046	-1.3	0.039	-1.3	0.031	-2.1	0.212	0.4	0.043	-0.1	0.054	-0.5
45	Х	Α	5/1												
46	Х	Α	13 / 8	0.077	0.6	0.071	1.0	FN	-3.4			0.080	3.2	0.113	3.3
47		В	12/9	0.079	0.7	0.070	0.9	FN	-3.4	0.097	-2.0			0.068	0.4
48		Α	15 / 10	0.078	0.6	0.046	-0.8	0.066	-0.1			0.040	-0.4	0.048	-0.9
49		Α	17 / 11	0.062	-0.3	0.068	0.8	0.071	0.2	0.173	-0.5	0.036	-0.8	0.050	-0.8
50		В	16 / 11	0.0736	0.4	0.0520	-0.4	0.0645	-0.1	0.155	-0.8	0.0454	0.1	0.0689	0.5
51		Α	17 / 8	0.054	-0.8	0.022	-2.5	FN	-3.4	FN	-3.8	0.048	0.3	FN	-3.4
54		В	1/0												
55		В	13 / 10	0.144	4.5	0.134	5.4	0.135	4.1			0.0525	0.7	0.0990	2.4
* based or sis, for m	n subp iecopr	oopul op (s	ation, for flua um) consistin	izifop (sum ig results g	n), MCPB (s enerated	um) subpo by methoo	opulation ds involvin	consisting Ig strong h	results ge ydrolysis	nerated b only	y methods	s involving	moderate	e or strong	hydroly-

[†] due to COVID-19 lockdown lab was not able to complete its submission, evaluation for informative purpose only

01	PTION	IAL C	Compounds	2,4 (su	I-D Im)	Benta	azone	Flua: (su	zifop ım)	Halo: (su	kyfop ım)	lmaze (free	thapyr acid)	
		MF	RL [mg/kg]	0.	.01	0	.01	0	.01	0	.01	0	.01	
As	signe	d Va	lue [mg/kg]	0.	.059	0	.334	0	.060*	0	.151	0	.206	
			CV*	18	.9%	19	.4%	18	.8%*	16	.2%	17	.6%	
Lab code SRM15-	NRL- SRM	Cat	Analysed / corr. found, max. 17 / 11	Conc. [mg/kg]	z-Score (FFP-RSD = 25 %)									
56		А	16 / 10	0.053	-0.4	0.333	0.0	0.048	-0.8	0.152	0.0	0.154	-1.0	
57		Α	17 / 11	0.060	0.1	0.354	0.2	0.075	1.0	0.152	0.0	0.179	-0.5	
58		В	11 / 7	0.0547	-0.3			0.0113	-3.2	0.127	-0.6			
59		В	12/9	0.068	0.6	0.334	0.0	0.067	0.5	0.148	-0.1			
60		В	4/2			0.2625	-0.9					0.1750	-0.6	
61	х	В	3/0											
62	х	А	11 / 7	0.121	4.3	0.387	0.6	0.073	0.9	0.232	2.1			
63		В	1/0											
64		В	12/9	0.062	0.2	0.365	0.4	0.049	-0.7	0.144	-0.2	0.178	-0.6	
65	x	Α	10/4			0.209	-1.5					0.140	-1.3	
66		Α	11/6	0.080	1.5	0.372	0.5							
67		А	13/9	0.060	0.1	0.392	0.7	0.049	-0.7	0.181	0.8			
68	х	В	10/5	0.049	-0.7			0.016	-2.9	0.140	-0.3			
69		В	3 / 1			0.26	-0.9							
70		В	0/0											
71	x	В	11 / 8	0.0554	-0.2	0.272	-0.7			0.119	-0.9	0.227	0.4	
74	х	A	17/9	0.068	0.6	0.352	0.2	FN	-3.3	0.143	-0.2	0.300	1.8	
75		В	1/0											
77	х	В	0/0											
79		В	0/0											
80		В	0/0											
82		B	3/3			0.342	0.1	0.0608	0.1	0.152	0.0			
84		B	11/8	0.0544	-0.3			0.0465	-0.9	0.148	-0.1			
85		B	1/1	0.056	0.0	0.000	0.1	0.057		0.1.42		0.105		
87	X	A	15/10	0.056	-0.2	0.338	0.1	0.057	-0.2	0.143	-0.2	0.195	-0.2	
88	X	B	2/1	0.057	0.1	0.27	-0.8	0.000	1.0	0.20	1 3	0.25	2.0	
90		В	10/11	0.057	-0.1	0.45	1.4	0.089	1.9	0.20	1.3	0.35	2.8	
91	X	P	14 / 10	0.0557	-0.3	0.313	-0.2	0.056	-5.5	0.0755	-2.0	0.200	0.1	
92		B	14/10	0.001	0.2	0.300	-0.4	0.0518	-0.5	0.139	-0.5	0.200	-0.1	
93		B	5/2	0.0382	0.0	0.377	-1.6	0.0518	-0.3	0.110	-0.9	0.217	0.2	
95	v	B	6/2			0.203	-1.0	0.050	-0.7					
96	~	B	14 / 10	0.067	0.6	0.387	0.6	0.0630	0.2	0 136	-0.4	0 222	03	
97		B	3/1	0.007	0.0	0.007	0.0	0.0000	0.2	0.130	0.1	0.222	0.5	
98		A	16 / 11	0.047	-0.8	0.48	1.8	0.056	-0.3	0.14	-0.3	0.024	-3.5	
99		В	13 / 7	0.05	-0.6	0.25	-1.0	0.06	0.0	0.17	0.5	0.28	1.4	
100		В	10/8	0.049	-0.7	0.286	-0.6	0.056	-0.3	0.160	0.2	FN	-3.8	
101		В	2/2			0.439	1.3							
102		В	0/0											
103	x	Α	13/9	0.036	-1.5	0.228	-1.3	0.018	-2.8	0.044	-2.8	0.183	-0.5	
104		В	0/0											
105	x	В	0/0											

Table 4-8 (cont.): Results reported and z-scores achieved by all participating laboratories for OPTIONAL compounds

* based on subpopulation, for fluazifop (sum), MCPB (sum) subpopulation consisting results generated by methods involving moderate or strong hydrolysis, for mecoprop (sum) consisting results generated by methods involving strong hydrolysis only

⁺ due to COVID-19 shut down lab was not able to complete its submission, evaluation for informative purpose only

0	ption	al C	ompounds	МСРА	(sum)	МСРВ	(sum)	Mecc (su	prop im)	Para	quat	Quiza (free	lofop acid)	Quiza (su	lofop m)
		MR	RL [mg/kg]	0.	.01	0.	.01	0	.01	0	.02	0.	.01	0.	.01
Ass	igned	Val	ue [mg/kg]	0.	.068	0.	.057*	0	.067*	0	.195	0.	.044	0.	.062
			CV*	20.	.2%	29	.4%*	22	.4%*	28	.9 %	16.	.4%	22.	. 9 %
Lab code SRM15-	NRL- SRM	Cat	Analysed / corr. found, max. 17 / 11	Conc. [mg/ kg]	z-Score (FFP- RSD = 25 %)										
56		А	16/10	0.060	-0.4	0.031	-1.8	0.014	-3.2			0.034	-0.9	0.050	-0.8
57		Α	17 / 11	0.065	-0.2	0.056	-0.1	0.034	-2.0	0.217	0.5	0.043	-0.1	0.065	0.2
58		В	11/7	0.061	-0.4	0.0302	-1.9					0.0426	-0.2	0.0530	-0.6
59		В	12/9	0.082	0.9	0.08	1.6	0.083	1.0			0.041	-0.3	0.097	2.3
60		В	4/2												
61	x	В	3/0												
62	x	А	11/7	0.0895	1.3	0.074	1.2	0.058	-0.5						
63		В	1/0												
64		В	12/9	0.062	-0.3	0.049	-0.6	FN	-3.4	0.174	-0.4	0.035	-0.9		
65	x	Α	10/4							0.431	4.8	0.0288	-1.4		
66		А	11/6	0.071	0.2			FN	-3.4	0.142	-1.1	0.046	0.1	0.083	1.4
67		А	13/9	0.088	1.2			0.018	-2.9	0.184	-0.2	0.061	1.5	0.085	1.5
68	x	В	10/5	0.064	-0.2	0.026	-2.2	FN	-3.4						
69		В	3/1												
70		В	0/0												
71	x	В	11/8	0.0595	-0.5	0.0232	-2.4					0.0516	0.6	0.0572	-0.3
74	x	А	17/9	0.075	0.4	0.019	-2.7	FN	-3.4	0.131	-1.3	0.044	0.0	0.051	-0.7
75		В	1/0												
77	x	В	0/0												
79		В	0/0												
80		В	0/0												
82		В	3/3												
84		В	11/8	0.0587	-0.5	0.0515	-0.4	0.0298	-2.2			0.0437	-0.1	0.0603	-0.1
85		В	1/1							0.174	-0.4				
87	x	А	15 / 10	0.063	-0.3	0.050	-0.5	0.056	-0.7			0.043	-0.1	0.059	-0.2
88	x	В	2/1												
90		В	16 / 11	0.076	0.5	0.073	1.1	0.070	0.2	0.2	0.1	0.044	0.0	0.070	0.5
91	x	Α	13/6	0.0581	-0.6	FN	-3.3	FN	-3.4			0.0466	0.2	0.0534	-0.6
92		В	14 / 10	0.056	-0.7	0.053	-0.3	0.064	-0.2			0.046	0.1	0.054	-0.5
93		В	13 / 10	0.0705	0.2	0.0381	-1.3	0.0171	-3.0			0.0487	0.4	0.0614	0.0
94		В	5/2												
95	x	В	6/2									0.0421	-0.2		
96		В	14 / 10	0.0553	-0.7	0.0520	-0.4	0.0523	-0.9			0.0363	-0.7	0.0563	-0.4
97		В	3/1									0.0554	1.0		
98		Α	16 / 11	0.081	0.8	0.067	0.7	0.078	0.7	0.15	-0.9	0.051	0.6	0.088	1.7
99		В	13 / 7	0.05	-1.0	0.09	2.3			FN	-3.6	FN	-3.1		
100		В	10/8	0.051	-1.0	0.034	-1.6	0.025	-2.5					0.060	-0.1
101		В	2/2									0.053	0.8		
102		В	0/0												
103	x	Α	13 / 9	0.054	-0.8	0.032	-1.8	FN	-3.4			0.047	0.2	0.047	-1.0
104		В	0/0												
105	х	В	0/0												
* based o	n subp	opul	ation, for flua	zifop (sum	n), MCPB (s	um) subpo	opulation	consisting	results ge	nerated b	y method	s involving	moderate	e or strong	hydroly-

sis, for mecoprop (sum) consisting results generated by methods involving strong hydrolysis only ⁺ due to COVID-19 lockdown lab was not able to complete its submission, evaluation for informative purpose only

01	PTION	IAL C	Compounds	2,4 (su	l-D Im)	Benta	azone	Flua: (su	zifop ım)	Halo: (su	xyfop ım)	lmaze (free	thapyr acid)	
		MF	RRL [mg/kg]	0	.01	0	.01	0	.01	0	.01	0	.01	
As	signe	d Va	lue [mg/kg]	0	.059	0	.334	0	.060*	0	.151	0	.206	
			CV*	18	.9 %	19	.4%	18	.8%*	16	.2%	17	.6%	
Lab code SRM15-	NRL- SRM	Cat	Analysed / corr. found, max. 17 / 11	Conc. [mg/kg]	z-Score (FFP-RSD = 25 %)									
107		В	3/0											
108	х	Α	11 / 6	0.064	0.4			0.059	-0.1	0.154	0.1			
109		Α	4/0											
110		В	1/1					0.078	1.2					
111		А	14 / 10	0.023	-2.4	0.314	-0.2	0.046	-0.9	0.069	-2.2	0.208	0.0	
112	х	Α	3/0											
113		Α	17 / 11	0.065	0.4	0.334	0.0	0.062	0.1	0.154	0.1	0.218	0.2	
114		В	16 / 11	0.058	0.0	0.389	0.7	0.092	2.1	0.178	0.7	0.325	2.3	
115		Α	15 / 9	0.053	-0.4	0.240	-1.1	0.052	-0.5	0.15	0.0	FN	-3.8	
116	x	В	12 / 8	0.0652	0.5	0.327	-0.1	0.0351	-1.7	0.183	0.8			
118	х	Α	17 / 11	0.055	-0.3	0.323	-0.1	0.062	0.1	0.150	0.0	0.187	-0.4	
119	х	В	13 / 8	0.041	-1.2	0.338	0.1	0.063	0.2	0.187	1.0			
120		В	0/0											
121		В	4/1			0.244	-1.1							
122		A	15 / 9	0.0541	-0.3	0.321	-0.2	0.0514	-0.6	0.133	-0.5	0.176	-0.6	
123		Α	17 / 11	0.063	0.3	0.293	-0.5	0.067	0.5	0.164	0.3	0.181	-0.5	
124		В	13 / 9	0.060	0.1	0.352	0.2	0.063	0.2	0.162	0.3			
125		Α	17 / 11	0.059	0.0	0.450	1.4	0.063	0.2	0.152	0.0	0.265	1.1	
127		В	1/0											
128		A	17 / 11	0.066	0.5	0.355	0.3	0.061	0.1	0.141	-0.3	0.220	0.3	
129		A	13/9	0.102	3.0	0.404	0.8	0.073	0.9	0.170	0.5			
130		B	1/0											
132		B	9/5	0.070	0.8	0.39	0.7			0.160				
133		B	3/3	0.0611		0.333	0.0	0.0740	1.0	0.160	0.2			
137		B	15 / /	0.0611	0.2	0.344	0.1	0.0743	1.0	0.155	0.1	0.242	0.7	
3ra-29		В	13/10	0.0603	0.1	0.316	-0.2	0.0544	-0.4	0.153	0.1	0.242	0.7	
3ru-43		D	4/2			0.294	-0.5					0.207	0.0	
3rd-72		D	4/2	0.176	0.0	0.414	1.0	0.072	0.9	0.2	1.2	0.215	0.1	
310-73		P	7/2	0.176	0.0	0.414	-0.5	0.072	0.8	0.2	1.5	0.242	-0.2	
3rd 04		D	6/2			0.293	-0.5					0.195	-0.2	
3rd-124		B	5 / 1	0.04	-1 3	0.538	0.1	EN	_3 3	ENI	_3 7	0.237	0.0	
3rd 125		P	2/0	0.04	-1.5			FN	-3.5	FIN	-5./	EN	_3 0	
10‡		B	11/5	0.064	0.4	0.364	0.4	0.052	-0.5			114	-3.0	
* based or	Lubra		tion for fun-	0.004			0.4		-0.J	ethods in the	alving mode	rate or stra	ng hydroly	
Dased Of	suppo	puid	uon, ioi nudzli	op (sum), M		upopulatio	nconsisting	j results ger	iei ateu by fi	iethous inv	orving mode		ng nyurury-	1

Table 4-8 (cont.): Results reported and z-scores achieved by all participating laboratories for OPTIONAL compounds

sis, for mecoprop (sum) consisting results generated by methods involving strong hydrolysis only ⁺ due to COVID-19 shut down lab was not able to complete its submission, evaluation for informative purpose only

NRL- SRM	MR Val Cat B A A B A	RL [mg/kg] ue [mg/kg] <i>CV*</i> Analysed / corr. found, max. 17/11 3 / 0 11 / 6 4 / 0	0. 20. Conc. [mg/ kg]	.01 .068 .2 % z-Score (FFP- RSD = 25 %)	0. 29. Conc. [mg/ kg]	.01 .057* .4 %* z-Score (FFP-	0. 0. 22. Conc.	.01 .067* .4 %* z-Score	0 0 28	.02 .195 .9%	0. 0. 	.01 .044 .4%	0. 0. 22	.01 .062 .9%
NRL- SRM X	Cat	ue [mg/kg] <i>CV</i> * Analysed / corr. found, max. 17/11 3 / 0 11 / 6 4 / 0	0. 20. Conc. [mg/ kg]	.068 .2 % z-Score (FFP- RSD = 25 %)	0 29 Conc. [mg/ kg]	.057* .4 %* z-Score (FFP-	0. 22. Conc.	.067* .4 %* z-Score	0 28	.195 .9%	0. 16.	.044 .4%	0.	.062 .9%
NRL- SRM	Cat B A A B A	CV* Analysed / corr. found, max. 17/11 3 / 0 11 / 6 4 / 0	20. Conc. [mg/ kg]	.2 % z-Score (FFP- RSD = 25 %)	29 Conc. [mg/ kg]	.4 %* z-Score (FFP-	22. Conc.	.4 %* z-Score	28	.9%	16.	.4%	22	9%
NRL- SRM	Cat B A A B A	Analysed / corr. found, max. 17 / 11 3 / 0 11 / 6 4 / 0	Conc. [mg/ kg]	z-Score (FFP- RSD = 25 %)	Conc. [mg/ kg]	z-Score (FFP-	Conc.	z-Score						
<pre></pre>	B A A B	3/0 11/6 4/0				RSD = 25 %)	[mg/ kg]	(FFP- RSD = 25 %)	Conc. [mg/ kg]	z-Score (FFP- RSD = 25 %)	Conc. [mg/ kg]	z-Score (FFP- RSD = 25 %)	Conc. [mg/ kg]	z-Score (FFP- RSD = 25 %)
x x x x x x x x x x	A A B	11/6 4/0												
)) ? x ;	A B A	4/0	0.064	-0.2	0.052	-0.4	0.050	-1.0						
) 2 X	B													
2 x	Α	1/1												
x	1.	14 / 10	0.032	-2.1	0.023	-2.4	0.013	-3.2			0.036	-0.8	0.032	-1.9
	Α	3/0												
	Α	17 / 11	0.102	2.0	0.117	4.2	0.062	-0.3	0.171	-0.5	0.040	-0.4	0.056	-0.4
•	В	16 / 11	0.075	0.4	0.070	0.9	0.070	0.2	0.225	0.6	0.045	0.1	0.065	0.2
5	Α	15 / 9	0.060	-0.4	0.054	-0.2			0.24	0.9	0.040	-0.4	0.058	-0.3
x	В	12 / 8	0.0918	1.4	0.0324	-1.7	0.0146	-3.1			FN	-3.1	0.0617	0.0
x	Α	17 / 11	0.061	-0.4	0.056	-0.1	0.061	-0.4	0.141	-1.1	0.050	0.5	0.081	1.2
x	В	13 / 8	0.043	-1.5	0.049	-0.6	FN	-3.4			0.037	-0.7	0.047	-1.0
	В	0/0												
	В	4/1									FN	-3.1		
2	Α	15 / 9	0.0587	-0.5	0.0447	-0.9	FN	-3.4			0.0343	-0.9	0.0451	-1.1
	Α	17 / 11	0.077	0.6	0.037	-1.4	0.026	-2.4	0.28	1.7	0.037	-0.7	0.038	-1.5
-	В	13 / 9	0.068	0.0	0.052	-0.4	0.049	-1.1			0.046	0.1	0.070	0.5
i	Α	17 / 11	0.065	-0.2	0.056	-0.1	0.055	-0.7	0.185	-0.2	0.051	0.6	0.059	-0.2
'	В	1/0												
6	Α	17 / 11	0.071	0.2	0.056	-0.1	0.069	0.1	0.226	0.6	0.055	1.0	0.055	-0.4
	Α	13 / 9	0.100	1.9	0.046	-0.8	0.099	1.9			0.055	1.0	0.086	1.6
)	В	1/0												
2	В	9/5	0.092	1.5	0.088	2.2	0.041	-1.6						
	В	3/3	0.062	-0.3										
'	В	15 / 7	0.0633	-0.3	FN	-3.3	FN	-3.4	0.268	1.5	0.0497	0.5		
)	В	13 / 10	0.0687	0.1	0.0573	0.0	0.0863	1.2			0.0519	0.7	0.0670	0.3
•	В	6/3							0.120	-1.5				
2	В	4/2									0.0477	0.3		
	В	14/8	0.074	0.4	0.055	-0.1	0.075	0.5	FN	-3.8				
	В	7/2												
5	В	6/3							0.106	-1.8				
•	В	5/1												
5	В	2/0												
	В	11/5	0.007	-36			ENI		ENI	-36				
	• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	A B B A B A C B C B B B C B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B <th>A 17/11 B 13/9 A 17/11 B 1/0 A 17/11 B 1/0 A 17/11 A 13/9 B 1/0 B 1/0 B 1/0 B 1/0 B 1/0 B 3/3 B 15/7 B 13/10 B 6/3 B 4/2 B 14/8 B 7/2 B 5/1 B 5/1 B 2/0 B 11/5</th> <th>A 17/11 0.07 B 13/9 0.068 A 17/11 0.065 B 1/0 0.061 B 1/0 0.071 A 17/11 0.071 A 17/11 0.071 A 17/11 0.071 A 13/9 0.100 B 1/0 0.092 B 9/5 0.092 B 3/3 0.062 B 15/7 0.0633 B 13/10 0.0687 B 6/3 13/10 B 6/3 14/8 B 7/2 14/8 B 6/3 14/8 B 5/1 14/8 B 5/1 14/8 B 5/1 14/8</th> <th>A 17/11 0.07/ 0.6 B 13/9 0.068 0.0 A 17/11 0.065 -0.2 B 1/0 </th> <th>A 17/11 0.077 0.6 0.037 B 13/9 0.068 0.0 0.052 A 17/11 0.065 -0.2 0.056 B 1/0 - - - A 17/11 0.065 -0.2 0.056 A 17/11 0.071 0.2 0.056 A 17/11 0.071 0.2 0.056 A 17/11 0.071 0.2 0.056 A 13/9 0.100 1.9 0.046 B 1/0 - - - B 9/5 0.092 1.5 0.088 B 3/3 0.062 -0.3 - B 15/7 0.0633 -0.1 0.0573 B 6/3 - - - B 14/8 0.074 0.4 0.055 B 6/3 - - - B 5/1</th> <th>A 17/11 0.07/ 0.6 0.057 -1.4 B 13/9 0.068 0.0 0.052 -0.4 A 17/11 0.065 -0.2 0.056 -0.1 B 1/0 - - - - - B 1/0 - - - - - A 17/11 0.071 0.2 0.056 -0.1 A 17/11 0.071 0.2 0.056 -0.1 A 17/11 0.071 0.2 0.056 -0.1 A 13/9 0.100 1.9 0.046 -0.8 B 1/0 - - - - B 9/5 0.092 1.5 0.088 2.2 B 3/3 0.062 -0.3 FN -3.3 B 13/10 0.0687 0.1 0.0573 0.0 B 4/2 - - -</th> <th>A 17/11 0.07/ 0.08 0.037 -1.4 0.028 B 13/9 0.068 0.0 0.052 -0.4 0.049 A 17/11 0.065 -0.2 0.056 -0.1 0.055 B 1/0 - - - - 0.056 -0.1 0.055 B 1/0 - - - 0.056 -0.1 0.055 B 1/0 - - 0.056 -0.1 0.059 A 13/9 0.100 1.9 0.046 -0.8 0.099 B 1/0 - - - - - 0.069 B 1/0 - - 0.046 -0.8 0.099 B 1/0 0.092 1.5 0.088 2.2 0.041 B 3/3 0.062 -0.3 FN -3.3 FN B 13/10 0.0687 0.1 0.0553</th> <th>A 17/11 0.077 0.6 0.037 -1.4 0.026 -2.4 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 A 17/11 0.065 -0.2 0.056 -0.1 0.025 -0.7 B 1/0 A 17/11 0.065 -0.2 0.056 -0.1 0.059 -0.7 B 1/0 A 13/9 0.100 1.9 0.046 -0.8 0.099 1.9 B 1/0 0.048 2.2 0.041 -1.6 B 9/5 0.092 1.5 0.088 2.2 0.041 -1.6 B 3/3 0.062 -0.3 FN -3.3 FN -3.4 B 13/10 0.0687 0.1</th> <th>A 17/11 0.07/ 0.6 0.037 -1.4 0.026 -2.4 0.28 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 A 17/11 0.065 -0.2 0.056 -0.1 0.055 -0.7 0.185 B 1/0 A 17/11 0.071 0.2 0.056 -0.1 0.069 0.1 0.226 A 13/9 0.100 1.9 0.046 -0.8 0.099 1.9 B 1/0 0.088 2.2 0.041 -1.6 B 9/5 0.092 1.5 0.088 2.2 0.041 -1.6 B 3/3 0.062 -0.3 FN -3.3 FN -3.4 0.268 B 13/10 0.0687 0.1 0.0573 0.0 0.0863 1.2 <</th> <th>A 17/11 0.07/ 0.6 0.057 -1.4 0.026 -2.4 0.28 1.7 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 A 17/11 0.065 -0.2 0.056 -0.1 0.055 -0.7 0.185 -0.2 B 1/0 A 17/11 0.071 0.2 0.056 -0.1 0.069 0.1 0.226 0.6 A 13/9 0.100 1.9 0.046 -0.8 0.099 1.9 B 1/0 0.046 -0.8 0.099 1.9 B 1/10 0.071 0.2 0.058 2.2 0.041 -1.6 B 9/5 0.092 1.5 0.088 2.2 0.041 -1.6 <t< th=""><th>A 17711 0.077 0.6 0.037 1.14 0.026 -2.4 0.28 1.7 0.037 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 0.028 1.7 0.037 A 17/11 0.065 -0.2 0.056 -0.1 0.055 -0.7 0.185 -0.2 0.051 B 1/0 C C C C C C 0.055 A 17/11 0.071 0.2 0.056 -0.1 0.069 0.1 0.226 0.6 0.055 A 13/9 0.100 1.9 0.046 -0.8 0.099 1.9 C 0.055 B 1/0 C C C C C C C C B 1/0 0.092 1.5 0.088 2.2 0.041 -1.6 C C C B 3/3 0.062 -0.3</th><th>A 17/11 0.07/ 0.08 0.037 -1.4 0.026 -2.4 0.28 1.7 0.037 -0.7 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 0.028 1.7 0.037 -0.7 A 17/11 0.065 -0.2 0.056 -0.1 0.055 -0.7 0.185 -0.2 0.051 0.6 B 1/0 0 0 0.056 -0.1 0.069 0.1 0.226 0.6 0.055 1.0 A 13/9 0.100 1.9 0.046 -0.8 0.099 1.9 0.26 0.6 0.055 1.0 B 1/0 0 0.046 -0.8 0.099 1.9 0.26 0.6 0.055 1.0 B 1/0 0.092 1.5 0.088 2.2 0.041 -1.6 0.0 0.055 1.0 B 3/3 0.062 -0.3 FN -</th><th>A 17711 0.077 0.08 0.037 -1.4 0.026 -2.4 0.28 1.7 0.037 -0.7 0.038 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 0.046 0.1 0.070 A 17/11 0.065 -0.2 0.056 -0.1 0.055 -0.7 0.185 -0.2 0.051 0.6 0.059 B 1/0 </th></t<></th>	A 17/11 B 13/9 A 17/11 B 1/0 A 17/11 B 1/0 A 17/11 A 13/9 B 1/0 B 1/0 B 1/0 B 1/0 B 1/0 B 3/3 B 15/7 B 13/10 B 6/3 B 4/2 B 14/8 B 7/2 B 5/1 B 5/1 B 2/0 B 11/5	A 17/11 0.07 B 13/9 0.068 A 17/11 0.065 B 1/0 0.061 B 1/0 0.071 A 17/11 0.071 A 17/11 0.071 A 17/11 0.071 A 13/9 0.100 B 1/0 0.092 B 9/5 0.092 B 3/3 0.062 B 15/7 0.0633 B 13/10 0.0687 B 6/3 13/10 B 6/3 14/8 B 7/2 14/8 B 6/3 14/8 B 5/1 14/8 B 5/1 14/8 B 5/1 14/8	A 17/11 0.07/ 0.6 B 13/9 0.068 0.0 A 17/11 0.065 -0.2 B 1/0	A 17/11 0.077 0.6 0.037 B 13/9 0.068 0.0 0.052 A 17/11 0.065 -0.2 0.056 B 1/0 - - - A 17/11 0.065 -0.2 0.056 A 17/11 0.071 0.2 0.056 A 17/11 0.071 0.2 0.056 A 17/11 0.071 0.2 0.056 A 13/9 0.100 1.9 0.046 B 1/0 - - - B 9/5 0.092 1.5 0.088 B 3/3 0.062 -0.3 - B 15/7 0.0633 -0.1 0.0573 B 6/3 - - - B 14/8 0.074 0.4 0.055 B 6/3 - - - B 5/1	A 17/11 0.07/ 0.6 0.057 -1.4 B 13/9 0.068 0.0 0.052 -0.4 A 17/11 0.065 -0.2 0.056 -0.1 B 1/0 - - - - - B 1/0 - - - - - A 17/11 0.071 0.2 0.056 -0.1 A 17/11 0.071 0.2 0.056 -0.1 A 17/11 0.071 0.2 0.056 -0.1 A 13/9 0.100 1.9 0.046 -0.8 B 1/0 - - - - B 9/5 0.092 1.5 0.088 2.2 B 3/3 0.062 -0.3 FN -3.3 B 13/10 0.0687 0.1 0.0573 0.0 B 4/2 - - -	A 17/11 0.07/ 0.08 0.037 -1.4 0.028 B 13/9 0.068 0.0 0.052 -0.4 0.049 A 17/11 0.065 -0.2 0.056 -0.1 0.055 B 1/0 - - - - 0.056 -0.1 0.055 B 1/0 - - - 0.056 -0.1 0.055 B 1/0 - - 0.056 -0.1 0.059 A 13/9 0.100 1.9 0.046 -0.8 0.099 B 1/0 - - - - - 0.069 B 1/0 - - 0.046 -0.8 0.099 B 1/0 0.092 1.5 0.088 2.2 0.041 B 3/3 0.062 -0.3 FN -3.3 FN B 13/10 0.0687 0.1 0.0553	A 17/11 0.077 0.6 0.037 -1.4 0.026 -2.4 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 A 17/11 0.065 -0.2 0.056 -0.1 0.025 -0.7 B 1/0 A 17/11 0.065 -0.2 0.056 -0.1 0.059 -0.7 B 1/0 A 13/9 0.100 1.9 0.046 -0.8 0.099 1.9 B 1/0 0.048 2.2 0.041 -1.6 B 9/5 0.092 1.5 0.088 2.2 0.041 -1.6 B 3/3 0.062 -0.3 FN -3.3 FN -3.4 B 13/10 0.0687 0.1	A 17/11 0.07/ 0.6 0.037 -1.4 0.026 -2.4 0.28 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 A 17/11 0.065 -0.2 0.056 -0.1 0.055 -0.7 0.185 B 1/0 A 17/11 0.071 0.2 0.056 -0.1 0.069 0.1 0.226 A 13/9 0.100 1.9 0.046 -0.8 0.099 1.9 B 1/0 0.088 2.2 0.041 -1.6 B 9/5 0.092 1.5 0.088 2.2 0.041 -1.6 B 3/3 0.062 -0.3 FN -3.3 FN -3.4 0.268 B 13/10 0.0687 0.1 0.0573 0.0 0.0863 1.2 <	A 17/11 0.07/ 0.6 0.057 -1.4 0.026 -2.4 0.28 1.7 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 A 17/11 0.065 -0.2 0.056 -0.1 0.055 -0.7 0.185 -0.2 B 1/0 A 17/11 0.071 0.2 0.056 -0.1 0.069 0.1 0.226 0.6 A 13/9 0.100 1.9 0.046 -0.8 0.099 1.9 B 1/0 0.046 -0.8 0.099 1.9 B 1/10 0.071 0.2 0.058 2.2 0.041 -1.6 B 9/5 0.092 1.5 0.088 2.2 0.041 -1.6 <t< th=""><th>A 17711 0.077 0.6 0.037 1.14 0.026 -2.4 0.28 1.7 0.037 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 0.028 1.7 0.037 A 17/11 0.065 -0.2 0.056 -0.1 0.055 -0.7 0.185 -0.2 0.051 B 1/0 C C C C C C 0.055 A 17/11 0.071 0.2 0.056 -0.1 0.069 0.1 0.226 0.6 0.055 A 13/9 0.100 1.9 0.046 -0.8 0.099 1.9 C 0.055 B 1/0 C C C C C C C C B 1/0 0.092 1.5 0.088 2.2 0.041 -1.6 C C C B 3/3 0.062 -0.3</th><th>A 17/11 0.07/ 0.08 0.037 -1.4 0.026 -2.4 0.28 1.7 0.037 -0.7 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 0.028 1.7 0.037 -0.7 A 17/11 0.065 -0.2 0.056 -0.1 0.055 -0.7 0.185 -0.2 0.051 0.6 B 1/0 0 0 0.056 -0.1 0.069 0.1 0.226 0.6 0.055 1.0 A 13/9 0.100 1.9 0.046 -0.8 0.099 1.9 0.26 0.6 0.055 1.0 B 1/0 0 0.046 -0.8 0.099 1.9 0.26 0.6 0.055 1.0 B 1/0 0.092 1.5 0.088 2.2 0.041 -1.6 0.0 0.055 1.0 B 3/3 0.062 -0.3 FN -</th><th>A 17711 0.077 0.08 0.037 -1.4 0.026 -2.4 0.28 1.7 0.037 -0.7 0.038 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 0.046 0.1 0.070 A 17/11 0.065 -0.2 0.056 -0.1 0.055 -0.7 0.185 -0.2 0.051 0.6 0.059 B 1/0 </th></t<>	A 17711 0.077 0.6 0.037 1.14 0.026 -2.4 0.28 1.7 0.037 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 0.028 1.7 0.037 A 17/11 0.065 -0.2 0.056 -0.1 0.055 -0.7 0.185 -0.2 0.051 B 1/0 C C C C C C 0.055 A 17/11 0.071 0.2 0.056 -0.1 0.069 0.1 0.226 0.6 0.055 A 13/9 0.100 1.9 0.046 -0.8 0.099 1.9 C 0.055 B 1/0 C C C C C C C C B 1/0 0.092 1.5 0.088 2.2 0.041 -1.6 C C C B 3/3 0.062 -0.3	A 17/11 0.07/ 0.08 0.037 -1.4 0.026 -2.4 0.28 1.7 0.037 -0.7 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 0.028 1.7 0.037 -0.7 A 17/11 0.065 -0.2 0.056 -0.1 0.055 -0.7 0.185 -0.2 0.051 0.6 B 1/0 0 0 0.056 -0.1 0.069 0.1 0.226 0.6 0.055 1.0 A 13/9 0.100 1.9 0.046 -0.8 0.099 1.9 0.26 0.6 0.055 1.0 B 1/0 0 0.046 -0.8 0.099 1.9 0.26 0.6 0.055 1.0 B 1/0 0.092 1.5 0.088 2.2 0.041 -1.6 0.0 0.055 1.0 B 3/3 0.062 -0.3 FN -	A 17711 0.077 0.08 0.037 -1.4 0.026 -2.4 0.28 1.7 0.037 -0.7 0.038 B 13/9 0.068 0.0 0.052 -0.4 0.049 -1.1 0.046 0.1 0.070 A 17/11 0.065 -0.2 0.056 -0.1 0.055 -0.7 0.185 -0.2 0.051 0.6 0.059 B 1/0

⁺ due to COVID-19 lockdown lab was not able to complete its submission, evaluation for informative purpose only

A compilation of all individual results and z-scores for each laboratory is shown in **Table 4-7** (**p. 35**) for compulsory compounds and **Table 4-8** (**p. 38**) for optional compounds. The corresponding kernel density histograms showing the distribution of the reported results are shown in **Appendix 5**. A graphic representation of the z-score distribution of each target analyte present in the test item can be seen in **Appendix 6**.

4.3.4 Laboratory Classification Based on Scope

All participating laboratories having reported at least one result were classified into categories A or B according to the rules cited in **Section 2.5 (p. 35)**. Following the rules defined in the General Protocol (8th Edition, see **Appendix 8**), a laboratory had to fulfil the following conditions in order to be classified into Category A in the present PT: a) analysis of at least twelve out of the 13 compulsory pesticides on the Target Pesticides List; b) correct detection of at least four out of the five compulsory pesticides present in the test item, and c) no false positive results.

A total of 44 EU and EFTA laboratories (41 %) were classified into Category A and 64 (59 %) into Category B. All 8 laboratories from EU candidate and third-countries were classified into Category B. Considering only the compulsory compounds the laboratories from EU and EFTA countries classified into Category A achieved an overall AAZ of 0.8 (n = 219), whereas those classified into Category B achieved an overall AAZ of 1.0 (n = 206). When including laboratories from EU candidate and third countries, the AAZ for the compsulsory and optional compounds remains the same, but the number of the submitted results classified into Category B increased to n = 233.

Table 4-9 (p. 45) and **Table 4-10 (p. 46)** show the details of laboratories classified into Category A and B, respectively. For informative purposes, the overall AAZ was calculated for laboratories with 4 or more individual z-scores among the compulsory compounds. For the AAZ calculation any z-scores > 5 were set at 5.

4.3.5 Feedback from Laboratories in Case of Poor Results

Like in the previous EUPT-SRMs, as a follow-up measure to this EUPT, all participating laboratories having achieved questionable (2 < |z-score| < 3) or unacceptable ($|z-score| \ge 3$) or false positive results were asked to investigate the reasons for their poor performance and to report them to the organisers. The aim of this measure is to sensibilize the laboratories to investigate the sources of errors. A compilation of the feedback received by the laboratories is given in **Appendix 7**. With this compilation it is intended to make all participating labs aware of common and potential error sources so that they can be avoided or eliminated in the future. This information also provides input to NRLs on how to better assist OfLs within the network in improving their performance. In order to assist the participants to find the error sources, the organizers stated for the first time in the Preliminary Report comprehensive indications on potential error sources driven from the reported information on methods that have been applied by the participants to analyse the compounds in the current PT.

In total, 1103 numerical results for the analytes present in the test items, 43 false negative results and 1 false positive result were reported by 108 participants from EU/EFTA countries. 67 EU/EFTA laboratories reported 155 cases of poor performance (|z|>2, incl. 43 FNs, and 1 FPs). 60 laboratories reported for 134 cases the (possible) reasons or their investigation, even though no clear reasons for the poor performance could be identified. In another 13 cases (each one case for *fluazifop (sum)*, *carbofuran (sum)*, *haloxyfop (sum)*, 3× *MCPB (sum)* and 5× *mecoprop (sum)*) the 6 laboratories did not report their error source after their investigation.

COMPU	LSORY	Compounds	2,4-D (free acid)	Carbofuran (sum)	Chlormequat- Cl	Glyphosate	TFNA	
	м	RRL [mg/kg]	0.01	0.01	0.01	0.03	0.01	
Assi	aned V	alue [mɑ/kɑ]	0.052	0.107*	0.092	0.203	0.060	
	9	CV*	20.8%	22.8%*	16.8%	23.7%	27.8%	
Lab	NRI -	Analysed /	20:0 /0	22.0 /0 7-Score	7-Score	25.7 /0 7-Score	27.0 /0 7-Score	
code	SRM	corr. found,	(FFP-RSD	(FFP-RSD	(FFP-RSD	(FFP-RSD	(FFP-RSD	
SRM15-		max. 13 / 5	= 25 %)	= 25 %)	= 25 %)	= 25 %)	= 25 %)	AAZ
12	X	13 / 5	-0.4	0.0	-0.1	-0.9	-1.4	0.6
13	X	12 / 5	0.3	0.2	-1.1	0.0	-1.5	0.6
16	X	13 / 5	0.7	0.6	0.4	0.2	1.1	0.6
19		13 / 5	-1.1	-0.3	-0.5	1.1	-0.9	0.8
21	X	13 / 5	0.5	-1.2	-0.2	1.6	-0.2	0.7
23	X	13 / 5	-0.1	0.6	-0.6	0.9	0.1	0.5
24		13 / 5	-1.4	6.5	-1.2	-1.1	-0.1	1.8
26		13 / 5	-0.1	0.5	0.2	-0.1	-0.2	0.2
27		13 / 5	-0.1	-1.2	0.7	-0.3	0.4	0.5
28		13 / 5	0.3	-0.9	-1.8	0.7	0.5	0.8
31		12/4	-0.3		0.5	0.5	0.9	0.6
32		13 / 5	0.7	0.9	0.8	-0.5	0.9	0.8
34		13 / 5	3.8	-2.0	0.8	0.5	0.7	1.6
35		13 / 5	-0.7	-0.9	-0.5	-1.5	-1.2	1.0
39		13 / 5	0.9	-2.2	0.6	1.0	-1.0	1.1
44		13 / 5	-0.5	-0.3	-1.3	-0.6	0.3	0.6
45	X	13 / 5	-0.1	-0.1	-0.7	0.8	1.7	0.7
46	X	13 / 5	0.2	-0.4	-0.2	-0.2	0.1	0.2
48		13 / 5	-1.8	-0.3	0.9	-0.1	-0.9	0.8
49		13 / 5	0.3	-1.3	-0.4	0.4	1.7	0.8
51		13 / 4	-1.0	-1.7	-0.3	4.1	-3.3	2.1
56		13 / 5	-0.7	-0.9	0.5	-0.6	0.1	0.6
57		13 / 5	0.0	0.9	0.4	0.1	-0.1	0.3
62	X	13 / 5	-2.8	-0.3	-0.2	0.0	0.3	0.7
65	X	13/4	-1.3	0.2	0.0	1.4	-3.3	1.2
66		13/5	2.8	-2.1	0.2	-2.0	-2.0	1.8
67		13/5	-0.7	-0.5	-0.3	-3.6	1.1	1.2
/4	X	13/5	1.0	-0.3	-0.2	-0.1	-0.2	0.4
8/	X	13/5	0.1	-1.0	0.6	0.6	-0.4	0.5
91	X	13/5	0.0	0.7	-0.4	-0.2	0.3	0.3
98		13/5	-0.4	-0.7	0.3	0.3	-1.3	0.6
103	X	12/5	-1.2	-0.1	10.0	-0.5	0.7	1.3
100	X	12/5	0.7	-0.5	0.5	-0.1	0.0	1.0
109		12/5	1.0	-1.0	-0.0	-2.0	1.0	1.0
112	v	12/5	-1.0	-1.0	-0.2	0.8	1.0	0.7
112	X	12/5	0.0	-1.0	-0.2	1.2	-1.2	0.7
115		13/5	0.3	-1.0	0.2	0.7	-0.3	0.0
119	v	13 / 5	0.5	1.6	0.3	-1.1	0.5	0.9
172	^	13 / 5	-0.3	0.7	0.5	0.6	-0.4	0.5
122		13/5	-0.5	-0.1	0.3	0.0	-1.1	0.5
125		13 / 5	0.4	0.7	-0.2	0.1	-0.6	0.3
129		13 / 5	10	-0.2	1.2	-0.1	2.8	11
120		13 / 5	1.0	2.2	0.9	-7.8	-1.0	1.0
* based on c	uhpopu	lation consisting	n of results generat	ed by methods inv	olving acidic bydrol	2.0	arbofuran and carb	osulfan sena-
rately	aopopu		g or results general	ca by methods IIIV	orving acture nydror			osunan sepa-

Table 4-9: Category A laboratories in EUPT-SRM15, ordered by lab-codes.

СОМРИ	LSORY	Compounds	2,4-D (free acid)	Carbofuran (sum)	Chlormequat-	Glyphosate	TFNA	
	M	IRRL [ma/ka]	0.01	0.01	0.01	0.03	0.01	
Assi	aned V	alue [mɑ/kɑ]	0.052	0.107*	0.092	0.203	0.060	
	J	CV*	20.8%	22.8%*	16.8%	23.7%	27.8%	
Lab	NRL-	Analysed /	z-Score	z-Score	z-Score	z-Score	z-Score	
code	SRM	corr. found,	(FFP-RSD	(FFP-RSD	(FFP-RSD	(FFP-RSD	(FFP-RSD	
SRM15-		max. 13 / 5	= 25 %)	= 25 %)	= 25 %)	= 25 %)	= 25 %)	AAZ
5		1/0	-3.2	1.2	10	2.7	2.7	2.1
8	X	10/4	2.4	1.3	-1.8	-2.7	2./	2.1
9	X	7/4	3.4	0	1.2	-0.4		1.2
11		1/1	-0.1	-0.1	-1	-0.4		0.4
20	v	6/4	-0.7	-1.7	0.2	_1 3		0.9
20	^ V	10/5	-0.7	-1.4	0.2	-1.5	0.5	0.3
25	^	6/3	0.1	0.3	0.2	0.5	0.5	0.2
30		11/5	-0.4	-0.3	0.1	0.1	0.1	0.2
33		6/3	-3.2	-2.2	0.3	0.6		
36		1/1				-0.1		
37		10 / 5	-1.1	-1.6	0	0.2	0.3	0.6
38		3/2		-2.3	0.2			
40		6/3	0.8	-0.7			0.4	
41	x	6/2	-3.2	-0.1		-1.8		
42	х	2 / 1			1.5			
47		10/4		-3	-1.3	-0.2	-2	1.6
50		10/5	-0.1	-0.2	-0.4	0.5	10	1.2
54		3 / 1				0.3		
55		11 / 5	-0.9	2.7	-0.3	-0.8	-0.3	1
58		9/3	0.2	-1.1		0.1		
59		7 / 4	2	0	-0.7	1.4		1
60		4/2	-1.8	-1				
61	х	7/4	0.6	-0.1	5.9	0.9		1.6
63		5/1				-2.2		
64		11 / 5	0.9	3.6	-0.5	1.1	-0.9	1.4
68	х	8/4	-0.1		-0.1	0.9	0.1	0.3
69		4/3	0.1	-1.2		-3.6		
70		1/1	-	-0.6				
71	X	9/4	0	-0.1	1.5		0.6	0.5
75		10/5	-3.1	1.6	-0.8	0.1	-3	1./
77	X	8/4	-0.1	0.1	-0.7	0.3	0.7	0.4
20		3/3		0.1	-0.3	0.5		
80		4/1		-0.3	-1			
84		3/1	-0.2	-0.5	0.2			
85		0/0	0.2					
88	x	9/4	2.1	-2.1	0.9	-0.1		1.3
90		11/5	0.3	0.5	0.3	-0.1	1.3	0.5
92		10 / 4	0.7		-0.3	0.3	-0.5	0.4
93		6/3	0	-1.2			0.5	
94		11 / 4	-2.5	-1.1	-0.6	0.8	-3.3	1.6
95	x	9/5	-1	-1.3	29.9	-1.4	-1.9	2.1
96		10 / 4	-0.1	0	1.3	-1.6		0.7
* based on s	ubpopu	lation consisting	g of results generat	ed by methods inv	olving acidic hydrol	lysis or analysis of c	arbofuran and carb	osulfan sepa-

Table 4-10: Category B laboratories in EUPT-SRM15, ordered by lab-codes.

rately

* due to COVID-19 lockdown lab was not able to complete its submission, evaluation for informative purpose only

СОМРИ	LSORY	Compounds	2,4-D (free acid)	Carbofuran (sum)	Chlormequat- Cl	Glyphosate	TFNA	
	Μ	IRRL [mg/kg]	0.01	0.01	0.01	0.03	0.01	
Assi	gned V	alue [mg/kg]	0.052	0.107*	0.092	0.203	0.060	
		CV*	20.8%	22.8%*	16.8%	23.7%	27.8%	
Lab code SRM15-	NRL- SRM	Analysed / corr. found, max. 13 / 5	z-Score (FFP-RSD = 25 %)	AAZ				
97		6/3	0.4	-2.1			0.6	
99		11 / 4	-3.2	-1.8	-0.1	-0.5	0	1.1
100		11 / 4		-0.6	-0.8	0.1	-1.3	0.7
101		6/2			-0.2	0		
102		8/4	0.2	-1.3	4.4	-0.1		1.5
104		1/1		-1.5				
105	х	8/4	0.3	1	0.4		0.7	0.6
107		11 / 4	0.9	-1	-3.1	-3		2
110		1/1		-2.1				
114		11 / 5	0.3	0.2	0	-0.1	0.8	0.2
116	х	6/3	0.5	0.7			-1.9	
119	х	12 / 5	-0.9	0	0.9	1.9	-0.9	0.9
120		1/1		-1.6				
121		9/4	-2.8	5.7		1.5	2.2	2.8
124		9/3	0.2		0.3	0.9		
127		7/3	-0.9		-0.1		1.9	
130		3/2			1.3	0.5		
132		5/2	0.2		0.1			
133		5/3	0.3	1.2	-0.2			
137		11 / 5	0.7	1.5	0.2	0.2	0.3	0.5
3rd-29		3/1	0.6					
3rd-43		5/3	1.5		-0.2	0.5		
3rd-72		4/2	0.5				0.7	
3rd-73		11 / 5	-0.3	-0.1	1.3	0.2	0.4	0.4
3rd-83		7/2	4.5		0.2			
3rd-86		2/2	0.1			-1.8		
3rd-134		3/1	-0.9					
3rd-135		5/1		0.1				
10 [‡]		5 / 1		0.1				
* based on s	ubpopu	lation consisting	g of results generat	ed by methods inv	olving acidic hydrol	lysis or analysis of c	arbofuran and carb	osulfan sepa-

١g g rately [†] due to COVID-19 lockdown lab was not able to complete its submission, evaluation for informative purpose only

We assumed that they agreed with the reason provided by us: Analytical procedure was inappropriate (hydrolysis conditions too weak).

"Analytical procedure was inappropriate" was the most frequent reason for the poor performance (68 cases) in the present PT. It accounted for 49 out of 71 |z|>2 cased of c*arbofuran (sum), fluazifop (sum), MCPB (sum)* and *mecoprop (sum)*. It was often accompanied by the next frequent reason "lacking of experience" (25 cases). On the third place was "transcription error (21 cases)". Other often reported error sources were "measurement problems" (13x), "inappropriate/erroneous calibration approach" (9x), "calculation error" (9x), "erroneous analytical standard" (7x), as well as "result not properly corrected for recovery" (6x). In 5 cases the participants reported "Deficient QC-measures" as the reason for poor performance. "Analytical procedure" and misinterpretation/misevaluation of measurement data" were responsible for each 2 cases. In one case the participant misunderstood the residue definition.

For the first time the organizers of the EUPT-SRMs did not provide the blank material that actually simulated the real lab routine. In 4 cases the participant found that the problem lay in the suppression effect of the blank rice used. Due to the different behaviour of the blank material and that of the test material, special attention has to be paid when using blank material for calibration or determination of recovery rate! And when every possible, using isotope labelled internal stands is the best choice to compensate the matrix effect.

4.4 Special Topic: Method-based Evaluation

On 6 March 2020, during the PT exercise, the EURL-SRM published a document focusing on the analysis of acidic pesticides involving hydrolysis for the cleavage of esters and conjugates¹. This document summarized various hydrolysis experiments performed by the EURL-SRM (and presented in various EURL-workshops and trainings) for releasing esters and conjugates. The document highlighted, among others, that the cleavage of certain hydrolysis-resistant esters requires hydrolysis conditions stronger than those shown in the QuEChERS standard and that matrix also plays an important role. Certain types of commodities, including cereals, require stronger hydrolysis conditions than most fruits and vegetables. On 13 March the organizers, noticing that the participants were partly using insufficient hydrolysis approaches, decided to make them aware of the document concerning the analysis of acidic pesticides as well as of another document concerning the analysis of *carbofuran (sum)*². Unfortunately, in view of the announced corona virus lockdown measures, some laboratories had already completed their analyses and result-submission by this time, while others had already a restricted or no access to their labs.

Aiming to obtain an assigned value that is as close as possible to the true value, the participants' results were divided into sub-populations based on the hydrolysis conditions they have applied (see also **Section 4.2, p. 30**). For the various sub-populations, the robust mean and the relative standard deviation (CV^*) were calculated. As expected, the robust mean of sub-populations applying stronger hydrolysis conditions, thus ensuring nearly quantitative conversion rates, were overall closer to the expected (e.g. spiked) levels compared to sub-populations involving weak or no hydrolysis in their procedures.

¹ https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EurlSrm_Observation_alkaline_hydrolysis_acidic_herbicides.pdf

² https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EurlSrm_Observations_Carbofuran.pdf

4.4.1 Impact of hydrolysis conditions on the release of acidic ester- or glucoside-bound acidic pesticides

In order to check the degree of hydrolysis achieved for the various acidic pesticides contained in the sample when varying the hydrolysis conditions, the organizers decided to run some experiments using the following hydrolysis conditions:

- a). <u>Mild</u>: 0.3 ml NaOH +10 mL water added to 5 g matrix; reaction at RT for: i) 5 min; ii) 30 min and iii) 60 min
- **b).** <u>Intermediate</u>: 1 ml NaOH + 10 mL water + 10 mL acetonitrile added to 5 g sample; reaction at 40 °C for i) 30 min and ii) 120 min
- c). <u>Strong</u>: 2 ml NaOH + 10 mL water + 10 mL acetonitrile added to 5 g sample; reaction at 40 °C for i) 30 min and ii) 120 min

These experiments aimed at delivering the scientific evidence needed for facilitating decision-making on behalf of the EUPT-Scientific Committee, as regards the selection of sub-populations for the calculation of assigned values.

As shown in **Figure 4-1** mild extraction conditions were already sufficient for achieving satisfactory hydrolysis yields for *MCPA* (spiked as glucoside) and *Quizalofop* (spiked as propaquizafop). *Fluazifop* (spiked as fluazifop-butyl) and *MCPB* (spiked as methyl ester) required intermediate conditions, whereas *mecoprop* (spiked as MCPP-trimethylpentyl ester) required the harshest conditions.

The same trend was also observed in the participants' results when subdivided into groups, according on the hydrolysis conditions employed in each case. This is shown in **Table 4-11 (p. 50)**.

Figure 4-1: Impact of alkaline hydrolysis condition on the relative conversion yields. The yield obtained when applying the strongest conditions c-ii: "2 ml NaOH + 10 mL water + 10 mL acetonitrile, 120 min" was set at 100%

Table 4-11: Impact of hydrolysis condition on the distribution of results for fluazifop (sum), MCPB (sum) and mecoprop (sum) as well as their average bias (only results from EU and EFTA laboratories were taken into account)

		Fluazifop (sum)	
	Whole Pupolation	Subpopulation with Hydrolysis (strong/moderate)	Subpopulation without Hydrolysis or with weak Hydrolysis
No. of Numerical Results	64	42	22
Outlier thereof ¹⁾	0	0	0
No. of False Negative Results	2	0	2
Robust Mean [mg/kg]	0.057	0.060	0.045
CV*	27.1 %	18.8%	60.5%
AAZ ¹⁾ (average bias in %)	0.65	0.65	1.86
No. (%) of acceptable results ¹⁾	54 (82%)	40 (95%)	11 (50 %)
No. (%) of questionable results ¹⁾	7 (11 %)	2 (5 %)	8 (36%)
No. (%) of unacceptable results ¹⁾	5 (8%)	0 (0 %)	3 (14%)
		MCPB (sum)	
	Whole Population	Subpopulation with Hydrolysis (strong/moderate)	Subpopulation without Hydrolysis or with weak Hydrolysis
No. of Numerical Results	56	40	16
Outlier thereof	3	1	0
No. of False Negative Results	4	0	4
Robust Mean [mg/kg]	0.050	0.057	0.039
CV*	38.8%	29.4%	53.5%
AAZ ¹⁾ (average bias in %)	1.51	1.14	1.61
No. (%) of acceptable results ¹⁾	43 (72%)	33 (55 %)	13 (22 %)
No. (%) of questionable results ¹⁾	10 (17%)	4 (7 %)	1 (2%)
No. (%) of unacceptable results $^{1)}$	7 (12%)	3 (5 %)	2 (3 %)
		Mecoprop (sum)	
	Whole Population	Subpopulation with strong Hydrolysis	Subpopulation without Hydrolysis or with weak or moderate Hydrolysis
No. of Numerical Results	41	20	21
Outlier thereof	2	1	0
No. of False Negative Results	18	1	17
Robust Mean [mg/kg]	0.051	0.067	0.039
<i>CV</i> *	51.6%	21.2%	57.8%
AAZ ¹⁾ (average bias in %)	2.33	1.30	2.35
No. (%) of acceptable results ¹⁾	28 (47 %)	16 (27%)	13 (22 %)
No. (%) of questionable results ¹⁾	7 (12%)	1 (2%)	4 (7 %)
No. (%) of unacceptable results ¹⁾	24 (41 %)	3 (5 %)	4 (7 %)
1) calculated using the corresponding pop	ulation		

Following consultations with the EUPT-Scientific Committee, it was finally decided to calculate the assigned values of the acidic pesticides, that were spiked in ester or conjugated form, using the following sub-populations of results:

- a). MCPA (sum) and quizalofop (sum): entire population
- b). Fluazifop (sum) and MCPB (sum): sub-population of results generated by labs using intermediate or strong hydrolysis conditions
- c). Mecoprop (sum): sub-population of results generated by labs using strong hydrolysis conditions

By reducing the populations, the distribution of the results, expressed as CV^* , improved significantly. For example from 27.5 % to 18.8% in the case of *fluazifop (sum)* and from 38.8 % to 29.4 % in the case of *MCPB (sum)*. The remaining results, which were generated by methods involving weak or no hydrolysis, showed a $CV^* > 50$ % for both analytes.

4.4.2 Carbofuran (sum)

Looking at the participants' results for *carbofuran (sum)* a non-unimodal distribution was visible. Looking at the hydrolysis conditions it became clear that the labs not employing hydrolysis submitted strongly biased results. This is shown in **Figure 4-2**

The assigned value of *carbofuran (sum)* in the preliminary report was calculated using results generated by methods involving acidic hydrolysis only, although the organizer was well aware of the fact that results from laboratories having analyzed carbofuran and carbosulfan separately could also have been added to this group. But as carbosulfan analysis is quite challenging and error-prone, results driven from this analytical approach were firstly not included. After releasing the Preliminary Report, the organizer started a survey on detailed information about the analytical method for *carbofuran (sum)*. Based on the survey results and after consultation with the Scientific Committee, the assigned value for *carbofuran (sum)* was finally established as the robust mean of the results generated by labs applying hydrolysis or by labs analysing carbofuran and carbosulfan separately and adding up the result. See also **Section 4.2 (p. 30)**

Figure 4-2: Sub-division of results for carbofuran (sum) based on methodologies used. Red: labs applying hydrolysis OR not applying hydrolysis but analyzing CF+CS separately and summing up. Blue: rest of the population

	1	Reported by Laboratorie	s	Corrected Value		
Lab-Code SRM15	Carbofuran (CF)	Carbosulfan (CS)	Sum of CF and CS	Sum of CF and CS		
26	0.066	0.053	0.119	0.097		
30	0.099	0.01	0.099	0.105		
50	0.096	0.0033	0.101	0.098		
51	0.069	n.n.	0.061	0.069		
88	0.05	0.01	0.050	0.056		
95	0.039	0.033	0.071	0.058		
99	0.01	0.08	0.06	0.057		
118	0.085	0.065	0.150	0.123		
* Sum of CF and CS = Carbo						

Table 4-12: Results of carbofuran (sum) from laboratories analysing carbofuran and carbosulfan separately and not correctly converted into carbofuran (sum)

In the feedback on the survey from the laboratories, the organizers found 8 results that were generated by adding up carbofuran and carbosulfan results, but using incorrect conversion factors (Table 4-12). In consultation with the Scientific Committee, the organizers have therefore corrected those results and proceeded with the calculation of the assigned value, CV* and labs z-scores, again using the corrected data. This evaluation is shown in **Table 4-7 (p. 35)**, but for informative purpose only.

5. ACKNOWLEDGEMENTS

The organisers wish to thank the members of the EUPT Scientific Committee (Quality Control Group and Advisory Group) for their valuable advice. Special thanks also go to the EDV-Team at DTU: Anne-Mette Skovlund, Steen Maigaard, Sean Gomes, Nicolaj Graversen Pedersen and Wardan Ghazal, for the development and establishment of the online result submission tool as well as for the support during and after PT period.

6. **REFERENCES**

- Regulation (EC) N° 882/2004 of the European Parliament and of the Council on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules. Published at OJ of the EU L191 of 28.05.2004
- [2] Regulation (EC) N° 396/2005, published at OJ of the EU L70 of 16.03.2005, as last amended by Regulation 839/2008 published at OJ of the EU L234 of 30.08.2008.
- [3] http://www.crl-pesticides.eu/userfiles/file/EurlSRM/EurlSrm_Observations_AcidicPesticides.pdf
- [4] Thompson M., Ellison S.L.R. and Wood R., The International Harmonized Protocol for the Proficiency Testing of Analytical Chemistry Laboratories (IUPAC Technical Report). Pure Appl. Chem., Vol. 78, No. 1, pp. 145 – 196, 2006
- [5] http://quppe.eu/
- [6] ISO 13528:2015: Statistical methods for use in proficiency testing by interlaboratory comparisons.

7. APPENDICES

Appendix 1 List of Laboratories Registered to Participate in the EUPT-SRM15

(a): participating labs of EU and EFTA Member States

Country (Location)	Analysed on behalf of	Institution	City	NRL*
Austria	AT	Department for Pesticide and Food Analytics (PLMA)	Innsbruck	x
Belgium	BE; BG; FR; LU	PRIMORIS (Phytolab) - Belgium	Gent - Zwijnaarde	-
Belgium	BE	Sciensano - Pesticide Lab	Brussels	x
Bulgaria	BG	CLCTC - Sofia Pesticide Lab	Sofia	х
Croatia	HR	Bioinstitut d.o.o., Cakovec	Cakovec	_
Croatia	HR	Croatiakontrola - Pesticide Lab	Zagreb	-
Croatia	HR	Dr. Andrija Štampar - Pesticide Lab	Zagreb	x
Croatia	HR	INSPECTO d.o.o. Laboratorij (Osijek)	Osijek	-
Croatia	HR	Sample Control - Pesticide Lab	Lučko	_
Cyprus	CY	SGL - Pesticide Lab (Nicosia)	Nicosia	х
Czech Republic	CZ	CAFIA - Pesticide Lab (Praha)	Praha	x
Czech Republic	CZ	Pesticide Lab (Brno)	Brno	_
Czech Republic	CZ	VSCHT / UCT Prague - Food Analysis (323)	Praha	_
Denmark	DK	Laboratoriet Ringsted - Pesticide Lab	Ringsted	х
Estonia	EE	Agricultural Research Center - Estonia, Saku	Saku	-
Estonia	EE	Tartu Laboratory of Health Board	Tartu	х
Finland	FI	Finnish Customs Laboratory	Espoo	х
Finland	FI	Finnish Food Authority	Helsinki	х
France	BE	Phytocontrol (Nimes) - Pesticide Lab	Nimes	_
France	FR	ANSES - LSAI (Unité PBM)	MAISONS-ALFORT Cedex	х
France	FR	CAMP Méditerrannée (Perpignan)	PERPIGNAN	-
France	FR	CAPINOV (Landerneau)	Landerneau	-
France	FR	CERECO (GARONS)	GARONS	-
France	FR	GIRPA-POLLENIZ - Pesticide Lab	Beaucouzé	-
France	FR	INOVALYS Le Mans - Pesticide Lab	Le Mans	-
France	FR	SCL - Massy Cedex	Massy Cedex	-
France	FR	SCL (Montpellier)	Montpellier	_
Germany	DE	BVL Unit 504 NRL for Pesticide Residues	Berlin	х
Germany	DE	CVUA RRW - Pesticide Lab (Krefeld)	Krefeld	_
Germany	DE	KWALIS Fulda - Pesticide Lab	Dipperz	-
Germany	DE	Labor Friedle - Germany, Tegernheim	Tegernheim	_
Germany	DE	LALLF - Pesticide Lab (Rostock)	Rostock	-
Germany	DE	Landesamt für Verbraucherschutz, Halle/Saale	Halle/Saale	-
Germany	DE	Landeslabor Berlin-Brandenburg, Potsdam	Potsdam	-
Germany	DE	Landeslabor Schleswig-Holstein, Neumünster	Neumünster	_
Germany	DE	LAVES - Pesticide Lab (Oldenburg)	Oldenburg	-
Germany	DE	LAVES - Pesticide Lab (Stade)	Stade	_
Germany	DE	LGL Erlangen - Pesticide Lab	Erlangen	-
Germany	DE	LHL - Pesticide Lab (Kassel)	Kassel	-
Germany	DE	LLG - Pesticide Lab	Halle/Saale	-
Germany	DE	LTZ Augustenberg - Organic Analysis	Karlsruhe	-
Germany	DE	LUA Rheinland-Pfalz, Institut für LM-Chemie Speyer	Speyer	-
Germany	DE	LUA Sachsen - Pesticide Lab	Dresden	-
Germany	DE	LUFA Speyer	Speyer	-
* only for FU-Memb	er States			

Country (Location)	Analysed on behalf of	Institution	City	NRL*
Germany	DE	Pesticide Lab (Nossen)	Nossen	_
Germany	DE	Thüringer Landesanstalt für Landwirtschaft, Jena	Jena	-
Germany	BE	LUFA Kiel - Pesticide Lab	Kiel	-
Germany	FR	Intertek Food Services - Bremen	Bremen	-
Germany	LT	GALAB Laboratories GmbH - Hamburg	Hamburg	-
Germany	MT	Eurofins - Germany, Hamburg, Großmoorbogen	Hamburg	-
Germany	MT	Eurofins Dr.Specht Express GmbH - Hamburg	Hamburg	_
Greece	GR	Benaki Phytopathological Institute, Kifissia	Kifissia	x
Greece	GR	GCSL - Pesticide Lab (Athens)	Athens	x
Hungary	HU	NFCSO - Pesticide Lab (Velence)	Velence	х
Hungary	HU	NFCSO Pesticide Lab (Hódmezovásárhely)	Hódmezovásárhely	-
Hungary	HU	NFCSO Pesticide Lab (Miskolc)	Miskolc	-
Hungary	HU	NFCSO Pesticide Lab (Szolnok)	Szolnok	
Iceland	IS	Matís - Iceland, Reykjavík	Reykjavík	_
Ireland	IE	Pesticide Control Lab - Ireland, Co. Kildare	Co. Kildare	х
Italy	IT	APPA Bolzano - Pesticide Lab	Bolzano	_
Italy	IT	APPA-Puglia Polo Alimenti Bari - Pesticide Lab	Bari	-
Italy	IT	ARPA Veneto (Laboratorio di Verona)	Verona	_
Italy	IT	ASF - Pesticide Lab	Firenze	-
Italy	IT	ISS - Pesticide Lab	Roma	x
Italy	IT	IZS LT - Italy, Rome	Roma	_
Italy	IT	IZSAM - Pesticide Lab	Teramo	_
Italy	IT	IZSLER - Pesticide Lab	Brescia	_
Italy	IT	Laboratorio di Prevenzione (Bergamo)	Bergamo	_
Latvia	LV	BIOR (Riga) - Pesticide Lab	Riga	x
Lithuania	LT	NMVRVI - Pesticide Lab (Vilnius)	Vilnius	x
Luxembourg	LU	LNS Food lab	Dudelange	х
Norway	NO	NIBIO - Department of Pesticide Chemistry	ÅS	
Poland	PL	InHort (Skierniewice) - Pesticide Lab	Skierniewice	_
Poland	PL	IPP-NRI - Pesticide Lab (Poznan)	Poznan	_
Poland	PL	SGS Sp. z o.o. Laboratorium Srodowiskowe	pszczyna	_
Poland	PL	UO-Technologia (Grojec) - Pesticide Lab	Grojec	-
Poland	PL	VSES Warszawa - Pesticide Lab	Warszaw	x
Portugal	PT	Labiagro – Laboratório Ouímico	Oeiras - Lisboa	_
Portugal	PT	Pesticide Lab (Funchal - Madeira Island)	Funchal - Madeira Island	x
Romania	RO	IISPV (Bucharest) - Pesticide Lab	Bucharest	x
Romania	RO	LRCRPPPV (Tirgu Mures) - Pesticide Lab	Tirgu Mures	_
Slovakia	SK	State Veterinary and Food Institute (Bratislava)	Bratislava	x
Slovenia	SI	Nat. Lab for Health, Environment and Food, Maribor	Ljubljana	_
Slovenia	SI	Pesticide Lab - Maribor	Maribor	x
Spain	ES	Ainia (Valencia)	Valencia	_
Spain	FS	Analytica Alimentaria GmbH - Almeria, Spain	Almeria	_
Spain	ES	EUROFINS ECOSUR - Pesticide Lab	Lorauí	_
Spain	ES	Lab. Agrario Regional - Junta de Castilla y Leon	Burgos	_
Spain	ES	Laboratori Agència Salut Pública Barcelona	Barcelona	_
Spain	FS	Laboratorio Agroalimentario - Spain Valencia	Valencia	_
Spain	ES	Laboratorio Agroalimentario de Extremadura	Cáceres	_
Spain	FS	Laboratorio Agroambiental de Zaragoza	Zaragoza	_
* only for EU-Mem	ber States			

Appendix 1-a (cont.): participating labs of EU and EFTA member states

Country (Location)	Analysed on behalf of	Institution	City	NRL*				
Spain	ES	Laboratorio Analítico Bioclínico - Spain, Almeria	Almeria	-				
Spain	ES	Laboratorio Arbitral Agroalimentario, Madrid	Madrid	х				
Spain	ES	Laboratorio de Salud Pública de Galicia, Lugo	Lugo	-				
Spain	ES	LABORATORIO KUDAM, S.L.	Pilar de la Horadada (Alicante)	-				
Spain	ES	LAC - Generalitat de Catalunya	Cabrils	-				
Spain	ES	National Center for Technology and Food Safety	San Adrián (Navarra)	-				
Spain	ES	National Centre for Food (Majadahonda)	Majadahonda	x				
Spain	PT	Labs & Technological Services AGQ - Burguillos	Burguillos	-				
Sweden	SE	Eurofins Food & Feed - Pesticide Lab (Lidköping)	Lidköping	-				
Sweden	SE	National Food Agency - Sweden, Uppsala	Uppsala	x				
The Netherlands	NL	WFSR - NRL for Pesticides	Wageningen	x				
The Netherlands	BE	Groen Agro Control - Netherlands	Delfgauw	-				
The Netherlands	BE	Handelslaboratorium Dr. Verwey - Pesticide Lab	Rotterdam	-				
The Netherlands	BE	NofaLab - Pesticide Lab	Schiedam	-				
The Netherlands	BE; NL	Eurofins Lab Zeeuws-Vlaanderen B.V Pesticiden	Graauw	-				
United Kingdom	UK	Concept Life Sciences - United Kingdom, Cambridge	Bar Hill	_				
United Kingdom	UK; MT	FERA - Pesticide Lab	York	x				
* only for EU-Member States								

Appendix 1-a (cont.): participating labs of EU and EFTA member states

Appendix 1-b: Participating labs from EU candidate countries and third countries

Country	Institution	City
Belarus	Pesticide Lab (Minsk)	Minsk
Brazil	MAPA - Pesticide Lab - Brazil, Pedro Leopoldo	Pedro Leopoldo - MG
China (Hong Kong)	Government Laboratory (Hong Kong)	Hong Kong
Costa Rica	SFE - Pesticide Lab (San Jose)	San Jose
Serbia	Inst. of Public Health of Belgrade - Pesticide Lab	Belgrade
Serbia	SP Laboratorija - Pesticide Lab	BECEJ
Singapore	SINGAPORE FOOD AGENCY - Pesticide Lab	Singapore
Thailand	Central Laboratory - Pesticide Lab (Bangkok)	Bangkok

Appendix 2 Shipment Evaluation

Compilation of shipment duration

2,4-D (free acid)		Carbofuran (sum)			Chlormequat-Cl			Glyphosate			
Sample No.	Portion 1 [mg/kg]	Portion 2 [mg/kg]	Sample No.	Portion 1 [mg/kg]	Portion 2 [mg/kg]	Sample No.	Portion 1 [mg/kg]	Portion 2 [mg/kg]	Sample No.	Portion 1 [mg/kg]	Portion 2 [mg/kg]
1	0.054	0.055	1	0.101	0.095	1	0.084	0.085	1	0.201	0.199
14	0.057	0.056	14	0.098	0.090	14	0.080	0.083	14	0.199	0.200
23	0.058	0.056	23	0.100	0.098	23	0.083	0.084	23	0.200	0.195
62	0.059	0.057	62	0.097	0.100	62	0.083	0.084	62	0.213	0.200
70	0.055	0.053	70	0.097	0.095	70	0.082	0.086	70	0.207	0.201
103	0.059	0.055	103	0.097	0.098	103	0.083	0.082	103	0.204	0.193
123	0.056	0.055	123	0.092	0.100	123	0.080	0.082	123	0.209	0.202
149	0.056	0.054	149	0.097	0.098	149	0.083	0.084	149	0.198	0.206
167	0.054	0.056	167	0.097	0.100	167	0.083	0.084	167	0.190	0.204
189	0.056	0.057	189	0.099	0.099	189	0.084	0.085	189	0.199	0.214
mean / AV* 0.056 / 0.052		mean / AV*	0.097 / 0.107 [‡]		mean / AV*	0.083 / 0.092		mean / AV* 0.202 / 0.203			

Compulsory Compounds

Appendix 3 **Data of Homogeneity Test**

* mean / AV = Average value of the homogeneity test data [mg/kg] / Assigned value of PT [mg/kg] derived from the population of EU-/EFTA-Laboratories * AV based on subpopulation of results generated by methods including hydrolysation or analysis of carbofuran and carbosulfan separately only

Graphical presentation of the results:

Carbofuran (sum)

Compulsory Comp.		Optional Compounds									
TFNA				2,4-D (sui	m)	Bentazone (free acid)			Fluazifop (sum)		
Sample No.	Portion 1 [mg/kg]	Portion 2 [mg/kg]	Sample No.	Portion 1 [mg/kg]	Portion 2 [mg/kg]	Sample No.	Portion 1 [mg/kg]	Portion 2 [mg/kg]	Sample No.	Portion 1 [mg/kg]	Portion 2 [mg/kg]
1	0.063	0.067	1	0.057	0.055	1	0.337	0.345	1	0.068	0.069
14	0.066	0.065	14	0.056	0.053	14	0.333	0.334	14	0.067	0.069
23	0.065	0.064	23	0.059	0.055	23	0.343	0.329	23	0.064	0.069
62	0.069	0.061	62	0.055	0.054	62	0.329	0.332	62	0.067	0.068
70	0.065	0.060	70	0.057	0.056	70	0.344	0.334	70	0.068	0.069
103	0.068	0.063	103	0.056	0.054	103	0.339	0.342	103	0.069	0.066
123	0.061	0.064	123	0.057	0.056	123	0.340	0.342	123	0.066	0.068
149	0.065	0.062	149	0.051	0.054	149	0.339	0.338	149	0.062	0.067
167	0.062	0.066	167	0.053	0.056	167	0.340	0.351	167	0.067	0.066
189	0.068	0.065	189	0.054	0.054	189	0.342	0.341	189	0.065	0.066
mean / AV*	in / AV* 0.064 / 0.060		mean / AV*	0.055	/ 0.059	mean / AV*	0.339/0.334		mean / AV*	0.067 / 0.060 [‡]	
* mean / AV = Average value of the homogeneity test data [mg/kg] / Assigned value of PT [mg/kg] derived from the population of EU-/EFTA-Laboratories											

Appendix 3 (cont.): Data of Homogeneity Test

* mean / AV = Average value of the homogeneity test data [mg/kg] / Assigned value of P1 [mg/kg] derived from the population of EU-/EFIA-Laboratories
 [‡] AV based on subpopulation of results generated by methods including moderate and strong hydrolysis only

Graphical presentation of the results:

Fluazifop (sum)

				0	ptional (Compou	nds				
На	loxyfop (sum)	Imaze	thapyr (fr	ee acid)	Ν	/ICPA (sur	n)	Λ	ACPB (sur	n)
Sample No.	Portion 1 [mg/kg]	Portion 2 [mg/kg]									
1	0.159	0.160	1	0.211	0.212	1	0.063	0.063	1	0.057	0.058
14	0.153	0.158	14	0.222	0.221	14	0.065	0.064	14	0.054	0.057
23	0.151	0.156	23	0.218	0.206	23	0.066	0.063	23	0.059	0.057
62	0.159	0.160	62	0.219	0.219	62	0.067	0.063	62	0.061	0.058
70	0.152	0.147	70	0.214	0.214	70	0.061	0.066	70	0.056	0.059
103	0.154	0.153	103	0.231	0.215	103	0.066	0.064	103	0.060	0.057
123	0.160	0.152	123	0.208	0.211	123	0.065	0.066	123	0.059	0.061
149	0.150	0.152	149	0.224	0.212	149	0.065	0.058	149	0.060	0.055
167	0.160	0.147	167	0.211	0.219	167	0.061	0.063	167	0.055	0.060
189	0.151	0.155	189	0.222	0.219	189	0.066	0.068	189	0.057	0.058
mean / AV*	0.154	/ 0.151	mean / AV*	0.216	/ 0.206	mean / AV*	0.064	/ 0.068	mean / AV*	0.058	′ 0.057 [‡]

Appendix 3 (cont.): Data of Homogeneity Test

* mean / AV = Average value of the homogeneity test data [mg/kg] / Assigned value of PT [mg/kg] derived from the population of EU-/EFTA-Laboratories
* AV based on subpopulation of results generated by methods including moderate and strong hydrolysis only

Graphical presentation of the results:

Haloxyfop (sum)

MCPA (sum) • value#1, xt,1 value#2, xt,2

				0	ptional (Compou	nds						
	MCPP (su	m)	Para	aquat (dic	ation)	Quiza	lofop (fre	e acid)	Qui	zalofop (:	sum)		
Sample No.	Portion 1 [mg/kg]	Portion 2 [mg/kg]	Sample No.	Portion 1 [mg/kg]	Portion 2 [mg/kg]	Sample No.	Portion 1 [mg/kg]	Portion 2 [mg/kg]	Sample No.	Portion 1 [mg/kg]	Portion 2 [mg/kg]		
1	0.066	0.069	1	0.229	0.230	1	0.045	0.045	1	0.065	0.060		
14 0.069 0.065 14 0.227 0.226 14 0.047 0.046 14 0.065 0.061 23 0.060 0.067 23 0.217 0.220 23 0.040 0.045 23 0.061													
23	0.069	0.067	23	0.217	0.229	23	0.049	0.045	23	0.065	0.061		
62	0.071	0.068	62	0.238	0.229	62	0.047	0.047	62	0.064	0.064		
70	0.071	0.072	70	0.238	0.244	70	0.047	0.043	70	0.061	0.061		
103	0.071	0.066	103	0.241	0.241	103	0.048	0.047	103	0.063	0.063		
123	0.068	0.069	123	0.226	0.236	123	0.046	0.046	123	0.064	0.061		
149	0.066	0.067	149	0.240	0.227	149	0.047	0.046	149	0.060	0.063		
167	0.066	0.069	167	0.234	0.241	167	0.044	0.047	167	0.065	0.064		
189	0.068	0.068	189	0.236	0.229	189	0.049	0.046	189	0.062	0.064		
mean / AV*	0.068	/ 0.067‡	mean / AV*	0.233	/ 0.195	mean / AV*	0.046	/ 0.044	mean / AV*	0.063	/ 0.062		
* mean / AV =	= Average value	of the homog	eneity test dat	a [mɑ/kɑ] / Ass	igned value of P	PT [ma/ka] der	ived from the r	opulation of Fl	I-/FETA-Labor	atories			

Appendix 3 (cont.): Data of Homogeneity Test

e population (⁺ AV based on subpopulation of results generated by methods including strong hydrolysis only

Graphical presentation of the results:

MCPP (sum)

Paraquat (dication)

Quizalofop (sum)

					Com	pulsory	/ Compounds						
			2,4-D (fi	ree acid)				(Carbofu	ran (sum)	
AV [mg/kg]			0.0)52			AV [mg/kg]			0.1	07 [‡]		
Date	02.03	.2020	24.03	.2020	07.05	.2020	Date	02.03	.2020	24.03	.2020	07.05	.2020
Sample	[mg	/kg]	[mg	/kg]	[mg	/kg]	Sample	[mg	/kg]	[mg	/kg]	[mg	/kg]
No. 014	0.059	0.060	0.053	0.056	0.055	0.056	No. 014	0.098	0.090	0.093	0.093	0.098	0.101
No. 070	0.059	0.059 0.059 0.057 0.057				0.055	No. 070	0.097	0.095	0.095	0.096	0.100	0.103
No. 149	0.057	0.058	0.055	0.056	0.055	0.057	No. 149	0.097	0.098	0.098	0.097	0.098	0.099
Mean [mg/kg]	0.0)59	0.0)56	0.0)56	Mean [mg/kg]	0.0	96	0.0)95	0.1	00
RSD* [%]	RSD* [%] 1.8% 2.3% 0.5							1.8	8%	2.4	!%	1.5	5%
Diviation [%] (ref. 1st Anaylsis) -5.1%								-	_	-0.5	5%	4.2	2%
							⁺ AV based on subpopu or analysis carbofuran	lation of re	sults gene sulfan sepa	rated by m arately only	ethods incl	uding hydr	rolysation

Appendix 4 Data of Stability Test

2,4-D (free acid)

				Carl	bofu	ran (s	um)			
0.104			• 14	- 7	70 🔺	149	—х м	ean		
0.100		+							1	
0.088	19.02.2020	- 29.02.2020	- 10.03.2020	- 20.03.2020	- 30.03.2020	- 09.04.2020	- 19.04.2020	- 29.04.2020	- 09.05.2020	19.05.2020

- - -: upper and lower tolerence of the stability test

calculated as mean value of the first stability test \pm 0.3× standard diviation based on FPP-RSD of 25 %

					Com	pulsory	/ Compounds						
			Chlorm	equat-C						Glyph	nosate		
AV [mg/kg]			0.0)92			AV [mg/kg]			0.2	203		
Date	14.02	.2020	13.03	3.2020	22.04	1.2020	Date	14.02	.2020	13.03	.2020	22.04	.2020
Sample	[mg	[mg/kg] [mg/kg]				ı/kg]	Sample	[mg	ı/kg]	[mg	ı/kg]	[mg	/kg]
No. 014	0.083	0.078	0.082	0.075	0.087	0.080	No. 014	0.199	0.200	0.200	0.206	0.203	0.208
No. 070	0.085	0.080	0.082	0.075	0.082	0.086	No. 070	0.207	0.201	0.217	0.202	0.210	0.201
No. 149	0.084	0.084	0.077	0.082	0.083	0.088	No. 149	0.198	0.206	0.194	0.211	0.205	0.200
Mean [mg/kg]	0.0	082	0.0)79	0.0	084	Mean [mg/kg]	0.2	202	0.2	205	0.2	205
RSD* [%]	2.1	%	0.7	7%	1.2	2%	RSD* [%]	1.1	%	1.9	9%	0.8	8%
Diviation [%] (ref. 1 st Anaylsis)	Diviation [%] (ref. 1 st Anaylsis)		-4.3	3%	2.4	1%		-	-	1.6	5%	1.3	8%

- - -: upper and lower tolerence of the stability test

calculated as mean value of the first stability test \pm 0.3× standard diviation based on FPP-RSD of 25 %

	Com	pulsory	Compo	ound				Opt	tional C	ompoui	nd		
			TF	NA						2,4-D	(sum)		
AV [mg/kg]			0.0)60			AV [mg/kg]			0.0)59		
Date	02.03.2020 24.03.2020 07.05.2020						Date	02.03	.2020	24.03	.2020	12.05	.2020
Sample	[mg/kg] [mg/kg] [mg/k						Sample	[mg	/kg]	[mg	/kg]	[mg	/kg]
No. 014	0.063	0.063	0.062	0.064	0.060	0.062	No. 014	0.058	0.057	0.057	0.058	0.058	0.061
No. 070	0.070	0.067	0.063	0.064	0.062	0.061	No. 070	0.056	0.055	0.060	0.057	0.057	0.056
No. 149	0.065	0.066	0.063	0.060	0.065	0.068	No. 149	0.053	0.053	0.056	0.059	0.057	0.060
Mean [mg/kg]	0.0	66	0.0	063	0.0	63	Mean [mg/kg]	0.0)55	0.0)58	0.0)58
RSD* [%]	RSD* [%] 4.2% 1.7%			7%	4.8	8%	RSD* [%]	4.1	%	1.0)%	2.6	5%
Diviation [%] (ref. 1 st Anaylsis)	-	-	-4.6	5%	-4.1	%		-	_	4.5	5%	5.1	%

Appendix 4 (cont.): Data of Stability Test

- - -: upper and lower tolerence of the stability test

calculated as mean value of the first stability test \pm 0.3× standard diviation based on FPP-RSD of 25 %

					Ор	otional	Compounds						
		Ве	ntazone	e (free ac	id)					Fluazifo	op (sum)		
AV [mg/kg]			0.3	334			AV [mg/kg]			0.0	60 [‡]		
Date	02.03	.2020	24.03	.2020	07.05	.2020	Date	02.03	.2020	24.03	.2020	12.05	.2020
Sample	[mg	/kg]	[mg	/kg]	[mg	/kg]	Sample	[mg	/kg]	[mg	/kg]	[mg	/kg]
No. 014	0.349	0.353	0.346	0.350	0.325	0.340	No. 014	0.067	0.069	0.070	0.072	0.063	0.068
No. 070	0.363	0.359	0.369	0.361	0.340	0.341	No. 070	0.064	0.064	0.072	0.068	0.063	0.066
No. 149	No. 149 0.343 0.350 0.346 0.341 0.346 0.3						No. 149	0.063	0.063	0.069	0.065	0.067	0.065
Mean [mg/kg]	0.3	353	0.3	352	0.3	342	Mean [mg/kg]	0.0)66	0.0	69	0.0	65
RSD* [%]	RSD* [%] 2.1% 3.2%						RSD* [%]	5.2	2%	2.9	%	1.2	2%
Diviation [%] (ref. 1 st Anaylsis)	Diviation [%] - -0.2% -3.2%							-	_	4.5	5%	-1.0)%
							* AV based on subpopu	lation of re	esults gene	rated by m	ethods incl	uding stro	ng or

*AV based on subpopulation or results generated by methods including st moderate hydrolysation only

- - -: upper and lower tolerence of the stability test

calculated as mean value of the first stability test \pm 0.3× standard diviation based on FPP-RSD of 25%

^{*} RSD = relative standard diviation

					Ор	otional (Compounds						
			Haloxyf	op (sum)				Ima	zethapy	yr (free a	cid)	
AV [mg/kg]			0.1	151			AV [mg/kg]			0.2	206		
Date	02.03	.2020	24.03	.2020	12.05	.2020	Date	02.03	.2020	24.03	.2020	07.05	.2020
Sample	[mg	[mg/kg] [mg/kg]				/kg]	Sample	[mg	/kg]	[mg	ı/kg]	[mg	/kg]
No. 014	0.157	0.150	0.152	0.157	0.152	0.154	No. 014	0.216	0.223	0.200	0.213	0.212	0.218
No. 070	0.153	0.142	0.158	0.147	0.157	0.156	No. 070	0.227	0.222	0.213	0.210	0.215	0.203
No. 149	0.148	0.149	0.136	0.155	0.149	0.159	No. 149	0.215	0.220	0.207	0.204	0.214	0.222
Mean [mg/kg]	0.1	50	0.1	51	0.1	55	Mean [mg/kg]	0.2	221	0.2	208	0.2	214
RSD* [%]	2.1	%	3.1	%	1.2	2%	RSD* [%]	1.6	5%	1.	5%	2.1	%
Diviation [%] (ref. 1 st Anaylsis)	Diviation [%]		0.7	%	3.1	%		-	_	-5.7	7%	-2.9	9%

Appendix 4 (cont.): Data of Stability Test

14 70 ▲ 149 → Mean			l	maze	thap	yr (fr	ee ac	id)		
0.240 0.235 0.230 0.225 0.220 0.200 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000			• 14	-	70	149	~×	Mean		
0.235 0.230 0.225 0.220 0.215 0.210 0.215 0.205 0.210 0.215 0.205 0.205 0.210 0.215 0.205 0.205 0.210 0.215 0.205 0.205 0.210 0.215 0.205 0.205 0.210 0.215 0.205 0.210 0.215 0.205 0.210 0.215 0.205 0.205 0.210 0.215 0.205 0.205 0.210 0.215 0.205 0.205 0.210 0.215 0.205 0.210 0.215 0.205 0.205 0.210 0.215 0.205 0.205 0.205 0.205 0.210 0.215 0.205 0.	0.240									
0.230 0.225 0.220 0.210 0.200 0.200 0.210 0.200 0.200 0.200 0.210 0.200 0.	0.235			_		_		_		
0.225 0.2210 0.215 0.2000 0.200 0.200 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.20000 0.2000 0.2000 0.20000000 0.200000000	0.230									
0.210 0.215 0.210 0.205 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.205 0.200 0.200 0.205 0.200 0.	0.225	-								
0.215 0.210 0.200 0.	0.220		<							
0.210 0.205 0.200 0.200 19 09 04 220 19 09 04 220 19 09 04 2200 19 04 2200 19 04 2200 19 04 2200 19 04 2200 19 05 2200 20 05 2200 20 05 2200 20 05 2200 20 05 2200 20 05 2200 20 05 2000 20 0000 20 00000 20 0000 20 00000 20 00000000 20 0000000000	0.215		~	< .					-	
0.205 0.200 0.200 0.200 1.200 0.	0.210								-	
0.200 - 29.042.2020 - 29.042.000 - 29.042.000 - 29.042.000 - 29.042.000 - 29.042.000 - 29.042.000 - 29.042.000 - 20.032.000 - 20.000 - 20.0000 - 20.000 - 20.0000 - 20.0000 - 20.0000	0.205									
19.05.2020 09.05.2020 19.04.2020 19.04.2020 19.04.2020 30.03.2020 20.03.2020 10.03.2020 10.03.2020	0.200									
95.2020 94.2020 94.2020 94.2020 93.2020 93.2020 93.2020 93.2020 93.2020 93.2020	19.0	29.0	10.0	20.0	30.0	09.0	19.0	29.0	09.0	19.0
2020 2020 2020 2020 2020 2020 2020 202	02.2	22.2	33	33	33	4.	4	4	05.2	55
8 8 8 8 8 8 8 8 8	202	22	2	202	22	202	2	2	2	22
	0	3	3	3	3	3	3	3	0	0

– – – : upper and lower tolerence of the stability test

calculated as mean value of the first stability test \pm 0.3× standard diviation based on FPP-RSD of 25 %

					Op	otional	Compounds						
			МСРА	(sum)						МСРВ	(sum)		
AV [mg/kg]			0.0)68			AV [mg/kg]			0.0	57 [‡]		
Date	02.03	.2020	24.03	.2020	12.05	.2020	Date	02.03	.2020	24.03	.2020	12.05	.2020
Sample	[mg	/kg]	[mg	/kg]	[mg	/kg]	Sample	[mg	/kg]	[mg	/kg]	[mg	/kg]
No. 014	0.065	0.064	0.065	0.067	0.067	0.071	No. 014	0.054	0.057	0.057	0.062	0.059	0.062
No. 070	0.061	0.061 0.066 0.066 0.066 0				0.065	No. 070	0.056	0.059	0.060	0.060	0.056	0.060
No. 149	No. 149 0.065 0.058 0.065 0.066 0.067 0.07							0.060	0.055	0.057	0.060	0.056	0.060
Mean [mg/kg]	0.0)63	0.0)66	0.0)67	Mean [mg/kg]	0.0)57	0.0)59	0.0)59
RSD * [%]	2.4	!%	0.4	1%	3.8	3%	RSD* [%]	2.0)%	1.3	8%	2.5	5%
Diviation [%] (ref. 1 st Anaylsis)	Diviation [%] - 4.2% 5.8%							-	-	4.4	1%	3.5	5%
							[‡] AV based on subpopu moderate hydrolysatic	lation of re on only	esults gene	rated by m	ethods inc	luding stro	ng or

- - -: upper and lower tolerence of the stability test

calculated as mean value of the first stability test \pm 0.3× standard diviation based on FPP-RSD of 25 %

Appendix 4 (cont.): Data of Stability Test

					Ор	tional (Compounds						
			МСРР	(sum)					Pa	araquat	(dicatio	n)	
AV [mg/kg]			0.0	67 [‡]			AV [mg/kg]			0.1	95		
Date	02.03	.2020	24.03	.2020	12.05	.2020	Date	14.02	.2020	13.03	.2020	22.04	.2020
Sample	[mg	/kg]	[mg	/kg]	[mg	/kg]	Sample	[mg	/kg]	[mg	/kg]	[mg	/kg]
No. 014	0.069	0.065	0.071	0.075	0.071	0.077	No. 014	0.227	0.226	0.226	0.221	0.230	0.226
No. 070	0.071 0.072 0.075 0.071 0.068				0.073	No. 070	0.238	0.244	0.226	0.224	0.229	0.212	
No. 149	0.066	0.067	0.073	0.071	0.070	0.075	No. 149	0.240	0.227	0.209	0.232	0.224	0.227
Mean [mg/kg]	0.0	068	0.0)73	0.0)72	Mean [mg/kg]	0.2	234	0.2	223	0.2	225
RSD* [%]	4.0)%	0.8	8%	2.4	!%	RSD* [%]	3.1	%	1.0)%	1.7	%
Diviation [%] (ref. 1 st Anaylsis)	Diviation [%] (ref. 1 st Anaylsis) 6.3% 5.9%							-	_	-4.6	5%	-3.9	9%
[‡] AV based on subpopu hydrolysation only	llation of re	esults gene	rated by m	ethods incl	uding stro	ng							

- - -: upper and lower tolerence of the stability test

calculated as mean value of the first stability test \pm 0.3× standard diviation based on FPP-RSD of 25 %

					Ор	tional (Compounds						
		Qu	izalofop	o (free ad	id)				(Quizalof	op (sum		
AV [mg/kg]			0.0)44			AV [mg/kg]			0.0)62		
Date	02.03	.2020	24.03	.2020	07.05	.2020	Date	02.03	.2020	24.03	.2020	12.05	.2020
Sample	[mg	[mg/kg] [mg/kg]				/kg]	Sample	[mg	/kg]	[mg	/kg]	[mg	/kg]
No. 014	0.045	0.047	0.049	0.049	0.047	0.048	No. 014	0.065	0.061	0.060	0.060	0.057	0.064
No. 070	0.049	0.048	0.048	0.048	0.048	0.047	No. 070	0.061	0.061	0.063	0.064	0.054	0.059
No. 149	0.046	0.048	0.046	0.047	0.048	0.050	No. 149	0.060	0.063	0.058	0.060	0.058	0.062
Mean [mg/kg]	0.047 0.048			048	0.0	048	Mean [mg/kg]	0.0)62	0.0	061	0.0)59
RSD* [%]	RSD* [%] 2.7% 2.6%			5%	1.8	3%	RSD* [%]	1.7	%	3.9	9%	3.7	%
Diviation [%] (ref. 1 st Anaylsis)	RSD* [%] 2.7% Diviation [%]			!%	1.8	8%		-	_	-1.6	5%	-4.6	5%

Quizalofop (free acid) • 14 70 🔺 149 —× Mean 0.052 _ _ 0.050 0.048 0.046 0.044 0.042 19.05.2020 - 29.02.2020 - 10.03.2020 - 19.04.2020 - 29.04.2020 - 09.05.2020 20.03.2020 30.03.2020 09.04.2020 19.02.2020

- - -: upper and lower tolerence of the stability test

calculated as mean value of the first stability test \pm 0.3× standard diviation based on FPP-RSD of 25 %

Appendix 5Histograms and Kernel Density Estimates of z-score* Distributions
(Results from EU and EFTA Laboratories only)

Compulsory Compounds

* The subpopulation included results generated by methods including hydrolysation or analysis of carbofuran and carbosulfan separately only

* Cut-off at z-score = 5; 🖾 : false negative results

Optional Compounds

^{*} Cut-off at z-score = 5; 🖾: false negative results

Appendix 5 (cont.) Histograms and Kernel Density Estimates of z-score* Distributions (Results from EU and EFTA Laboratories only)

Optional Compounds

strong hydrolysis only

* The subpopulation included results generated by methods including moderate or

* The subpopulation included results generated by methods including strong hydrolysis only

* Cut-off at z-score = 5; 🖾 : false negative results

(Assigned value and CV^{\star} derived from entire population)

Appendix 6 (cont.) Graphic Presentation of z-Scores: Compulsory Compounds (Results from EU and EFTA Laboratories only, * = NRL)

(Assigned value and CV^* derived from entire population excl. 3 outliers)

(Assigned value and CV^* derived from entire population)

(Assigned value and CV^{\star} derived from entire population)

[H	•					05
			Ť	-			i i	821
						• i		8*
								171
								121
								τττ
						I	- 181 i L	67
						l i∙		S⊅∗
								06
						1	•	29
					⊢ ⊢	H 1	• • • • •	9T*
					F	H 1	→	37
					F	H 1	→ ↓ ↓ ↓	32
						⊢∎-	→ -	114
					1	H 1	→ <u> </u>	LL*
							→ 	S0T*
							→ <u> </u>	£0T*
							→	34
						1	• I I	τ ₂ *
								8118
							•	26
								82
								CC*
						II !		05
								/7
								601
								28
								τ6*
						l∣ i⊢		£TT
						+ <u>-</u>		Z9*
						l i	i	44
						1	1 I I	89*
						I		95
						+		97*
								30
						+		\$23
						1		80T*
								66
								ZS
								54
						!⊢		90
								τC*
								STT
								SS
						II ! '		777
						¦ ,		28*
								76
						i		SZT
						l i	• i	6TT*
		_				ll i	⊢╠┼┥┎┙┃	179
	5 _{pt})	(x_{pt})				i	⊢╞┿╌┲┙┨	81/
	3×c 2×o	<i>n</i> +				í		6T
	+ + + > >	A				1	╘┋╧┥	68
	= A	<u> </u>					┝╋┝┥╋	153
	-2 (=	alu				1		2112
	- pu	> p						32
	t3 a 2 a	gne						86
	e at e at (AV)	a ssi						77
	cor	of						ст.
	r z-s z-s val	nty				!		671
	for for	rtai				!		91.1.
	nits nits sigr	nce				!		56*
	: lir : lir: as							99
		*						LÞ
		•				i	i ↓	SZ
ו ער	، ۱		0 r	y i				0
5					1.0	Ö	0.0	

Appendix 6 (cont.) Graphic Presentation of z-Scores: Optional Compounds (Results from EU and EFTA Laboratories only, * = NRL)

(Assigned value and ${\rm CV}^{\star}$ derived from entire population excl. 3 outliers)

(Assigned value and ${\it CV}^{\star}$ derived from entire population excl. 1 outlier)

(Assigned value and CV^{\star} derived from results with moderate or strong hydrolysis only)

Appendix 6 (cont.) Graphic Presentation of z-Scores: Optional Compounds (Results from EU and EFTA Laboratories only, * = NRL)

(Assigned value and CV^{\star} derived from results with moderate or strong hydrolysis only and excl. 1 outlier)

Conc. [mg/kg]

EUPT-SRM15 | 2020 (Rice Flour)

(Assigned value and CV^{\star} derived from results with strong hydrolysis only and excl. 1 outlier)

Conc. [mg/kg]

Graphic Presentation of Results: Optional Compounds (Results from EU and EFTA Laboratories only, * = NRL) Appendix 6 (cont.)

(Assigned value and CV^* derived from entire populationexcl. 1 outlier)

(incl. measurement uncertainty reported by participating laboratories)

Graphic Presentation of Results: Optional Compounds (Results from EU and EFTA Laboratories only, * = NRL) Appendix 6 (cont.)

Quizalofop (free acid) (Assigned value and CV* derived from entire population)

Conc. [mg/kg]

(incl. measurement uncertainty reported by participating laboratories)

Graphic Presentation of Results: Optional Compounds (Results from EU and EFTA Laboratories only, * = NRL) Appendix 6 (cont.)

(incl. measurement uncertainty reported by participating laboratories)

Appendix 7 Possible Reasons Reported for Poor Performance (ordered by z-scores)

- A: Lack of experience
- **B:** Analytical procedure was inappropriate (e.g. hydrolysis conditions too weak; recovery too low; sensitivity too poor, RL<AV)
- C: Analytical procedure was appropriate but it was not properly performed
- D: Analyte losses during the procedure (e.g due to degradation, unfavourable partitioning, adsorption)
- E: Measurement problems (e.g. poor chromatographic separation, poor sensitivity, signal interfered by matrix)
- F: Misinterpretation / Misevaluation of measurement data
- G: Inappropriate / erroneous calibration approach (e.g. Matrix effects not properly compensated)
- **H:** Result not properly corrected for recovery
- I: Calculation error (e.g. use of wrong factor, to express residue as required in PT; to address dilutions etc.)
- J: Erroneous analytical standard (e.g. due to degradation, wrong purity, wrong dilution)
- **K:** Deficient QC-measures that would have helped recognize that the method applied generates FNs, FPs or strongly biased results (e.g. no recovery test)
- L: Transcription- / documentation- / communication-/ error

M: other

2,4-D (free acid) Assigned value: 0.052 mg/kg, CV*: 20.8%				
LabCode	z-Score	Reason / Remarks		
5	-3.2 (FN)	L: Transcription-/ documentation-/ communication-/ error	L	
33	-3.2 (FN)	B: Analytical procedure was inappropriate: Use of PSA (malpractice for acidic pesticide)	В	
41	-3.2 (FN)	Code E Measurement problems (Analytical equipment which we use to determin 2,4-D is Agilent Technologies 7890 A GC System doesn't have so good sensitivity. Our RL is 0.05 mg/kg and we use double dilution. When we receive an analytical result under RL, we accept that it is negative.)	E	
99	-3.2 (FN)	L. Transcription- / documentation-/ communication-/ error We do not analyse 2,4-D (free acid), we analyse 2,4-D (sum). The z-score of 2,4-D sum is -0,6.	L	
75	-3.1	Result not properly corrected for recovery	Н	
62	-2.8	We used for analysis the original Quechers method with 2 salts only (withouth hydrolysis) as we use it routinely and in the previous tests we did not have any isues with it. The standards were checked and were OK). We did not track any error in measurment or evaluation. After we got our preliminary results we tried to check everything again and for control analysed some previous Fapas test with the same analytical procedure with fluazifop free acid and got pretty close result (116ug/kg - aceptable interval 58-150). Reanalysis of the test gave us result of 0,068 mg/kg.	?	
121	-2.8	B: Analytical procedure was inappropriate	В	
94	-2.5	Analytical procedure was inappropriate (hydrolysis conditions too weak)	В	
66	2.8	OK with Organizer's Comments: Use of PSA (malpractice for acidic pesticide)	В	
9	3.4	Measurement problems (signal interfered by matrix influence on $\mbox{ lc-ms/ms}$ performance, problem in system calibration)	E, G?	
34	3.7	If calculated with new software without internal standard: +/- 0,06 mg/kg.	G?, I?	

Appendix 7 (cont.)	Possible Reasons for Poor Performance (ordered by z-scores)
--------------------	---

Carbo	furan ((sum) Assigned value: 0.107 mg/kg, CV^* : 22.8%	
LabCode	z-Score	Reason / Remarks	
47	-3.0	no hydrolysis, nor sum of Carbofuran, Carbofuran-3-OH, Carbosulfan, Benfuracarb und Fu- rathiocarb, Measurement problems, Communication error	B, E, L
38	-2.3	No hydrolysis. Effect of IS response? See e-mail explanation.	В
33	-2.2	B: Analytical procedure was inappropriate	В
39	-2.2	NO hydrolysis, no application mono method EURL. We haven't carried out hydrolysis, so as the Organizer has commented, maybe that's the reason for the low value. I have reviewed previous proficiency tests where Carbofuran and 3-OH-carbofuran where present and we obtained without hydrolysis very good results (see attached Excel-sheet). I have no idea if the matrix (previous tests where fruits and vegetables) or the compounds you used for spiking the samples, where also influencing the necessity of hydrolysis here, compared to other tests. As far as I have seen, there are many laboratory with the same problem. As you can see in the attached word, we have performed the analysis by duplicate, but as far as the criteria for IS is accepted we always inform of the first sample (sample A). The response of the IS in sample A is 120% with respect to sample B, where the response of the IS compared to the calibration curve is 100%. That difference also influenced on the results, because as you can see in sample A a result of 0.046 mg/Kg was obtained, whereas the results for sample B is 0.064 mg/Kg. Both samples where obtained with the same procedure. Which z-score would be obtained with the results from sample B? Which internal standard may you recommend for the analysis of "carbofuran sum""?	В
66	-2.1	OK with Organizer's Comments: NO hydrolysis (may have contributed to result underestima- tion)	В
88	-2.1	maybe organizers' comments: NO hydrolysis (may have contributed to result underestimation)	(B)
110	-2.1	B: Analytical procedure was inappropriate	В
129	2.3	Assumption : Carbosulfan analytical standard is degraded (supplier order in progress for this analytical standard)	J?
55	2.8	J: Standard für die Kalibrierung war fehlerhaft (zu stark) verdünnt worden	J
64	3.6	Rootcause for the high concentration of carbofuran is due to the fact that the target pesticide list of SRM15, we had to include the concentration of carbosulfan. So the value of carbosulfan was also taken into account (expressed as carbofuran) and added to the concentration of carbofuran, hence elevating the concentration of carbofuran-sum. In routine analysis this situation does not occur since the residu definition does not include the concentration of carbosulfan. > Question to SRM-organization: Did the other labs correctly apply these requirements? Since the individual reporting of carbosulfan was not part of the target pesticide scope.	s. private discussior with An
121	5.8	B: Analytical procedure was inappropriate	В
24	6.6	Analyse de routine au laboratoire: pas d'hydrolyse effectuée, sommation des valeurs individuelles. Nous n'avions pas la connaissance/expertise de la méthode d'hydrolyse acide au $\rm H_2SO_4$ au moment du PT	A

Chlormequat-Cl Assigned value: 0.092 mg/kg, CV*: 16.8 %			
LabCode	z-Score	Reason / Remarks	
107	-3.1	G: Inappropriate / erroneous calibration approach and H: Result not properly corrected for recovery	G, H
102	4.4	Lack of experience. Misevaluation of measurement data. Calculation error.	A, F, I
61	5.9	G (result reported was obtained with external calibration. Result with standard addition: 0,102mg/kg)	G
95	29.8	Code E - Measurement problems. We had multiple levels matrix matched calibration. Due to matrix effect the slope of the calbration curve was high. We have changed the method that if we have result of high concentrations then we have to check with different analytical column.	E

- A: Lack of experience
- **B:** Analytical procedure was inappropriate (e.g. hydrolysis conditions too weak; recovery too low; sensitivity too poor, RL<AV)
- C: Analytical procedure was appropriate but it was not properly performed
- D: Analyte losses during the procedure (e.g due to degradation, unfavourable partitioning, adsorption)
- E: Measurement problems (e.g. poor chromatographic separation, poor sensitivity, signal interfered by matrix)
- F: Misinterpretation / Misevaluation of measurement data
- G: Inappropriate / erroneous calibration approach (e.g. Matrix effects not properly compensated)
- **H:** Result not properly corrected for recovery
- I: Calculation error (e.g. use of wrong factor, to express residue as required in PT; to address dilutions etc.)
- J: Erroneous analytical standard (e.g. due to degradation, wrong purity, wrong dilution)
- **K:** Deficient QC-measures that would have helped recognize that the method applied generates FNs, FPs or strongly biased results (e.g. no recovery test)
- L: Transcription- / documentation- / communication-/ error

M: other

Glyph	Glyphosate Assigned value: 0.203 mg/kg, CV*: 23.7 %			
LabCode	z-Score	Reason / Remarks		
67	-3.6	documentation/transcription error, we determined 0.216 but unfortunately reported 0.0216	L	
69	-3.6	The laboratory method used for glyphosate, AMPA and glufosinate, is based on derivatita- tion using FMOC. This method could be inappropriate for this matrix. A new procedure using QuPPe-PO method and hypercarb column will be implemented this year. (Pat: komische Erklärung. Wenn Fmoc im Überschuß ist, ist doch egal)	B (?)	
107	-3.0	G: Inappropriate / erroneous calibration approach and H: Result not properly corrected for recovery	G, H	
129	-2.8	H : Result not properly corrected for recovery	Н	
63	-2.2	Calculation error (use of wrong factor); it should be 0.184 mg/kg	I	
51	4.0	Our glyphosate standard exceeded the expiry date, we ordered a new Glyphosate standard which lead to improved intensity by factor two	J	

TFNA Assigned value: 0.060 mg/kg, CV*: 27.8 %			
LabCode	z-Score	Reason / Remarks	
51	-3.3 (FN)	Our extract was prepared with acetonitrile (QuEChERS). We did not use acidic QuEChERS.	D?
65	-3.3 (FN)	Very poor recoveries for TFNA in all grain/cereal samples using current technique. Known problem compound that requires method development works.	В
94	-3.3 (FN)	Analytical procedure was inappropriate (hydrolysis conditions too weak) Measurement problems (poor sensitivity)	B, E
75	-3.0	Result not properly corrected for recovery	Н
121	2.2	B: Analytical procedure was inappropriate	В
128	2.8	I: Calculation Error: When calculating the final result, a value was unfortunately included that was significantly too high due to the incorrect addition of the internal standard. This was clearly marked, but unfortunately not taken into account in the calculation. It should be 0.071 mg/kg; new analysis on 08.06.2020: 0.065 mg/kg	I
50	9.9	The result should be 0.021 mg/kg instead of 0.21 mg/kg	L

Appendix 7 (cont.)	Possible Reasons for Poor Performance (ordered by z-scores)
Appendix / (cont.)	

2,4-D	(sum) /	Assigned value: 0.059 mg/kg, CV^* : 18.9 %	
LabCode	z-Score	Reason / Remarks	
111	-2.4	(I) -due to sample weight used in the extraction results gained for the analytes by hydrolysis required a correction factor calculation. This was not done in error.	I
5	-2.1	L: Transcription-/ documentation-/ communication-/ error; B: Analytical procedure was inap- propriate; E: Measurement problems	B, E, L
24	2.1	Très faible expérience de l'hydrolyse. La revue des données brutes, ne permet pas d'identifier une source d'erreur. La relance effectué lors d'un test d'un autre protocole donne une valeur beaucoup plus faible (<0,010 mg/kg).	A
44	2.1	Moderate hydrolysis	В
34	2.8	has to reanalysed "with Hydrolysis" after the instrument is set up (fire accident at the beginning of Mai)	В?
129	3.0	Analysis was conducted with 2 ml NaOH 5M addition (yes, two different hydrolysis conditions were carried out for extraction.)	?
62	4.3	Originaly we analysed sums with the hydrolysis step for fruit/and vegetables (300ulNaOH/30min) and got some lower results. The result for 2,4D was 0,045 mg/kg, 98% re-covery). We also got low result for fluazifop sum (0,02), but we had som fluazifo butyl left (0,04). We did not even see the mecoprop sum. As soon as you released the new version for cereals we repeated this analysis with the stronger hydrolysis conditions (2ml NaOH/120min) and we got the higher results, we were able to evaluate the mecoprop either, the flazifop buthyl disapeared and we got the fluazifop sum result 0,073 mg/gk), but we got very high recovery rates in IRMs (130-151%). We tried to evaluate with different ways (standard adiotion, processed calibration, normal matrix matched calibration and got very similar results with all three. For lack of time we had not further investigations. We cannot explain what happened, because all other results perforemd the same way (for sums) were correct and better than the original results without the strong hydolysis. We would like to know your opinion, why the same method worked well for some of the analytes and give high result for 2,4D and haloxyfop sums.	s. private discussion with An
55	5.4	M/K: Zur alkalischen Hydrolyse wurde in unserem Labor bisher die AH+QuEChERS CRL-SRM (2007) angewendet, so auch bei der LVU-Probe. Dann erhielten wir im Verlauf der LVU mit der EURL-Mail vom 5.03.2020 die Information, dass nur mit der SRM-43 Ester vollständig hydrolisiert werden. Daraufhin wiederholten wir die Analysen mit SRM-43 AH-FA-QuECHERS und erhielten damit auch höhere Ergebnisse, die wir dann übermittelten. Zu diesem Zeitpunkt blieb uns aber bis zum Meldeschluss nicht mehr genügend Zeit, um die Ergebnisse durch Wiederfindungsexperimente zu validieren. Unser AH+QuEChERS CRL-SRM (2007)-Ergebnis lautete: 0,052 mg/kg	К, М
3rd-73	8.0	B (Analytical procedure was inappropriate; We changed the sample preparation according to the EURL-SRM method from 4-3-2020 (with 2ml 5M NaOH; 120 min on 400C and 1ml 5M H2SO4); First result (with 1ml 5M NaOH; 30 min on 400C and 1ml 5M H2SO4) was 0,06mg/kg)	В
33	8.8	A: Lack of experience	A
9	9.5	Measurement problems (signal interfered by matrix influence on Ic-ms/ms performance, problem in system calibration)	E, G?

Bentazone Assigned value: 0.334 mg/kg, CV*: 19.4 %				
LabCode	z-Score	Reason / Remarks		
24	-2.5	Analyse de routine au laboratoire avec Quechers classique et purification classique, la valeur indiquée a été rendue avec la prise en compte d'un rendement en conditions identique. La valeur obtenue sans purification au PSA donne effectivement une valeur de 0,218 mg/kg, valeur plus proche de la valeur cible	D	
44	4.3	Misinterpretation / Misevaluation of measurement data	F	
30	4.4	Possible: Code J. Internal mistakes during the analysis could not be found. A new standard solution was ordered to check the used standard solution."	J?	

- A: Lack of experience
- **B:** Analytical procedure was inappropriate (e.g. hydrolysis conditions too weak; recovery too low; sensitivity too poor, RL<AV)
- C: Analytical procedure was appropriate but it was not properly performed
- D: Analyte losses during the procedure (e.g due to degradation, unfavourable partitioning, adsorption)
- E: Measurement problems (e.g. poor chromatographic separation, poor sensitivity, signal interfered by matrix)
- F: Misinterpretation / Misevaluation of measurement data
- G: Inappropriate / erroneous calibration approach (e.g. Matrix effects not properly compensated)
- **H:** Result not properly corrected for recovery
- I: Calculation error (e.g. use of wrong factor, to express residue as required in PT; to address dilutions etc.)
- J: Erroneous analytical standard (e.g. due to degradation, wrong purity, wrong dilution)
- **K:** Deficient QC-measures that would have helped recognize that the method applied generates FNs, FPs or strongly biased results (e.g. no recovery test)
- L: Transcription- / documentation- / communication-/ error

M: other

Fluazifop ((sum)	Assigned value: 0.060 mg/kg, CV*: 18.8
-------------	-------	--

LabCode	- z-Score	Reason / Remarks	
74	-3.3 (FN)	A - B (cf EURL comment)	
91	-3.3 (FN)	Lack of experience, hydrolysis conditions too weak	А, В
3rd-134	-3.3 (FN)	L: Transcription- / documentation-/ communication-/ error. Our lab did not do the hydrolysis step	B, L?
51	-3.3	B: Analytical procedure was inappropriate	В
58	-3.3	We confirm the Organizer's Comments: A = Lack of experience; B = Analytical procedure was inappropriate (e.g. hydrolysis conditions too weak)	А, В
8	-3.1	maybe organizers' comments: Weak hydrolysis (most likely contributed to the underestimated result)	(B)
31	-3.0	Yes, I agree with the organizers. However, we tried the both types of hydrolysis (our weak established and new strong from 2020), but unfortunately we got similar results, the both were below 20 ppb. I assume a random error. We will test it again and establish the procedure with strong hydrolysis in our lab.	?
68	-2.9	B: Analytical procedure was inappropriate (e.g. hydrolysis conditions too weak; recovery too low; sensitivity too poor, RL <av)< td=""><td>В</td></av)<>	В
21	-2.8	maybe organizers' comments: Weak hydrolysis (most likely contributed to the underestimated result)	(B)
103	-2.8	maybe organizers' comments: Weak hydrolysis (most likely contributed to the underestimated result). Hydrolysis conditions do not match with reference method stated, please clarify.	(B)
46	-2.7	The problem regarding the false results has now been solved. The reason is that the blank-rice- matrix we used in a test acts differently compared to the rice-matrix we had as EUPT sample. Conserning some analytes, the suppression matrix-effect was dissimilar in our blank-rice com- pared to the EUPT rice sample. The suppression was even stronger when using more powerful hydrolysis. We have now conducted the test with the stronger hydrolysis by means of standard-addition- method. Fluazifop (sum) result (stronger hydrolysis, standard addition) is 0,066 mg/kg	"M? diff. Be- haviour of blank"
114	2.1	It was realized a weak Acidic Hydrolysis during extraction (10min, 40°C and 5N). The working solution (mixture) stability was revised and we obtained a -7,7 of difference respect the new working solution for Fluacifop. It's probably that this light difference (although less than 10), produce an overestimate results. The proficiency test was re-analyzed with a new stock and working solution and it was obtained a result of 0.070 mg/Kg.	В, Ј
9	2.4	Measurement problems (signal interfered by matrix influence on lc-ms/ms performance, problem in system calibration)	E, G?

Appendix 7 (cont.)	Possible Reasons for Poor Performance (ordered by z-scores)
--------------------	---

Haloxy	yfop (s	sum) Assigned value: 0.151 mg/kg, <i>CV*</i> : 16.2 %	
LabCode	z-Score	Reason / Remarks	
19	-3.7 (FN)	I have deleted the wrong parameter in the result table. If transmitted correctly our result for Haloxyfop would have been 0,165 mg/kg with an recovery rate of 108 $\%$	L
3rd-134	-3.7 (FN)	L: Transcription- / documentation-/ communication-/ error. Our lab did not do the hydrolysis step	B, L?
103	-2.8	maybe organizers' comments	(B)
30	-2.7	Code L: The wrong result was submitted. The correct result was 0,129 mg/kg.	L
41	-2.3	Code A Lack of experience	Α
111	-2.2	(I)-due to sample weight used in the extraction results gained for the analytes by hydrolysis required a correction factor calculation. This was not done in error.	I
62	2.1	Please see explanation under 2,4-D (sum)	s. private discussion with An
24	3.1	Très faible expérience de l'hydrolyse. La revue des données brutes, ne permet pas d'identifier une source d'erreur. La relance effectué lors d'un test d'un autre protocole donne une valeur beaucoup plus plus proche de la valeur cible, soit 0,156 mg/kg	A

Imazet	thapyı	r (free acid) Assigned value: 0.206 mg/kg, CV*: 17.6 %	
LabCode	z-Score	Reason / Remarks	
115	-3.8 (FN)	this residue is being development by R&D department and had not been added to our routine scope. So, we did not look for it> this is an error when filling our scope	L
3rd-135	-3.8 (FN)	B (recovery too low), leading to L (result shouldn't have been reported as "not detected", but "not tested"; it wouldn't be reported as well in routine condition)	B, L
98	-3.5	measured value is 0,236 mg/kg. mistake by filling results in the portal	L
26	-2.2	our problem was the use of PSA, after check the sample again we get the right result. 0.1965 mg/kg	В
114	2.3	The working solution (mixture) stability was revised and we obtained a -9,7 of difference respect the new working solution for Imazethapyr. It's probably that this light difference (although less than 10), produce an overestimate results. The proficiency test was re-analyzed with a new stock and working solution and it was obtained a result of 0.23 mg/Kg. It was analyzed without hydrolisis because the definition of residue is only free.	J
90	2.8	The sample was analyzed with hydrolisis (80°C, 60 min, 300 uL NaOH). This compound is in- cluded in a method of acid herbicides although the definition of residue is only free. The proficiency test was re-analyzed without hydrolysis and was obtained a result of 0.18 mg/kg.	В
62	2.1	Please see explanation under 2,4-D (sum)	s. private discussion with An
24	3.1	Très faible expérience de l'hydrolyse. La revue des données brutes, ne permet pas d'identifier une source d'erreur. La relance effectué lors d'un test d'un autre protocole donne une valeur beaucoup plus plus proche de la valeur cible, soit 0,156 mg/kg	A

МСРА	(sum)	Assigned value: 0.068 mg/kg, CV*: 20.2 %	
LabCode	z-Score	Reason / Remarks	
34	-3.4 (FN)	has to reanalysed "with Hydrolysis" after the instrument is set up (fire accident at the beginning of Mai)	В?
111	-2.1	(I) -due to sample weight used in the extraction results gained for the analytes by hydrolysis required a correction factor calculation. This was not done in error.	I
55	4.5	M (other)/K (Deficient QC-measures): Details s. explanation unter 2,4-D. Unser AH+QuEChERS CRL-SRM (2007)-Ergebnis lautete: 0,086 mg/kg	К, М
9	8.2	Measurement problems (signal interfered by matrix influence on lc-ms/ms performance, problem in system calibration)	E, G?
33	8.5	A: Lack of experience	A

- A: Lack of experience
- **B:** Analytical procedure was inappropriate (e.g. hydrolysis conditions too weak; recovery too low; sensitivity too poor, RL<AV)
- C: Analytical procedure was appropriate but it was not properly performed
- D: Analyte losses during the procedure (e.g due to degradation, unfavourable partitioning, adsorption)
- E: Measurement problems (e.g. poor chromatographic separation, poor sensitivity, signal interfered by matrix)
- F: Misinterpretation / Misevaluation of measurement data
- G: Inappropriate / erroneous calibration approach (e.g. Matrix effects not properly compensated)
- **H:** Result not properly corrected for recovery
- I: Calculation error (e.g. use of wrong factor, to express residue as required in PT; to address dilutions etc.)
- J: Erroneous analytical standard (e.g. due to degradation, wrong purity, wrong dilution)
- **K:** Deficient QC-measures that would have helped recognize that the method applied generates FNs, FPs or strongly biased results (e.g. no recovery test)
- L: Transcription- / documentation- / communication-/ error

M: other

MCPB	(sum)	Assigned value: 0.057 mg/kg, CV^{*} : 29.4 %	
LabCode	z-Score	Reason / Remarks	
30	-3.3 (FN)	"Code M and L Analysis without hydrolysis . Internal procedure prescribes doing a second analysis with hy- drolysis when first result reaches the internal stated limit value. Wrong submitted as ""sum"". (Pat: Das Labor hat nicht verstanden, daß man bei Säure kein PSA cleanup durchführen darf! Ich habe die Erklärung nicht wirklich verstanden.)"	L, M
34	-3.3 (FN)	has to reanalysed "with Hydrolysis" after the instrument is set up (fire accident at the beginning of Mai)	B?
91	-3.3 (FN)	Lack of experience, hydrolysis conditions too weak	А, В
137	-3.3 (FN)	maybe organizers' comments: Weak hydrolysis (most likely contributed to the FN result)	(B)
74	-2.7	A - B (cf EURL comment)	А, В
8	-2.6	maybe organizers' comments: Weak hydrolysis (most likely contributed to the FN result)	(B)
25	-2.5	A: Lack of experience, maybe also B: Analytical procedure was inappropriate	(B)
51	-2.5	B: Analytical procedure was inappropriate	В
21	-2.4	maybe organizers' comments: Weak hydrolysis (most likely contributed to the FN result)	(B)
71	-2.4	B Analytical procedure was inappropriate (e.g. hydrolysis conditions too weak; sensitivity too poor)	В
111	-2.4	(I) -due to sample weight used in the extraction results gained for the analytes by hydrolysis required a correction factor calculation. This was not done in error.	I
68	-2.2	B: Analytical procedure was inappropriate (e.g. hydrolysis conditions too weak; recovery too low; sensitivity too poor, RL <av)< td=""><td>В</td></av)<>	В
99	2.3	"We have analysed again the sample and result is lower. We are going to check the reproducibility of this pesticide."	?
113	4.2	"L - by misunderstanding, legal RD used (residue definition according to the Reg. 396/2005/EC) Due to this misunderstanding, also result reported for MCPA is biased. Could You please kindly consider these (high) numbers as a transcription error (caused by mis- understanding of RD) and to replace both values by recalculated results indicated in the form ? (Pat: not L, but N: missunderstanding of RD! Und ""NO, we can't accept the recal. results.)"	N
33	4.6	A: Lack of experience	A
55	5.4	M (other)/K (Deficient QC-measures): Details s. explanation unter 2,4-D. Unser AH+QuEChERS CRL-SRM (2007)-Ergebnis lautete: 0.044 mg/kg	К, М

Месор	orop (s	um) Assigned value: 0.067 mg/kg, CV*: 22.4 %	
LabCode	z-Score	Reason / Remarks	
8	-3.4 (FN)	maybe organizers' comments: Weak hydrolysis (most likely contributed to the FN result)	(B)
21	-3.4 (FN)	maybe organizers' comments: Weak hydrolysis (most likely contributed to the FN result)	(B)
24	-3.4 (FN)	Très faible expérience de l'hydrolyse. La revue des données brutes, ne permet pas d'identifier une source d'erreur. Une valeur aux alentours de 0,004 mg/kg (traces) a été retrouvé au départ. La relance effectué lors d'un test d'un autre protocole donne une valeur de l'ordre de traces également. Une plus forte hydrolyse, telle qu'indiquée dans le protocole eurl (04/03/2020) devra être testé.	A
30	-3.4 (FN)	Code M and L Analysis without hydrolysis . Internal procedure prescribes doing a second analysis with hy- drolysis when first result reaches the internal stated limit value. Wrong submitted as "sum". (Pat: Das Labor hat nicht verstanden, daß man bei Säure kein PSA cleanup durchführen darf! Die ERklärung habe ich nicht wirklich verstanden.)"	L, M
34	-3.4 (FN)	has to reanalysed "with Hydrolysis" after the instrument is set up (fire accident at the beginning of Mai)	(B)
37	-3.4 (FN)	Code A, the alcaline hydrolysis is not validated in our Lab, we habe no experience, how strong the hydrolysis is needed for Mecoprop (sum), our result for Mecoprop is 0,012 mg/kg - therefore <rl.< td=""><td>А, В</td></rl.<>	А, В
46	-3.4 (FN)	The problem regarding the false results has now been solved. The reason is that the blank-rice- matrix we used in a test acts differently compared to the rice-matrix we had as EUPT sample. Conserning some analytes, the suppression matrix-effect was dissimilar in our blank-rice com- pared to the EUPT rice sample. The suppression was even stronger when using more powerful hydrolysis. We have now conducted the test with the stronger hydrolysis by means of standard-addition- method. Mecoprop (sum) result is 0,097 mg/kg	"M? diff. Be- haviour o blank"
47	-3.4 (FN)	hydrolysis condition too weak, Mecoprop free acid not analysed due to communication prob- lems during the corona pandemic	В
51	-3.4 (FN)	B: Analytical procedure was inappropriate	В
64	-3.4 (FN)	The residue definition of mecoprop does not include esters, so these esters should not be analyzed in routine analysis. Actually we should have only reported the mecoprop free acid, since our method is not optimized for the mecoprop-ester analysis. On the other hand we will re-evaluate our method in order to perform a hydrolysis at 40°C.	В
66	-3.4 (FN)	OK with Organizer's Comments: Weak hydrolysis (most likely contributed to the FN result)	В
68	-3.4 (FN)	B: Analytical procedure was inappropriate (e.g. hydrolysis conditions too weak; recovery too low; sensitivity too poor, RL <av)< td=""><td>В</td></av)<>	В
74	-3.4 (FN)	A - B (cf EURL comment)	А, В
91	-3.4 (FN)	Lack of experience, hydrolysis conditions too weak	А, В
103	-3.4 (FN)	maybe organizers' comments: Weak hydrolysis (most likely contributed to the FN result). Hy- drolysis conditions do not match with reference method stated, please clarify.	(B)
119	-3.4 (FN)	 B/C : Analytical procedure was inappropriate /Analytical procedure was appropriate but it was not properly performed: Hydrolysis procedure was weak 30min, T° ambiente, 300 μl 5N NaOH Moreover Inadervertently H2SO4 was added before hydrolysis step We repeat experiments with 2ml NaOH 5N, 120 min, 40°C => it is ok" 	В, С
122	-3.4 (FN)	L: Transcription- / documentation-/ communication-/ error. Value found: 0,063 mg/kg. We did not transcript the value due to our error during the result submission.	L
137	-3.4 (FN)	maybe organizers' comments: Weak hydrolysis (most likely contributed to the FN result)	(B)
56	-3.2	Lack of experience (first time hydrolysis tested for this new complex definition).	А, В
111	-3.2	(I) -due to sample weight used in the extraction results gained for the analytes by hydrolysis required a correction factor calculation. This was not done in error. (B)- Hydrolysis conditions too weak	B, I
116	-3.1	Ester was NOT used for calibration curve. The hydrolysis was only performed on the sample to verify the presence of the ester.	В
93	-3	L: Transkription Error: Unfortunately there was transcription error. You can see the attachment file (EUPT-SRM15_Measurement result_Mecoprop sum.xlsx). I sent mecoprop (sum) result 0.0171 mg/kg, but the real result is 0.071	L

- A: Lack of experience
- **B:** Analytical procedure was inappropriate (e.g. hydrolysis conditions too weak; recovery too low; sensitivity too poor, RL<AV)
- C: Analytical procedure was appropriate but it was not properly performed
- D: Analyte losses during the procedure (e.g due to degradation, unfavourable partitioning, adsorption)
- E: Measurement problems (e.g. poor chromatographic separation, poor sensitivity, signal interfered by matrix)
- F: Misinterpretation / Misevaluation of measurement data
- G: Inappropriate / erroneous calibration approach (e.g. Matrix effects not properly compensated)
- **H:** Result not properly corrected for recovery
- I: Calculation error (e.g. use of wrong factor, to express residue as required in PT; to address dilutions etc.)
- J: Erroneous analytical standard (e.g. due to degradation, wrong purity, wrong dilution)
- **K:** Deficient QC-measures that would have helped recognize that the method applied generates FNs, FPs or strongly biased results (e.g. no recovery test)
- L: Transcription- / documentation- / communication-/ error

M: other

Месор	orop (s	um) Assigned value: 0.067 mg/kg, <i>CV*</i> : 22.4 %	
LabCode	z-Score	Reason / Remarks	
67	-2.9	analytical procedure was inappropriate, hydrolysis conditions too weak hydrolysis was repeated: 2 ml 5N NaOH, 120 min, 40 °C> new value: 0,0696 mg/kg"	В
12	-2.8	B: hydrolysis conditions too weak, we have reanalysed the sample and our result is 0,064 mg/kg.	В
27	-2.6	Hydrolysis was performed with 1 ml 5N NaOH (not 1N as stated in column "Hydrolysis Concen- tration") at 40 °C for 120 min. You suggest an amount of 2 ml for Mecoprop in rice (see table 7 in https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EurlSrm_Observation_alkaline_hydroly- sis_acidic_herbicides.pdf). Also: lack of experience"	В
100	-2.5	maybe organizers' comments: Weak hydrolysis (most likely contributed to the underestimated result). Hydrolysis conditions do not match with reference method stated, please clarify.	(B)
123	-2.5	Result not properly corrected for recovery	н
44	-2.2	Moderate hydrolysis	В
84	-2.2	Lack of experience; hydrolysis conditions too weak	А, В
55	4	M/K: s. Explanation under 2,4-D. Unser AH+QuEChERS CRL-SRM (2007)-Ergebnis lautete: 0,070 mg/kg	К, М
33	8	A: Lack of experience	A

Paraqu	uat Assi	gned value: 0.195 mg/kg, <i>CV*</i> : 28.9 %	
LabCode	z-Score	Reason / Remarks	
51	-3.8 (FN)	At the usual retention time we did not detect paraquat. Now we check the column and the standard.	E
3rd-73	-3.8 (FN)	L (communication error; we didn't put the result for Paraquat in table)	L
99	-3.6 (FN)	L. Transcription- / documentation-/ communication-/ error Paraquat is not included in the accreditation scope of the laboratory, we have not analised this pesticide.	L
42	3.4	No experience with this compound. Errors in the concentration of standard solutions . We used expired analitycal standard (2015) and glass volumetric flask for the preparation of stock and working solutions. The solvent used for preparation of the standard solutions was methanol+1% formic acid.	A, C, J
34	3.5	has to reanalysed after the instrument is set up (fire accident at the beginning of Mai)	B?
65	5	Not routinely analysed. Calculation error, standard concentrations were not corrected for the taregt analyte Paraquat (dication). When corrected a z-score of 2 is obtained.	A, I

Quizal	ofop (free acid) Assigned value: 0.044 mg/kg, CV*: 16.4%	
LabCode	z-Score	Reason / Remarks	
34	-3.1 (FN)	has to reanalysed "with Hydrolasis" after the instrument is set up (fire accident at the beginning of Mai)	В?
99	-3.1 (FN)	L. Transcription- / documentation-/ communication-/ error There was an error to send the results, we sent "not detected". We detected 0,05 mg/Kg of quizalofop (free acid)and 0,07 mg/Kg of quizalofop (sum)"	L
116	-3.1 (FN)	In our laboratory it's validated and accredited at 0.05 mg/kg. We need to re-validate the analyte at lower level and do the analyses on a more sensitive instrument.	E
121	-3.1 (FN)	B: Analytical procedure was inappropriate	В
26	-2.2	our problem was the use of PSA, after check the sample again we get the right result. 0.040 mg/Kg	В
46	3.2	The problem regarding the false results has now been solved. The reason is that the blank-rice- matrix we used in a test acts differently compared to the rice-matrix we had as EUPT sample. Conserning some analytes, the suppression matrix-effect was dissimilar in our blank-rice com- pared to the EUPT rice sample. The suppression was even stronger when using more powerful hydrolysis. We have now conducted the test with the stronger hydrolysis by means of standard-addition- method. Quizalofop (sum) result is 0,062 mg/kg"	"M? diff. Be- haviour o blank"
9	4.2	Measurement problems (signal interfered by matrix influence on lc-ms/ms performance, problem in system calibration)	E, G?

Quizal	ofop (SUM) Assigned value: 0.062mg/kg, CV*: 22.9%	
LabCode	z-Score	Reason / Remarks	
51	-3.4 (FN)	We had a mistake in the data transmission. Our result would have been 0.061 mg/kg (n=3)	L
59	2.3	unknown / A Lack of experience	A
55	2.4	M (other)/K (Deficient QC-measures): Details s. explanation unter 2,4-D. Unser AH+QuEChERS CRL-SRM (2007)-Ergebnis lautete: 0,070 mg/kg	К, М
46	3.3	The problem regarding the false results has now been solved. The reason is that the blank-rice- matrix we used in a test acts differently compared to the rice-matrix we had as EUPT sample. Conserning some analytes, the suppression matrix-effect was dissimilar in our blank-rice com- pared to the EUPT rice sample. The suppression was even stronger when using more powerful hydrolysis. We have now conducted the test with the stronger hydrolysis by means of standard-addition- method. Quizalofop (sum) result is 0,062 mg/kg	"M? diff. Be- haviour of blank"
9	4.8	Measurement problems (signal interfered by matrix influence on lc-ms/ms performance, prob- lem in system calibration)	E, G?

perticipating laboratories.

EUR

E.AT's are organised by individual EURLs, or by more than one EURL, in collaboration.

This team is responsible for all administrative and technical matters concerning the organisation of of homogeneity and stability tests, the packing and shipment of the PT-materials, the handling and evaluation of the results and method information submitted by the participants, the draffing of the the PT, e.g. the PT-ennouncement, the production of the PT-material (Text Item), the undertaking prefinimary and final reports as well as generation and distribution of EUPT-participation An Organiaing Team (in the following named Organisers) is appointed by the EURL(s) in charge certificates.

EUPT-Scientific Committee (EUPT-SC)⁵ has been established and approved by DG-SANTE. The CUFT-SC consists of expert scientists with many years of experience in PTs and/or pesticide residue analysis. The actual controsition of the EUPT-SC and the affliation of each of its members To complement the internal expertise of the EURUs, a group of external consultants forming the is shown on the EURL-Website. The members of the EUPT-SC are also listed in the Specific Protocol and the Final Report of each EUPT.

The EUPT-SC is made up of the following two subgraups:

The EUPT-SC's role is to help the Organisers make decisions regarding the EUPT design: the selection of the commodity, the selection of pestibides to be included in the Terget Pesticide List (see below), the establishment of the Minimum Required Reporting Levels (MRVLs), the statistical bediment and evaluation of the participants' results (in anonymous form), and the challing and pdating of documents, such as the General and Specific PT Protocols and the Final EUPT-Reports.

www.eurl-pesticides.eu

Page 2 of TT

www.eurl-pesticides.eu

Page 1 of T

General EUPT Protocol (9th Ed.)

Appendix 8

⁸ ink to the list of sumerheas of the EUPT Scientific Committee. http://www.aut-peakistes.euthers.phossialaviEUPT-SC.pdf

Appendix 8 (cont.) General EUPT Protocol (9th Ed.)

the participating Oft.a bekinging to their Oft-Network. This will allow NRLs to follow perticipation and performance of the laboratories within their network. Page 4 of TT

www.eurl-pesticides.eu

Regulation (EC) No 3982006, published at OJ of the EU LTO of 19.03.2016, as lead amended by Regulation 8382008 published at OJ of the EU L234 of 30.08.2008

Official controls in the source of Ray (12/50/1762). This includes lates included in controls will in the formework of Control and/or EU-controlled programmes as well as lates included in input controls according to Regulation ReSERVEC.

www.eurl-pesticides.eu

Page 3 of 17

^b Editor: Released on 15 November 2013

Communication between participating laboratories during the test, on matters concerning a PT exarcise, is not permitted from the start of the PT exercise until the distribution of the prefininary report

documents, the participating laboratories will be informed via e-mail. In any case, as soon as the For each EUPT the organising EURL prepares a specific EUPT-Website where all PT-relevant documents in their latest version are linked. In case of important modifications on any of these PT-period starts the participants are encouraged to visit the particular EAPT-Website, to make sure that they are using the latest versions of all PT-relevant documents.

The official language used in all EUFTs is English.

Announcement / Invitation Letter

Amouncement/Invitation letter on the E.N.J.-web-portal and distribute it wa e-mail to the NNL/OIL mailing list available to the EURLs. This letter will inform about the commodity to be used as Test ne teidag ha ttem, as well as inks to the tentative EUPT-Target Pesticide List and the tentative EUPT-Calendar the EURLs Ē Т. At least 3 months before the distribution of the

Farget Pesticide List

This isst contains all analytes (pesticides and metabolites) to be sought for, along with the Manmum Required Reporting Levels (MRRLs) valid for the specific EUPT. The MRRLs are typically based upon the lowest MRUs found either in Regulation 396/2005/EC or Commission Directive 2006/125/EC (Baby Food Directive).

labs must express their results as stated in the Target Pesticides List.

Specific Protocol

Test them is distributed to the participating lationativies. The Specific Protocol will contain all the peyment and defivery, instructions on how to handle the Test Item upon receipt and on how to For each EUPT the organizing EURL will publish a Specific Protocol at least 2 weeks before the information previously included in the Invitation Letter but in its final version, information on submit results, as well as any other relevant information

P^{*} Edition: Released on 15 November 2013

Homogeneity of the Test Item

homogeneity leats usually involve the analysis of two replicate analytical portions, taken from at The Test Item will be tested for homogeneity typically before distribution to participants. The least ten randomly chosen units of breated Test Bern. Both, sample preparation and measurements should be conducted in random order.

simplified. If, however, the distribution of participants' results for an analyte that was not or not fully of the pesticide question), may decide to overrule the test. The reasons of this overnling have to signuttaneously. The homogeneity test, of one or more of these analytes, may thus be skipped or rested for homogeneity, is found to be atypically browd, compared to the tested analytes, the be transparently explained in the Final EUPT-Report. For certain analytes with comparable properties, an equivalent distribution within the sample can be expected if they were spiked/used at The homogeneity lest risks are statistically evaluated according to ISO 13528, Annex B or to the International Harmonized Protocols jointly published by ISO, ACAC and IUPAC. The results of al homogeneity tests are presented to the EUPT-SC. In special cases, where the above homogeneity test aiteria are not met, the EUPT-Panel, considering all relevant aspects (e.g. the homogeneity results of other pesticities spired at the same time, the overall distribution of the periorpants' results (cr*), the analytical difficulties faced during the test, knowledge of the analytical behaviour CUPT-SC may decide that a homogeneity test should be performed a posteriori by the EURL.

Stability of the analytes contained in the Test Item

b mowledge of its physicochemical properties), the Organiseas, after consultation with the EUFTthe first analysis is carried out shortly before the shipment of the Test Items and the last one three randomly chosen containers OR 6 portions withdrawn from a single container). In principle al where sufficient knowledge exists that the stability of a certain smalyte is very unlitely to be 2003, may decide to omit a specific statility test. The EUPT-Panel will finally decide whether The Test thems will also be tested for stability - according to ISO 13528, Annex B. The time detay between the first and the last stability lest must ecceed the period of the EUPT-exercise. Typically shority after the deadine for submission of results. To better recognise trends and gain additional certainty one or more additional tests may be conducted by the Organisers. At least 6 auto-samples (analytical portions) should be analysed on each test day (e.g. 2 analytical portions withdrawn from pesticides contained in the Test Item should be checked for statiality. However, in individual cases, significantly allected during storage (e.g. based on experience from past statisty tests

Page 5 of 17

www.eurl-pesticides.eu

reserve the right not to accept the analytical results reported by the participants concerned or even completion of the methodology information submitted by all perficipients is presented in an Annex of the Final EUPT-Report or in a separate report. Where necessary the methods are evaluated and discussed, especially in those cases where the result distribution is not unimodal or very broad (e.g. C7* > 35 %). If no sufficient information on the methodology used is provided, the Organisers refuse participation in the following PT.

GENERAL PROTOCO (9TH ED.)

Page 7 of 17

www.eurl-pesticides.eu

Page8d T

Appendix 8. General EUPT Protocol (9th Ed.)

Ċ EU REFERENCE LABORATORIES FOR RESIDUES OF PESTICIDES

Edition: Released on 15 November 2019

EUR

analytes for which the statistity test was not undertaken will be inducted in the Final EUPT-Report, considering all relevant aspects such as the distribution of the participant's results (CV⁴). A pesticide is considered to be adequately stable if $|\gamma_1 - \gamma_1| \leq 0.3 \times c_{y_1}$ with γ_1 being the mean value of the results of the last plasse of the statility leat, y being the mean value of the results of the first phase of the stability test and _{by} being the standard deviation used for proficiency assessment (typically 25 % of the assigned value).

equenence with the stability of the compound, the overall distribution the participents' results, the messurement variability, analytical difficulties faced during the test and knowledge about the The results of all stability tests are presented to the EUPT-SC. In special cases where the above stability test criteria are not met, the EUPT-SC considering all relevant aspects (e.g. the past analytical behaviour of the pesticide question) may decide to overtule the test. The reasons of this overnaing will be transperently explained in the Final EUPT-Report. The Organisers may also decide to conduct additional stability leads at different storage conditions then flose recommended to the peritopents e.g. at ambient temperature.

the EUPT-SC will be informed (or the EUPT-QCG before or during the leat). Case-by-case in the Test item to possible bases, the Organisers will choose the shipment conditions to be such that pesticide bases are minimised (e.g. shipment of frozen samples, addition of dry ice). As digment time can differ between laba/countries it is recommended that the Organisers keep track decisions may be taken by the EUPT-Panel considering all relevant aspects inducing the duration Stability during shipment: Considering knowledge about the expected susceptibility of pesticides of the shipment duration and then decide whether it is reasonable to conduct autitional stability tests at conditions simulating shipment. Should critical losses be detected for certain pesticides, and conditions of the shipment to the laboratory as well as the feedback by the laboratory.

Methodologies to be used by the participants

emptoy in official control activities (monitoring etc.). Where an analytical method has not yet been Participating laboratories are instructed to use the analytical procedure(s) that they would routinely established routinely this should be stated.

Edition: Released on 15 November 2013

Results evaluation

The procedures used for the treatment and assessment of results are described below.

False Positive results

These are results of peskicides from the Target Peskicides List, that are reported, at or above, their respective MNRL although they were. (i) not obtacted by the Ouganises, even after represented analyses, and/or (ii) not detected by the overwhelming majority (e.g. > 95 %) of the participating laboratonics that had targeted the specific pesicides. In certain instances, case by case decisions by the ELRT Parel may be recessery. Any results reported lower than the MRRL will not be considered as false positives, even though these results should not have been reported.

False Negetive results

These are results for peakibides reported by the laboratories as 'analysed' but without reporting numerical values atthough they were: a) used by the Organiser to treat the Test them and b) detected by the Organiser as well as the majority of the participants that had hargeted these specific peakibiles at or above the respective MRRLa. Results reported as '< RL' (RL = Reporting Limit of the laboratory) will be considered as not thetected and will be judged as false regarives. In cettain instances, reseo-by-rese decisions by the ELRT (Panel may be netroseary. In cases of the assigned value being lease than a factor of 3 times the MGCL, false negatives will typically not be assigned. The EUFT-Panel may decide to take case-by-case decisions in this respect after considering all relevant factors such as the result distribution and the reporting limits of the affected late.

Estimation of the assigned value (s_{pl})

In order to minimise the influence of out-lying results on the statisfical evaluation, the assigned value $x_{\rm sci}$ (= conservates concentration) will typically be extimated using the rotates estimate of the

9* Editor: Released on 15 November 2019

participant's mean (x*) as described in ISO 13528-2015⁴, taking into account the results reported by EU and EFTA countries latonatories only. In special justifiable cases, the EUFT-Panel may decide to diminate certain results traceably associated with gross errors (see "Ontission or Exclusion of results" below) or to use only the results of a subgrup consisting of latonatories that have repeatedly demonstrated good performance for the specific or similar compounds in the past-

Onvission or Exclusion of results

demonstrably lead to significantly biased results (e.g. employing inappropriate internal standards or nomplete extractions, publicating etc.). Where the Organisars (e.g. after the publication of the prefinimary report) receive information of such gross errors, having a significant impact on a or not, they should be excluded from the population used for robust statistics. Results may also be omitted e.g. if an inappropriate method has been used even if they are not outliers. All decisions to omitrectude results will be discussed with the EUPT-SC and the reasoning for the omission of each result dearly stated in the Final EUPT-Report However, z scores will be calculated for all Before estimating the assigned value, results associated with obvious mistakes have to be include incorrect recording (e.g. due to transcription errors by the perficipent, decimal point tauts or transposed digits, incorrect unit), calculation errors (e.g. missing factors), analysis of a wrong samplefextract (e.g. a spiked blank), use of wrong concertrations of standard solutions, incorrect chala processing (e.g. integration of wrong peak), inspiragulate storage or hansport conditions (m case of susceptible compounds), and the use of inappropriate analytical steps or procedures that analytical steps or conditions leading to considerable losses, due to degradations, adaoptions, examined to decide whether they should be removed from the population. Such gross errors may generated result, the affected results will be examined on a case-by-case basis to decide whether, results intespective of the fact that they were omitted from the rationation of the assigned value.

Omitical results might be interesting as they might give indications about possible source(s) of errors. The Organisers will finite ask the netwart lab(s) to provide feedback on possible sources of errors (see also Tollow-up schridies"). Results reported by laboratories from non EU manuter states are typically excluded from the population that is used to derive the assigned value (see also T-stimation of the assigned value").

Page 10 of 17

www.eurl-pesticides.eu

Appendix 8 (cont.) General EUPT Protocol (9th Ed.)

^{10.1.120.1209.2045.} Statistical methods for use in purficiency testing by interformably comparisons, Interactional Organization for Startistication. Therein a specific rebuck method for detomination of the consents mean and startistic devicion without the need for removal of devicing results is described (Apprilm A in Armes C).

Appendix 8 (cont.) General EUPT Protocol (9th Ed.)

A-63

www.eurl-pesticides.eu

Page 14 of T

¹² Labradory assessment by combined 1: some wates in portiency leafs, experience gained through the EULT for pedicide residues in huits and vegetables. And. Bioanal. Chem. 201(), 307, 3081–3070.

¹¹ Formety named "Sun of squared z source (کَکُرُ)

E - N

N-2

Page 13 of 17

The EUPT-Panel reserves the right to develop and apply alternative classification rules.

vww.eurl-pesticides.

Certificates of participation

Final EUPT-Report

Publication of results

submi

EUR

make suggestions for future improvements.

Feedback

Correction of errors

documenta

www.eurl-pesticides.eu

Appendix 8 (cont.) General EUPT Protocol (9th Ed.)

- The commission of the second contract in the component reservoir of the contract of the second contract of the s

Underperformence rules for the CALs will be established at a later stage.

Dischimer

The EUPT-Parrel retains the right to change any parts of this EUPT – General Protocol based on new scientific or technical information. Any changes will be communicated in due course. Page 17 of 17

www.eurl-pesticides.eu

ŀ	1	2
	DECTER DECTOR	
	•	

Appendix 9 **Specific Protocol of EUPT-SRM15**

Farget Analytes and MRBLs

ijastika Pratoval | BJPT – SUNUS (2024)

(Nations). The MIRIL values will be used to help identify false positive and false negative results and for the calculation of the Test them will contain several pesticides from the EUPT-SEAUS Target Pesticides list. Laboratories should read this ist carfully as it shows how the residues are equated to be reported as well as the Minimum Browieved Exporting Levels escues for false negatives. Welle sare to dominad the latest receive of the CUAT-SINIS Target Restrikes List before tarting with analysis and result reporting.

Shipment of Test Item

Test item is planeed to be slipped on 10 February, 2020.

fet iten vil be pated in themo-knost together with freet gel pacts and shipped from Germany via DAL Express to the The participating blocztories must make their non arrangements for the receipt of the package. They should inform the Organizers of any public holidaps in their countrykity during the week of the shipment, and must make the necessary participants. Prior to shipment a reminder will be sent to the participating laboratories by e-mail. arrangements to receive the shipment, even if the bluratory is closed.

Where complications during customs themane on Shipmert are expected, the participating laboratories should provide the Organizes in advance with suitable contact information [e.g. mubile plume numbers of laboratory personnel] as well as instructions in local language explaining the need to locay the package in the freezer in case of delays during shipment

After the packages is picked up and stored in the UHE definery system, each participant will be informed by GHL about or outom dearwar. This information will be attached to the partage.

the <u>trating number of his periogs</u>. The policiparits can <u>follow the definery sints</u> of their own periogra make and offs to receive the def CHARLES CONTRACTOR is use of <u>mused delets</u> in the column or within the recipient's country, t<u>he participants theorehers</u> are strengh economical to contact the local DHL Express office and/or the contours in order to help accelerate the chearance and deferry process

nstructions on handling the Test Item

Christering the Test Rem should be stored deeply frozen (at -1.6°C or Inver) until analysis in order to avoid any possible deterioration(spalage of the sumple material and to minimize analyte bases

Sefore analytical portions are taken for analyzity the Test item should be a lead thoroughly in its entirety.

plementing them. In this case the funded experience and the non-inclusion of the analytes in the motive scope should be Lateraturies may also employ methods not yet implemented routinely, for example, if they are in the test-phase of im eesded using their routine standard operating procedures for extraction, clean-ap ud aniques for increases a vel a their own reference standards for identification and quartification puposes indicated in the RUPT-STATIS result submission webtool. Participating laboratories are record

fie komgeneity tests wil be conducted using 5 g for both QuEDEBS and QuEPe amenable peokizies. As sub-sampling aribility increases with decreasing analytical portion size, sufficient homogeneity can be guaranteed only for sample

dittoccu, enait success grounder of de 21 Network Informating for 55 gla Bachine Martania (2001-500) Druk Sentyut, Sentimetri 3(2, 12-2026 Fermion) (vetebra vine anti-

Page 17

۱_	67	
-+	07	

ŀ

SPECINC PROTOCOL

on Pesticides requiring Single Residue Methods for the 15th EU Proficiency Test (update on 17 March 2020) EUPT - SRM15 (2020)

Introduction

this protocol is complementary to the valid version of the "General Protocol for BU Proficiency Tests for Peoficiel Resi ins in Rod and Red, 64.9° consing all BUPIS in 2020.

the BUFT-SOMIS is organized by the BU Reference Laboratory for pesticides requiring Single Residue Methods (EURL-1001) that is accordined according to USO 17043 as a provider of proficiency tests (please see FURE-SMM accordination).

025/2017 and Art. 28 of Reg. (EC) 346/2005. The most important documents related to this PT can be accessed via the the ELFT-Statts deals with the analysis of Statepesticides in rice flow and is to be performed by all National Reference aboratnics for Single Residue Methods (NRU-SANK) as well as by all official EU laboratories (Ofts) performing pesticide reiche analyses of cereats or freeding stuff within the frame of National and EU official controls, see Art 38 (b) of Nag. (FC) CALL STREET, LANS

preset PT, based on information within the GURL DataPool. HUL-SRMs and Olls performing pesticide residue analyses of aboratories were cheefied into three that are textatively obliged and those tentatively non-obliged to participate in the coreals or feeding stuff, within the frame of National and AU official controls, were considented as being obliged to participate. Prior to classification the laboratories were asked to update this information. This tentative classification was only seed on the commodity surpe (not the pesticide scope) of the laboratories and was also visible to the participants during the FT registration process. Ofte fisted as "tabliged to participate in the EUFT-SUM15" but not interdang to participate had to state their reasons for non-participation during the unline registration of the EUFT-SOMAS. The registration period asted from 25 November till 23 December, 2019. The feedback received during registration, especially details considering he supe, will be considered in the final fist of obliged laturaturies.

lest item

the Test tree of this EUPT is <u>Nice Hoer</u>

Articipants will receive one bottle Test taxe containing 150 – 200 g rive flowr with incorrect and spiked analytes from the larget Perficides List. And Blank material will be sent to the participants for this FT. Listing randomly chosen bottles, the Organizers will check the Test from for sufficient humogeneity and for the stability of he pesticides contained over the period of the exercise.

deveu, E-Mait Build-904 (frontes lovide 21 Network Laboratory for Smith Notionis (2011-504) woth: 3/2, 12-74735 Followshi | Woth CVM Statiget, Scheller

10100

geotic Protocol BJFT - 50005 (2029)	Supervise Protocol ELIT - SUPERS (PREM)
se sualer sande parioes are en-	
arreptable	Among others, the following fields will be available for reporting the quantitative results.
be submitted via the R.F.S.S.A.S.	 "Concentration in mg/tg": the numerical proticide concentrations that would be reported in nutrine work. Re- sults should not be reported where a pesticide was not detected, or was detected below the R. (Reporting Link) of the laboratory or the MBRL. Results reported as "< NL" or "< #3 mg/tg" will be judged as "Tales negatives".
be complete by 19 February.	The residue levels of the pesticidis must be reported in ng/kg using the following significant figures:
10 March.	 Levels 40.00 mg/kg to be expressed to 3 significant figures, e.g. 0.156, 103 mg/kg Levels 2.0.014 mg/kg to be expressed to 3 significant figures, e.g. 0.156, 103 mg/kg
results: accessible from 1 April till 9	Recovery-corrected results should be reported only where this reflects the lab's actual (or projected in case of
o the participants in due time. The	new anayors) mutue procedure; whereas the war-resourcy-corrected tradit should be reported. Where a re- sult was control for resourcy, the approach(e) followed to achieve this correction (e.g. standard additions to sample purious; purcedural traffordiun, recovery factor, use of ELS) must be reported in the respective fields.
	- "Come in black in mg/kg": concentration values of any pesicides from the ELET-SOURS Target Residings List determined in the damk Material (seen at levels before the MANL)
ersonal <u>logia credentiak</u> (ezer name ramai login credentiak wil be pro-	. "Esperières with this compound". Use the dopdom-meau to indicate how mony years you have been analys- ing for the concorned compound, using the method applied in this EUPT.
foloning the first acres to AUT-	- Reporting Information on Arabytical Methodology
	Cn the page of "table methods" of Eury-20015 reach submission method the participating laboratories must provide Information on the analytical method(s) applied to perticibes, which were analyzed and detected in the Test Rom.
the organizer via the CULT-Statts nut, and any other comments con-	The puricipating laboratories are urged to theroughly 18-in all nequested information. I <u>f online in resulted fields are</u> <u>release</u> , you cannot submit your results.
r does not respond by this deadline, one that completing the sample re- the website areas in which results	For detailed information on the columns can the page of "Edit methods" please refer to the publiche for results submit- sion, that will be distributed to all participants in the time, and that can also be download from the support has on the actions.
ندامه البوانية بلغ و سط	- Submission of results
te shipping company to lacing the	Cours you have externed all your results and checked their connectners, you have to salamit them by diriving Trinal sub-
	mission" leature that can be found at the bottom of each page. This has to be done before the submission dealline, afterwards, you will NOT be able to charge your data anywors. Without "final submission" your reads and method
	information will not be included in the evaluation!
reistand	
e website will not be accessible after	- Additional Information

protions equal to or bigger thus the portion size used in the homogeneity test. Where smaller sample port ployed, there will be uncertainty as to whether the portion 40-portion variability is still accordable

Results submission webtool

Sample receipt actnonheigement, analytical results and method information are to be submitted via the result submission melotool:

- Sample receipt acknowledgement: accessible from 10 February and should be complete by 19 Feb •
- Analytical results and method information: accessible from 10 February till 10 March.
- The deadline for result submission is 31 March, 11.30 pm (CEST), 2020.
- Additional information on the methods used for tentatively false negative results: accessible fron April, 2020.

A guiddine for the new ELAT-SEACE result submission webbout will be provided to the participants in d participants are urged to read it carefully before submitting their results.

login credentials and lab code

to acres the RUPF statts react scheizion webuol, participants must use their personal <mark>lagin cretent</mark>s and permond). The first to the RRFF-30005 must submission webbook and the personal login credential rided to the PT-contact persons on the day of sample shipm the labs <u>unique hat code for the EUPT-SOULS</u> will be provided to the participants following the first ac And an other distance of the local distance STATE TELE STATE

Admostedgement of package receipt and acceptance of PT-materials

ssion webbook the date of receipt, whether the material is accepted or not, and any other co the Organizers will assume that Test Barn has been received and accepted. Please note that completing th Chree the indonetory has received the partiage with the PT material, it must report to the organizer via the coming the test material. This task should be finalized by 19 February. If a laboratory does not respond by ' cept and acceptance actnowledgement information is a pre-requisite for accessing the website areas in and method information is submitted. result subAny participants not having received the Next Norms by the Fri. 14 February at more must inform the Organizar vi jam sangeousketde) by Ri. 34 Réhuary 238 pe. The Organise will coset the slipping company t pariage and decide on facther actions including new shipment, if measury,

Reporting qualitative and quantitative results

Al reads and its reported on this actuits by <u>31 March, 11.30 pa (1231), 2020.</u> The website will not be an To report their results, interstories must access the RUPT-sparts nearly selection verbinal.

this deadline, and all results submitted afterwards will not be accepted.

before entering the results, phase study the Euri-Sanuts Target Pesticides List carefully, in particular the residue definitions that apply to the RUPT, which may not be given in full on the result submission website

sitioset, entrit sustantifores into 21) Befannen bekenterg for Single Berline Methods (2018-2014) Data seriger, som medar sjär (25-2025 (26-2025)) variation varianter at f

Constant of the

Page 4 m 7

If the laboratory has obtained testatively false regative result(s), it will be added to enter the method information for the

analytes(s) in question after the results submission period is closed.

Appendix 9 (cont.) Specific Protocol of EUPT-SRM15

A-69

SPECIFIC PROTOCOL

Appendix 9 (cont.) Specific Protocol of EUPT-SRM15

Contact information	
EV Beformer Laboratory for Single Chemisches und Veterinäruntersur Scheftamistr. 3/2,	e ensidere versionals (forent - sues) Average et Stattigati
there is a second s	
(January)	
e-nait B.B.ISIM @Owize limit de	
Fac: +49 3426 1124	
णहजयंगद्र Goup at the EURL-SU	(unitaria)
Michelangelo Anastassiodes	ptune: ++e attraction
Pat Schreiter	phrase: +49 3426 1029
Hubert Zipper	phrase: +49 3426 1141
Auja Barth	pirme: +49 3426 1835
Goerna Cerchia	ptrace: +459 34235 1114
Advisory Group	
Amadeo Ferrándia-Alta	ELAL-PV, University of Almeria (LAU), ES
Miguel Gamún	ELRU-FV, Latoratorio Agoalimentario Generalizat Valenciana (LAGV), ES
Mette Erecius Poulsen	ELAL-CF, National Fund Institute (UTU), Søburg, DK
Raff Lippold	ELRI-AD, CALA Reiharg, DE
Magnus Jezussek	Bacarian Health and Fond Safety Authority (LGL), Erlangen, DE
André de Kuk	Wageringen Food Safety Research (WTSR), Wageringen, ML
Sonja Massatter	Austrian Agency for Health and Fond Safety (AGES), Innetwork, AT
Finbert O'Negen	Pesicide (sector) (PC); Dept. of Agriculture, Food and the Narine (SAFA) #
Tuğa Piktröm	Swedish Mational Fond Agmoy (96:A-Livsmerictsverbet), Uppeda, 95
Camelo Rodriguez	للمنفحعكم فالمعرفة والمعرفة والمعرفة والمعرفة والمستعمل وال
Quality Control Group	
Autonin Vahende	University of Almeria (UAL), ES
Paula Medina	Burgeen Foud Safety Authority (EFSA), IT

Appendix 10 Calendar and Target Pesticides List of EUPT-SRM15

CALENDAR for the EUPT - SRM15

RICE

(Tentative, Released on 17/03/2020)

Activity	Who?	Dates
Opening of the EUPT-SRM15 Website with links to all relevant documents	EURL-SRM	28 Oct 2019
Period for Registration and for Explanations for Non-Participating (via "EUPT-Registration Website") (Obliged Labs MUST enter this Website and either register OR give explanations for non-participation)	All laboratories interested in participation and <u>all</u> <u>obliged labs even if not</u> <u>interested</u>	25 Nov – 23 Dec 2020
Dispatch of: • EUPT-SRM15-Specific Protocol • Links to EUPT-SRM15 Result Submission Webtool • Personal login credentials	EURL-SRM	~ 27 Jan 2020
Preparation of EUPT-SRM15-Test Item (Preliminary tests: Spiking, Homogenization, Stability)	EURL-SRM	Dec 2019 – Feb 2020
Homogeneity Tests	EURL-SRM	Jan – Feb 2020
Stability Tests	EURL-SRM	Jan – Mar 2020
Shipment of EUPT-SRM15 Test Item (+reminder of upcoming parcel arrival)	EURL-SRM	10 Feb 2020
Period for Confirming Sample Receipt and Acceptance (via "EUPT-SRM15 Result Submission Webtool")	Participating Labs	From 10 Feb 2020
Period for Submission of Results (Pesticide scope, Results, Method Info) (via "EUPT-SRM15 Result Submission Webtool")	Participating Labs	10 Feb - 31 Mar 2020
Period for Submission of Additional/Missing Information (e.g. Method info on tentatively false negative results via "EUPT-SRM15 Result Submission Webbool")	Participating Labs	1 Apr – 9 Apr 2020
Dispatch of Preliminary Report (only compilation of results and preliminary assigned values)	EURL-SRM	~ 04 May2020
Survey to collect reasons for underperformance and missing information on methods	EURL-SRM / Participating Labs	May 2020
EUPT Evaluation Meeting	EUPT-SC, DG-SANTE	Jun 2020
Dispatch of Final Report	EURL-SRM	Dec 2020

Please note that the dates mentioned above may be subject to minur changes. In case of major changes the participants will be informed via e-mail. But please, still duck periodically our variable for purcible updates in case the estail does not get through to you. Contact: carl-sm@conec.loct.de

The CUPT-SHALTCOM

EU Belevence Laboratory Requiring Single Besidee Methods (EURL-SUM) CMUA Statiguet, Sciwfordstr. 3/2, DE-2029B Feilunch, Servnory Website: www.ceurl-pesticides.co., E-Mait EURL-SUM(Revous.two.two.tw

Page 1of 1

Appendix 10 (cont.) Calendar and Target Pesticides List of EUPT-SRM15

for the EUPT-SRM15 2020, Rice (update on 07.02.2020)

MANDATORY AN	ALYTES		
Analytes Name	Residue definition for the PT and additional remarks	MACP/WD	MRRL (mg/kg)
2,4-D	free acid	MACP	0.01
Carbofuran sum	sum of carbofuran, carbosulfan, benfuracarb and furathiocarb ex- pressed as carbofuran	MACP	0.01
Chlormequat	expressed as chlormequat chloride	MACP + WD	0.01
Ethephon		MACP	0.01
Fluazifop	free acid	MACP	0.01
Glufosinate		MACP	0.03
Glyphosate		MACP + WD	0.03
Haloxyfop	free acid	MACP	0.01
Mepiquat	expressed as mepiquat chloride	MACP + WD	0.01
MPP	glufosinate metabolite (=3-(Methylphosphinico)propionic acid, CAS Number 15090-23-0, commonly known as MPPA)	MACP	0.03
N-Acetyl-glufosinate		MACP	0.03
TFNA		MACP	0.01
TFNG		MACP	0.01
OPTIONAL ANALY	TES		
or monitie ranker			MRRI
Analytes Name	Residue definition for the PT and additional remarks	MACP/WD	(mg/kg)
2,4-D sum	sum of free acid, esters and conjugates analyzed as free acid following hydrolysis, expressed as 2,4-D	MACP	0.01
AMPA	glyphosate metabolite	WD*	0.03
Bentazone			0.01
Diquat	expressed as dication	WD	0.02
Fluazifop sum	sum of free acid, esters and conjugates analyzed as free acid following hydrolysis, expressed as fluazifop	MACP	0.01
Haloxyfop sum	sum of free acid, esters and conjugates analyzed as free acid following hydrolysis, expressed as haloxyfop	MACP	0.01
Imazethapyr	free acid		0.01
MCPA	free acid	WD	0.01
MCPA sum	sum of free acid, esters and conjugates analyzed as free acid following hydrolysis, expressed as MCPA – (deviates from legal RD, which in- cludes MCPB)	WD	0.01
MCPB	free acid	WD	0.01
MCPB sum	sum of free acid esters and conjugates analyzed as free acid following hydrolysis, expressed as MCPB – (<i>deviates from legal RD</i> , which includes MCPA)	WD	0.01
Mecoprop "sum"	sum of free acid, esters and conjugates analyzed as free acid following hydrolysis, expressed as mecoprop – (deviates from legal RD which does only include the free acid)		0.01

EU Reference Laboratory Requiring Single Residue Methods (SAM-SMM) CVA-Statum Constants, L/2, DE-VOID Palleds, Corners

Appendix 10 (cont.) Calendar and Target Pesticides List of EUPT-SRM15

OPTIONAL ANALY	TES (cont.)		
Analytes Name	Residue definition for the PT and additional remarks	MACP/WD	MRRL (mg/kg)
Mecoprop	free acid		0.01
N-Acetyl-glyphosate		WD*	0.03
Paraquat	expressed as dication	WD	0.02
Quizalofop	free acid	WD	0.01
Quizalofop sum	sum of free acid, esters and conjugates analyzed as free acid following hydrolysis expressed as quizalofop	WD*	0.01

"Televe noise definition NAC2-Rep: RBFULATOR (\$4) 3838/383 of 25 March 3625 NG2-RC: Notices downed on packater to be considered for bokuston in the national embed program nations in and on Road of plant and animal origin; SMRCS/L2745/3823; 33-87 Romming 33()(non. 16(3) num complexity with metalman residue levels of positivity

Note: This document may be subject to minor changes. In case of significant changes the organizers will send e-waits. In any case pieze check our vehicle periodically to make sure you are using the latest available version.

For any further clarification don't besitate to contact us under contact-southous look de

The EUPT-SHIELS Organising Team

EU Reference Laboratory for Single Residue Methods (EURL-SRM) CVUA Statigart, Schaffendetr. 3/2, DE-70736 Felbech

For more detailed information places refer to the EUFT-SRMID Armourcement (presides rufible or forexystem/EUFT-SRMID. Announcement gall).	m Auftrag von Best regards, ke>	RMIS on the for pesticides	i 23 December, F.Stati 15 Result	keg. (EC) stuff within the of Reg. (EC)	: the reasons for and on the	pattr; al in contracts of	<u>Aboon suit</u> <u>firides tier, ther</u> <u>ww.suit</u> Laberthern	g tablecatury in the call the
Schreiter, Pat (CVUA-S)	Von: Schreiter, Pat (CVUA-5) < Pat.Schreiter@cvuas.bwl.de: CVUA-5 EURI-SRM Pat.Schreiter@cvuas.bwl.de: CVUA-5 EVIA-5 Dienstage 29. Oktober 2019 Dienstage 20. Oktober 2019 CVUA-5 EURI-SRM Pesticides Aue EUPI-SRM Pesticides Bedreft: EUPI-SRMIS (Rice): Amouncement and Invitation	Dear Colleagues, We herewith cordially invite you to participate in the upcoming European Proficiency Test EUP analysis of pesticiptes requiring Single Residue Methods organised by the EU Reference Laborato requiring Single Residue Methods (EURI, SRM).	 Test lears. Rize containing probably both incurred and spaced compounds. Registration: wantie "<u>BUPT-Recisionition Website</u>" (not yet active!) from 25 November 2013. Planned day of stripment of Test Material. 27 January, 2020. Planned day of stripment of Test Material. 27 January, 2020. Ediminiziona Website¹. 	Paticipation rules: The following bits are considered obligged to participate in the EUPT-SRMITS: • all NRUs for pesticides requiring Single Residue Methods (NRU-SRMIL), see Art. 1101 (1)[a] e EXY/1017 . • all Official Laboratories (Offs) performing pesticide residue analyses of cereads and feedi frame of National and EU official controls, see Art.38 (b) of Reg. (EC) 505/2007/and Art. 346/2005.	Okliged take that do not interul to participate in this test are expected by DG-SANTE to stand non-participation. These reasons should be reported on the "B.P.F.Horistration Websits". The following taks are velopme to register for the EUFT-SUM15 (participation will, however, de	availability of FT. Material): any other Offic from EU countries that are not covered by the above obligations to part behavatories analysing official organic surgets within the frame of flog, 889/2008/EC, MHL and Offic from EU-conditions currenties and FTA countries. I Jahoratories from Third Countries (countries curside EU) as long as they are invo products destined for export to the EU.	All scheduled activities and deadines of this PT can be found on the <u>EUPT-SUMUS Calendar (int</u> pesticides <i>aut</i> /interry/decs/struc/EUPT-SUMUS Calendar pull) The first of analytes potentially contained in the Test Nem is shown in the EUPT-SUMUS Target P will be publicated on 2 Montained in the Test Nem is shown in the EUPT-SUMUS Target P All be publicated on 2 Montained by the updated onto the <u>EUPT-SUMUS Website</u> (http:// pesticides.nu/docs/indeit-frinch.active.sec/OntD-113881.aktD-2008Lang-EUPT-SUMUS (http:// pesticides.nu/docs/indeit-frinch.active.sec/OntD-113881.aktD-2008Lang-EUP and the <u>OUCC</u>	A general fee of 200 € (350 € for the labs from 3rd countries) will be charged to teach participat EUPT-SUMIS to cover the costs of text malerial handing and shipment. Double amount of moti requested via e-mail (address EUPT-SNMA@cowss.limi.de) or on the registration website. In this will be doubled.

Appendix 12 Guide to EUPT-SRM15 Results Submission Webtool

Appendix 12. Guide to EUPT-SRM15 Results Submission Webtool

Appendix 12 (cont.) Guide to EUPT-SRM15 Results Submission Webtool

February. You can, however, access and edit all the entries on "Edit sample receipt" through the PTsubmission page. This should be done ideally shortly after pantel receipt and not later than 19 Completing the "Edit Somple Receipt" window is a precondition for being able to continue the period under "Sample information" (please see neut page, left navigation bar)

Men. 4 Mer 2018 - 171 Serger og News, 121 Mer 2018 - LEGLER 174-50 News, 181 April 2018 - LEGLER 174-50 News, 181 April 2018 - LEGLER 174-50 News, 184 April 2018 - LEGLER 174 - LEGLER 174

Current scope for this PT

Call with

and a second

-

PT-SRM2019: PT-SRM2019

YOUF MID-CODIL 222

C Denne

Guide to EUPT-STM Read's Submission Webtool

Swide to EUPT-STM Read's Submission Webtool

Upon circling on "Sove and Close" you will be guided to the following page in which you can see you want to pass to the organizer in relation to this particular PT. On the right side of the page, you can ind important dates and Supporting information with useful ints. If you scroll further down, you Lab-code, a button for downloading the report, and a test field for any comments that you may vil find a Menu Bar with the following tals: "Scope", "Detected", "Edit results", "Edit methods" "Additional info"

						🛦 Par Screeter 🕴 🖉 Totten SSO (
RM15: Rice							
ur lab-code: 1				Important dates		Bupport	
Devriced report				Mon, 16 Dec 20 Wed, 25 Dec 26	PT sample dispetch 15 Lost day for sample rejection	PT responsible: Michelangelo Anantasiodes	
nple information	Г			Thu, 19 Dec 201 Mon. 30 Dec 201	19 Let day for PT submission 18 Let day for PT submission	EURL contact BURL- SRM@svues.twilde	
Netal comments	Í					Units as wellood user guide	
amments on the PT To any antighter	to different	9				Life to General Protocol Life to Specific Protocol Life to Suppomentary infernation of access	
						Live in Target Pests ion List	
page Descriet	Edition of	5	Gill methods	Me	stu Bar		
current scope	for thi	is PT					
H panoda	Company	Anitysed	Reporting limit	Within routine scope	Resear for not analyzing compaund	Nor analyzed details	
(4-D (free add)	N.		01	Select *	Entert		

Use this button only after you have already entered all your data for this PT After the Final Submission you will <u>NOT</u> be able to change your data any On the bottom of each table you will see the button for Hand submission. and want to submit them for the PT evaluation. more

I hereby accept that the PT data submission will be closed and the submitted data cannot be edited further.

Guide to PUPT-STM Read's Submission Webtool

In case of EUPT-SRMs this table remains accessible and editable during the whole results

Jees

Scope	Detected	Edit res	4	St methods Add	tional info		
Current	scope	for thi	S Pres	yanj Francelog	MERKI INGEN SOOR	раловиоз Вискраи ули основащ	Molt analyzed detw
2,4-D ()hee ad	9	ş		10.0	3	Salact	
						The field is wested	
Browspie		ş.	N	u 1	2	later	- 30
Webcath		8	5	1.0	1	Lack of recessing mitrametation	

h this table please firstly select the analytes you have targeted within the EUFT-SRM15 and enter pour Reporting Limit (RL) of each. You can use the function "select/deselect of" to make a quick change for all analytes.

The MEVOLs were set as default reporting limits. For each pesticide within your FT Scope please change the Reporting Limit to that of your laboratory. Please also state for each analyte whether it is "within yow noutine scope" or not. This information is mandatory for all compounds on the Target Pesticides List regardless of whether they were targeted within this PT or not. In case that a compound is within your nonline scope but shipped in the PT, please state the "fleason for not analyzing compound within your scope".

Even if your laboratory diseart analyse for certain compounds routinely, you are encouraged to use his PT as a starting point for assessing your methods or for expanding your scope.

Detected

This page will list only analytes that were selected as "analyses" under "Songe". Please mark the analytes that you have detected in the Text Item. These selections will be used as filters for the suitsequent "Edit results" table.

Additional			5	5			
Edit methods	spunodu	Detected	-			-	_
Edit results	stected cor						
Detected	se the de				(pre-stat)		
Scope	Choos	Marte	Borroup	andthour	Todayy	Dicentes	Ethephon

Appendix 12 (cont.) Guide to EUPT-SRM15 Results Submission Webtool

idit results

Click on the "Edit results" tab to enter the table where you can enter the quantitative results of the detected pesticides. You will only see the pesticides that are marked on the "Detected" table. Use the scrol bar to reach other parts of the table.

NOTE The system will automatically save your inputs when moving from one new to another.

ints		er recovery-corrected result, if this reflects your normal procedure). Please enter or 0.201 but not 0.201 mg/kg.	rue to the react row interestion usual results and mathematican will NCCE he
Edit methods		anely report them ().e al mark and no units.	and automotion in whe
Edit results	lits	s as you would rout rai points as decim	th nonmonited is a se-
Detected	test resu	nter your results bers with decim	and chains for anot
Scope	Enter	hease et	The entire

rire entrope againty each computed is sared automatically when you more to the next on il moves, your results and menop internation with <u>nucl</u> de walkaled utility ou stability our data. To submit the complete PT, ascept the check box below and click the button Final submission before the deadline. Fields marked with astrisk (") are mandatory.

Name	Concentration (mg/kg)	Concentration blank (mg/kg)	Expanded measurement uncertainty (%)	Rec. Com. By factor?	
Bromozynii	0,123		10	92	
diyphosete	1.23		30	Yes (indicate recovery	

Further information about the "Exit test results" table is summarized below

Field(s)	Unit	Explanation
Concentration	a da	Concentration in Test from [mandatory if marked as detected];
(=Concentration in Test Beet)		Syntax "0.345"; use points for decimal separation. Only numerical values are to be reported here. An entry such as
		"Vill" may be judged as a "fairs Megatine" result if the compound is present in the Test them and 13 MiGRL or the assigned value.
Concentration Island:	avam	Descrivated, since there is no SUM15 blank material sent to the participants.
Equated measurement	×	Please indicate the % expanded measurement uncertainty value
vertaid y		(Syntax "123") that you would report for the specific compound- matrix combination (e.g. in case of an MRU-Violation)
Res. Con. by Extur?		Please indicate "yes" only if the result reported was corrected
		using a RECOVERY FACTOR. Other means of recovery based correction are meaned by other mustices:
tterwery rate %	X	(Near) recovery rate used to derive the recovery corrected
		result that was reported for the Test Bom (in %), Syntas "123"
		Prese cause among the gropoore-optimes to not ale now the recovery rate used for recovery correction was obtained
terwery individuals		"No. of replicate experiments conducted to obtain the narrway
		rate/factor used for the correction of results"
terovery details		Please give brief details how the reported recovery rate was
		obtained; indicate the matrix used if not matching, the spiked
		compared, the spiting level/range
Comments		Comments on the analysis of the selected analyte

Edit method

(lick on the "Edit methods" tab to start reporting the method information.

Suide to BAT-STM Reads Submission Webtool

NOTE the system will automatically save your inputs when maxing from one row to another.

Edit methods
Edit results
Detected
Scope

Entier test meithu Passe enter metodintorn Vou are still ader to of the The entered stal by econysis fields. The submit the conysis Fields method with astitisk (DdS color for the analytes, it is po color for the analytes, it is po contracted to several automate of it's everythe check box's.	cestice to capy the still a. cally when you move 1 valley and click the bu	ady entern o the rest r	ed intornation fram one en con. Howwer, your results solvrisions before the	alys to another by using the B and matrixed midmentation vali (K	icon in the 'Nerne' colu (I. be eveluated until yo	und guope n
4 mill	But method-	Raf mutbed modifie		Alle databa	Repetieves with this component.	Witness addition -	Without a definition
Browsynd / (i)	Fatient	2 of per	•	4	-	Soland	•
Giphosete / Ii	Select	Scient	•		Seert	Select	•
Use the scroll b	arta reach oth	er parts of t	te tat	ġ			

Use the edit function / to get an overview of all method information fields of a selected periode. You can get short description about the columns via mouse-over mesages. However, there is no mouse-over information on the edit view.

Ver capy function 👔 to copy the information from one periodie to another.

The copy function works only if all mandalory fields for the tamplate compound were filled in. Otherwise, the icom of copy function becomes red.

that contract.		Part, method modified *		MPL ON ANY		
1	(10)	Ĩ	-			
Espetance with the component'		These addition -		NAME ADDRESS ADDRESS	, das faceres	
1		1	i e		2	

Further information about the "Edit text methods" table is summarized below.

Field(s)	Unit	Explanation
الدار بمدافط		Choose from the drop-drown fist; if you have used a modified from of the with pits give details under "with thetails"
الأرجانيا بمنكيا		Specify if you have introduced any run-worthy multifications to the selected reference method faire brief details on the multification under "wah, details".
원리추 위에		Describe you method shortly fit is not on the dropdown menu or indicate shortly the multifications introduced to the selected reference method
Boparance with this compound		Experience of your lab with the analysis of this pesticide (with any type of commodity)
water Addition		Please choose "tes" if water or a water-containing solvent mixture was added to the sample to accid entraction.
Water Addition Details		Details on water addition (e.g. amount in nu, step of addition)
Society stor to extraction?		Heace inficite whether your sample was left to god with water or the extraction solvent prior to the extraction step.
Stating Time	Ē	Soudiag time of the sample with water/water containing submit. Croose closest value.

Appendix 12 (cont.) Guide to EUPT-SRM15 Results Submission Webtool
Field(s)	Unit	Explanation
Sample Weight (g)	5	Enter the sample weight used Example: "3".
Extraction/partitioning subset 1		Charse the subset from the drup down meau
Ethation/partitioning subset 2		Charse the suivent from the drup down meau, if you use more than one suivent.
Ethation/peritioning subset 3		Charse the street from the drup down meau, if you use more than two scheets
Ednaction solvent details		Enter details on solvents used in extraction or partitioning steps or if the object is out in the droo down menu
Eduation Time	f	Duration of main Extraction step including any waiting time
teteretian samerek		after addition of solvent (mm) (choose closest value) Alexan sciencifics summark from Alexa dave 54
turawan aparata Batikini saka sad		cense constant approximitation approximitation Charte natificacies calt used from drive from fict
ptt molified		hnikate if you have mudified the pit at any stage of the onnedure (e.e. hubifieries and Arabim)
ott modified details	Γ	processions (the operator of modification streams) Means since details on oth multification streams
Clean up 1	Γ	Choice the dear-up approach employed from the drop-down list
chem mp 2		Chanse the draw up approach employed from the drop down list, if you use more than one clean up shep
clean a 3		Charse the draw up approach employed from drup-down fig. If you use more than two clean up steps
clean spiletaite		Mease give details on chan-up step or describe the way you chan up if it is not fished in the droo down meru
clenical transformation		Mark if your procedure included a chemical transformation e.g. Instruktie Antionization reduction ferances to CCO
Hydrolysis conducted?		Please indicate whether a hydrolysis step was conducted and if
		yes what type of hydrolysis was conducted
Hydrolysis time		Please choose the closest time from dropdown list
Hydrolysis temp.		Please choose the closest temperature from dropdown list
Hydrolysis concentration		Please choose from dropdown list the closest value of the acid / base normality during hydrolysis stee: e.e. if the recipe was 2
		mL of 5N NaOH + 20 mL (Water/ACN 1:1), the Normality would be "0.5N)
clear, transf. details		Messe give details on chemical transformation step(s) combettat
وكالبرأي		Churse the calitration approach used. Ratie Transland mân fân 'an 'Sandon adfinas la sande antinas'
		interaction for scores.
Technique [= Octominiciae Instantion]		Choose the technique used to generate your quantitative result
Octormination Details		ttere you can add any relevant details on Determination Technicus used
uc-Details		eg. column type and mobile phase used
other Apprezius in Con. PT- Insult for Recov.		Startly describe any OTHER APPROACHES employed for correction of results for recovery. Here: Correction for recovery, do 100 and by
		ober samtik genetien. Processikal offension and "Trakenso Adoitens to samte fuktions" an operation ander "tofondion"
Attrix used for calibration		Black commulity used for matrix based, matrix watched or proxedural calibration
Natrix calibration details		Hease when the blank commodity used to prepare the
		calibration solutions and any other details of importance, such as differences between somely extract and calibration solution
		(e.g. in demug, diution etc.)

Appendix 12 (cont.) Guide to EUPT-SRM15 Results Submission Webtool

Guide to EUPT-STUA Read's Solutission Webtool

Field(s)	Unit	Explanation
pass 9		Please choose " <u>We</u> " if no "15" was used or if the 15 was only used for quality control proposes and not for the calculation of
		the target and/to read: Please choose one of the two "Yes" options if the 6 was used for calculation of the readt of the
		target analyte.
2 History 2		Please give details on the IS used
When was is added?		Mark at what stage of the procedure the IS was added
		Plase exter here any general comments concerning the
(- Second Computer on Ambinity)		analysis of the selected concound

Vesse notes

- The fear fields concerning hydrolysis (marked red in the table) are new.
 By mistake there are two fields for chemical transformation: 1) "chemical transformation.
- Hydrotycis conducted" is actually unnecessary, but both fields are mandatory. Contradictory in these two fields should be availed.
 - The red rings or information showing that a field is required are not always updated automatically after entering or saving a data.

Appendix 12 (cont.) Guide to EUPT-SRM15 Results Submission Webtool

	Hydrolysis			Dilution	Calculated	Entries into Data Submission Tool					
Method used (exemplary)	Conditions for cereals in brief	Scope of method	Volumes involved	factor of acid/base	acid/base Strength	"Reference Method (drop down)"	"Method Details"	"Hydrolysis acid/base strength"	"Chemical Transformation Details"		
SHM-53 (int) n. Al-63-Quéchells (p.20); h. Al-63-Quéchells (p.21)	2001, SM MarOH Mirc 120 ain	free acids, oters and conjugates (e.g. *2,40 (acids, cape. acid=0)	+ 3 ml. water + 2 ml. SN NaDH + 10 ml. AGN TUTAL = ~20 ml.	-10	-0.5 H	AHQuEDat IIS—involving alkaline hydrolycia; EUFL method SRI4-43	AH-CII-QuECLERS CIII. AH-FA-QuECHEIS + any other relevant info	0.5 M Jahoing Ayatralysis stepy	"All after to ACH addition + any other relevant info		
RH15622, analytic E (NOTE: In "difficult" commodities (e.g. citrus, pulses, cereals) resistant esters are only partly hydralyzed, applying this approach)	<u>Luul</u> SH NuCH NFC SH min	free acids, exters (partly) and conjugates"	+ 10 ml. water + 1 ml. SN NaDH + 10 ml. ACH TOTAL = *21 ml.	-n	0.24 M	QuECHERS—Cirate Duffered (Cir 15162)	Hadde 15 + any other relevant info	0.25 N Abiring lapticuljstic step)	"AVI ağtar ta ACM məhfilini" 4 əny atlası relevant irlə		
MINDERFERENCESS (NOTE: This method was optimized only for conjugates, not for esters)	<u>0.3 ml</u> . 50 MacOH AT 3 9 -cia	frez azista, esters (partiy) and conjugates*	+ 10 mL water + 300 pL SN KaCHI	-13	6.15 N	Other, please specify under "Idetical details" (unfortunately, no drop- down option for this method was foreacen)	AlleQuECHERS CRI_SIM (2007) + any other relevant info	0.1 H or 0.2 H (unfortunately exactly between two choices) playing lightraljeër step)	"All prior to ACH-adultion" + any other relevant info		
5314023 (Gol); 53144-33 (Gol)	Mi jul. Sili HysiCh, Mi'C MiD anin	Taiaéna Ianif	+ 1 mL QuEDNERS Extract +10 pL SN HySCo	-100	LIS N	Carbofuran (saro): QuECHERS-kased Method involving acidic hydrolysis by EURL-SILM (SRM-23)	any relevant info	0.05 N Jahoing Systembolis Stapy)	any relevant infe		

If you have analysed an acidic pesticide (e.g. 2,4-0) without analytics (wirecity), please report the result and respective method information under "_<u>free acid</u>"

PT overview

I hereby accept that the PT data submission will be closed and the submitted data cannot be edied further.

Guide to EURT-SRM Results Submission Webtool

N-11-1

Important quidance for uniform reporting in case of methods involving hydrolysis;

(e.g. "2,4-D (free acid)").

A-80

Swide to ELAT-STOM Results Submission Webbool

Upon final result submission the following pop-up window confirming successful submission of the

Your data has to be submitted before the deadline on Tue. 17 March 2020, 23:30 h (11:30 p.m.),

/ou will NOT be able to edit your data after the final submission!

CEST.

IMPORTANT:

data will appear on the screen. In parallel, you will receive an email with an attached Excel file, in

which your submitted data is compiled

Submitted successfully

Your results and method information have now been submitted. Thank you for your cooperation

Appendix 12 (cont.) Guide to EUPT-SRM15 Results Submission Webtool

Appendix 12. Guide to EUPT-SRM15 Results Submission Webtool

by clicking on the "Test Overview" button of the pop-up message you will be able to return to the Proficiency test overview page. The status of the PT will now be Submitted: "yes".

Test overview

by clicking on the excel-ion 👔 you can download your submitted data, even fix the exceeded PTs.

esi Overvew	a finite-member page frames an even of the backhow, - denoted is, called it.	and by other second		An other than the second s	(also	· ·
			interve 1	+ course	a transmission to	X
			and some pro-	196361 10020	Carpo - Marco	6-36 - 3

RESULTS SUBMISSION 1001

GUIDE

European Union Reference Laboratory for pesticides requiring Single Residue Methods (EURL—SRM) hosted at Chemisches Veterinäruntersuchungsamt Stuttgart (CVUA Stuttgart)

Schaflandstr. 3/2 70736 Fellbach Germany

Tel: + 49 711 3426 1124 Fax: + 49 711 58 81 76

http://www.srm.eurl-pesticides.eu e-mail: eurl-srm@cvuas.bwl.de