

Our Laboratory - Development

Up to 2001: Regional Lab (4 mio)

Since 2002: Central Lab (10 mio)

From 2006 on: EU-CRL (380 mio)

Mainly Routine Surveillance Work

More Personnel \rightarrow Specialization

- Research
- Strategy Work
- International Activities (EU, CODEX etc.)
- Dissemination of Knowledge

CRL-SRM 1st Joint CRL-Workshop - Stuttgart, 06/12/2006

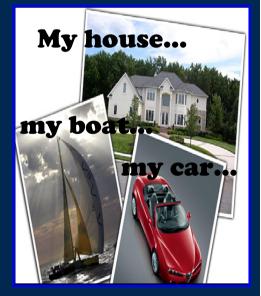
Our Laboratory - Some Numbers...

Entire CVUA:

ca. 240 Employees, ca. 24,000 Samples per Year, Budget: ca. 13 mio. €

Pesticide Residue Section (Food of Plant Origin) :

22 Employees (6 Chemists+16 Technicians), ca. 2500 Samples / Year (mainly fresh produce)


Analytical Instruments

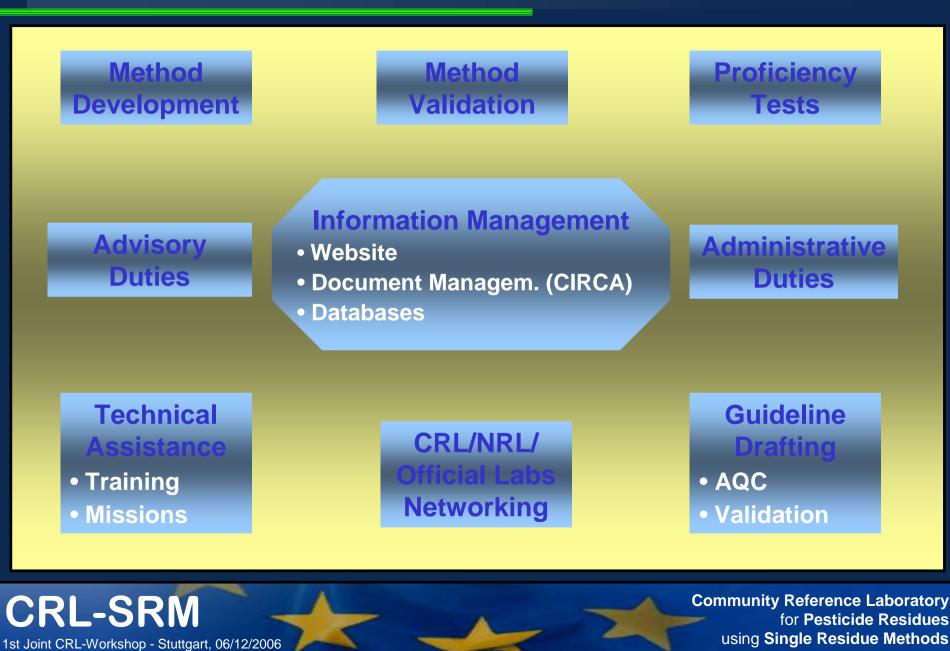
GC: 3 x MSD (EI+CI), 1x MS/MS, 1x ToF-MS, 1x ECD/NPD **LC:** 2 x MS/MS, 2x Qtrap

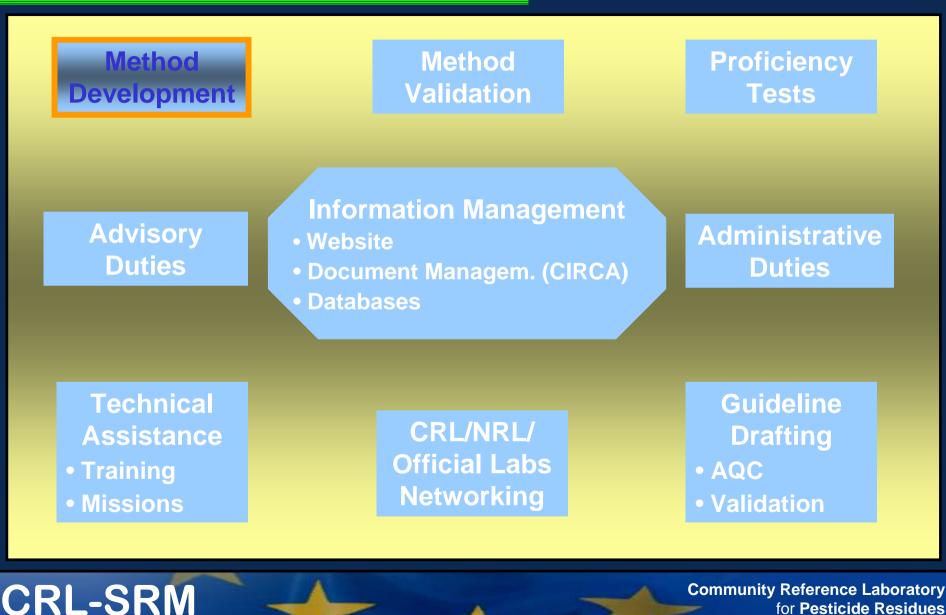
Scope

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

> 500 pesticides and Metab. / Sample using MS-methods

Our Laboratory - Distances...





1st Joint CRL-Workshop - Stuttgart, 06/12/2006

Working Tasks (some of)

Working Tasks

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

for Pesticide Residues using Single Residue Methods

Method Development

Aim: The methods should be:

- Reasonable (concerning pesticides of relevance)
- Technically Easily Adaptable by other Laboratories
- Attractive (cost effective, easy to perform)

Need to Set Priorities:

Taking into account:

- Importance (risk, relevant Pesticides etc.)
- Feasibility (analytical difficulties, limited resources)

Search in Literature Questionnaire Evaluation

Method Development - Polar Pesticides by LC-MS/MS

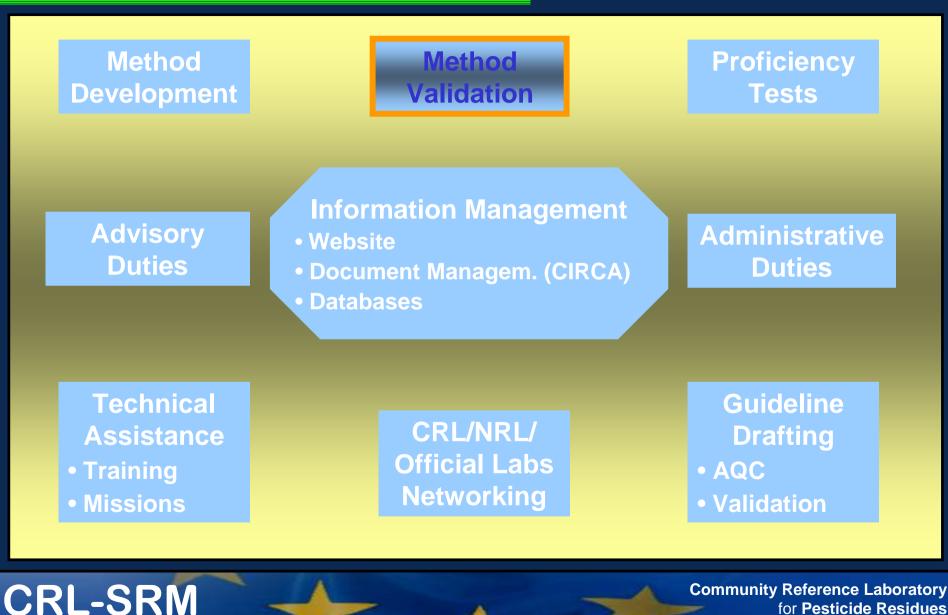
What has been done by now?

First Project:

Polar pesticides by (logKow<-2) LC-MS/MS

- Aim to develop a simple "multiresidue method"
- Literature Research
- MS/MS-Detection
- Chromatographic Separation
- Use of labelled ISTDs (some have to be synthesized)

1st Joint CRL-Workshop - Stuttgart, 06/12/2006


Method Development

Future Plans:

Compound Class	Examples	Pre- examination Period	Decision for Priorities
Polar Compounds	Quats, Glyphosate, certain metabolites,	2006/7- 2006/12	
Dithiocarbamates	Maneb, Propineb	2007/1- 2007/12	2007/12
Volatile compounds	Ethyleneoxide,	2007/1- 2007/12	2007/12
Compounds amenable to Multiresidue Methods after modification	Labile compounds, chromatographically challenging compounds	As required	As required

Working Tasks

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

for Pesticide Residues using Single Residue Methods

Method Validation

What has been done by now?

Interlaboratory Method Validation for Acidic Pesticides:

- Use of Modified QuEChERS-Method or ChemElut Method
- Recovery Experiments
- 32 Analytes

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

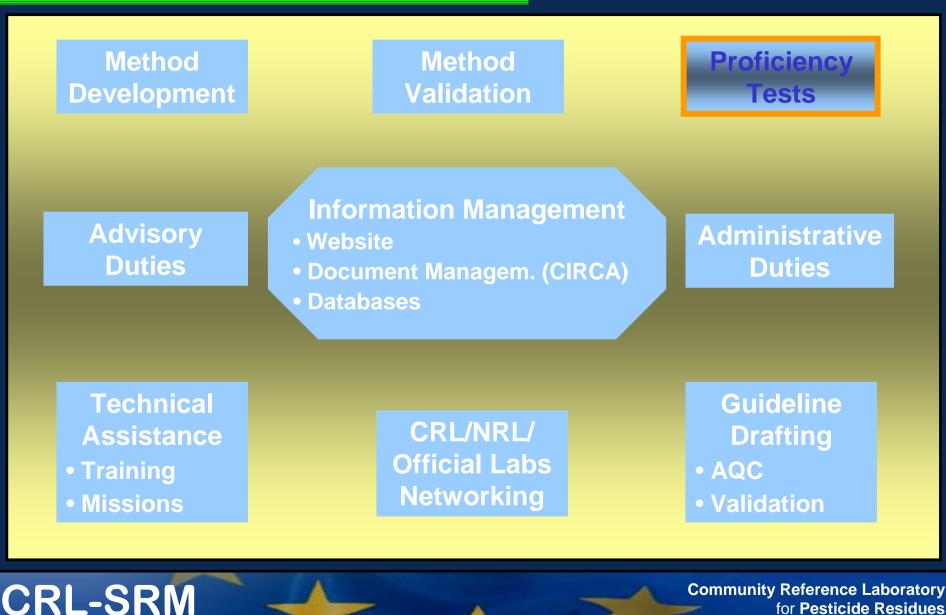
- 2 Levels (0.01 mg/kg and 0.1 mg/kg)
- 4 Repesentative Commodities (Cucumber, Lemon, Raisin, Flour)
- 15 Labs volunteered to Participate
- 6 Labs already submitted Results so far

	Recovery				%RSD					No of Labs each 5 replicates														
Pesticide	Cucumber 0,1	Cucumber 0,01	Lemon 0,1	Lemon 0,01	Flour 0,1	Flour 0,01	Raisins 0,1	Raisins 0,01	Cucumber 0,1	Cucumber 0,01	Lemon 0,1	Lemon 0,01	Flour 0,1	Flour 0,01	Raisins 0,1	Raisins 0,01	Cucumber 0,1	Cucumber 0,01	Lemon 0,1	Lemon 0,01	Flour 0,1	Flour 0,01	Raisins 0,1	Raisins 0,01
2,4,5-T	102%	103%	95%	107%	92%	94%	101%	98%	10%	11%	8%	14%	8%	8%	5%	14%	5	5	6	6	4	4	4	4
2,4-D	103%	106%	93%	106%	91%	108%	100%	97%	11%	14%	9%	4%	13%	17%	2%	3%	5	5	5	4	4	4	4	3
2,4-DB	99%	100%	98%	93%	82%	86%	102%	103%	5%	5%	20%	32%	24%	39%	3%	6%	4	4	3	3	2	3	3	3
4-CPA	98%	94%	99%	105%	92%	97%	95%	99%	9%	20%	11%	12%	9%	22%	7%	6%	5	4	6	5	4	5	4	3
Bentazone	107%	104%	100%	98%	89%	86%	96%	91%	15%	11%	10%	7%	5%	19%	9%	20%	6	4	6	4	4	5	4	2
Bromoxynil	106%	100%	106%	105%	89%	100%	100%	91%	14%	13%	4%	16%	10%	8%	5%	13%	5	5	6	5	4	5	4	3
Clopyralid	62%	73%	73%	76%	61%	57%	53%	49%	57%	6%	26%	0%	21%	47%	10%	20%	3	2	3	2	2	3	3	2
Cycloxydim	86%	73%	97%	463%	152%	142%	97%	99%	21%	31%	11%	136%	55%	37%	12%	5%	5	4	5	3	4	5	4	3
Dicamba	95%	76%	87%	94%	78%	87%	87%	78%	22%	28%	12%	30%	15%	21%	13%	0%	5	3	4	2	2	3	3	2
Dichlorprop	106%	103%	94%	101%	97%	104%	106%	100%	12%	16%	7%	11%	9%	14%	6%	9%	6	5	6	5	4	5	4	3
Fenoprop	103%	98%	99%	99%	100%	97%	100%	99%	3%	9%	7%	10%	7%	10%	4%	6%	6	5	6	5	4	4	4	3
Fenoxaprop-P	106%	99%	106%	108%	97%	105%	104%	101%	10%	10%	6%	6%	5%	10%	8%	7%	5	5	5	4	3	4	3	2
Fluazifop	105%	99%	105%	104%	107%	94%	108%	107%	3%	6%	10%	2%	27%	7%	8%	6%	5	4	6	5	4	3	4	3
Fludioxonil	106%	102%	101%	100%	96%	92%	107%	95%	18%	14%	9%	3%	5%	10%	7%	17%	6	5	6	5	4	5	4	4
Fluroxypyr	105%	109%	96%	101%	94%	100%	99%	104%	14%	23%	14%	11%	4%	11%	9%	17%	4	4	6	4	4	3	4	4
Fomesafen	102%	99%	104%	95%	92%	88%	105%	103%	3%	7%	4%	22%	8%	16%	3%	8%	5	4	5	5	3	4	4	3
Haloxyfop	100%	98%	108%	97%	104%	104%	104%	93%	3%	9%	5%	18%	25%	0%	3%	11%	5	4	6	4	4	2	4	3
Imazapyr	86%	77%	92%	91%	89%	82%	86%	80%	26%	39%	5%	25%	13%	4%	10%	9%	5	4	5	4	3	3	4	3
Imazaquin	88%	91%	97%	98%	99%	92%	99%	97%	31%	14%	7%	7%	19%	18%	5%	4%	6	4	5	5	4	5	4	4
Imazethapyr	97%	91%	96%	90%	98%	97%	96%	91%	8%	11%	5%	11%	7%	11%	5%	7%	6	5	6	6	4	4	4	4
Imazosulfuron	84%	102%	86%	99%	86%	78%	73%	80%	23%	13%	21%	12%	40%	34%	22%	43%	6	4	6	6	4	5	4	4
loxynil	103%	97%	101%	97%	94%	98%	98%	95%	7%	10%	6%	3%	5%	5%	3%	8%	6	5	6	6	4	5	4	4
MCPA	104%	99%	101%	103%	91%	96%	101%	100%	15%	17%	8%	4%	10%	12%	6%	2%	6	5	6	6	4	5	4	4
MCPB	105%	96%	108%	99%	98%	106%	106%	99%	3%	10%	9%	10%	17%	22%	4%	9%	6	4	6	6	4	5	4	3
MCPP	103%	101%	95%	101%	95%	104%	102%	100%	11%	10%	5%	2%	6%	13%	2%	5%	6	5	6	6	4	5	4	4
Metosulam	101%	99%	105%	99%	108%	95%	99%	99%	6%	10%	4%	8%	10%	6%	10%	13%	6	5	6	6	4	5	4	4
Metsulfuron-Methyl	98%	94%	102%	98%	103%	98%	99%	91%	5%	8%	10%	9%	11%	13%	5%	14%	6	5	6	6	3	5	4	4
Naphthoxyacetic acid, 2-	99%	96%	97%	106%	95%	112%	92%	99%	11%	9%	10%	18%	8%	18%	9%	7%	6	4	6	6	4	5	4	4
Picloram	61%	88%	79%	75%	48%	53%	68%	64%	74%	26%	14%	4%	6%	8%	18%	22%	3	2	3	3	2	2	3	2
Quinmerac	82%	82%	88%	95%	81%	96%	83%	78%	36%	37%	8%	29%	14%	19%	19%	9%	5	4	5	4	3	4	4	4
Thifensulfuron-Methyl	98%	98%	101%	102%	106%	111%	98%	95%	4%	10%	10%	8%	10%	14%	5%	13%	6	5	6	6	4	4	4	4
Triclopyr	102%	102%	94%	103%	88%	86%	102%	101%	5%	17%	11%	12%	13%	10%	9%	4%	5	4	5	4	3	2	4	3
AVERAGE	<mark>97%</mark>	<mark>95%</mark>	<mark>97%</mark>	109%	<mark>93%</mark>	<mark>95%</mark>	<mark>96%</mark>	<mark>93%</mark>	<mark>15%</mark>	<mark>15%</mark>	10%	<mark>16%</mark>	<mark>14%</mark>	<mark>16%</mark>	<mark>8%</mark>	<mark>11%</mark>								

CRL-SRM

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

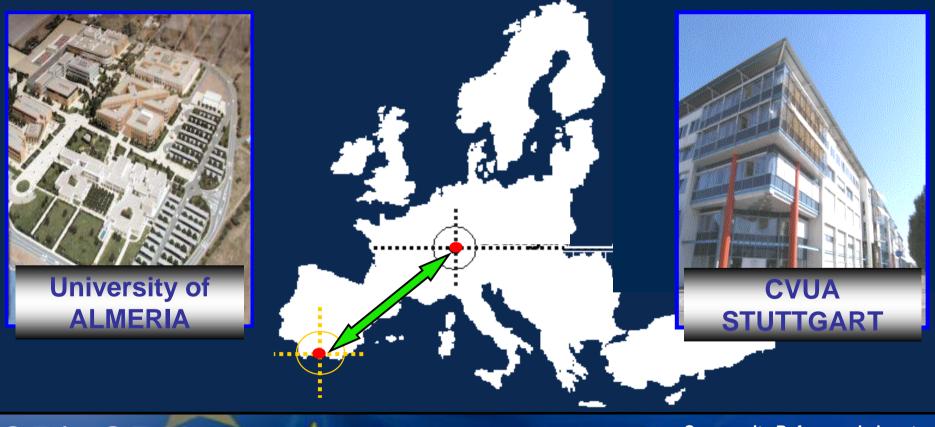
Method Validation


Future Plans:

• Interlaboratory Method Validation for Glyphosat in Cereals in collaboration with CRL for Cereals

 Interlaboratory Method Validation for Polar Compounds in Fruits and Vegetables

Working Tasks


1st Joint CRL-Workshop - Stuttgart, 06/12/2006

for Pesticide Residues using Single Residue Methods

Proficiency Test

EUPT-SRM01

...a nice collaboration between CRL - FV and CRL - SRM

CRL-SRM 1st Joint CRL-Workshop - Stuttgart, 06/12/2006

Proficiency Test

Commodity: Apple Juice

Proficiency Test – List of Potential Pesticides

10 Acidic Pesticides

Pesticide	MRPL (mg/Kg)
2,4-D (2,4-Dichlorophenoxy acetic acid) (free acid)	0.05
Dichloroprop (2,4-DP, 2,4- Dichlorophenoxy propionic acid) (free acid, including Dichlorprop-P)	0.05
2-Naphthoxyacetic acid	0.05#
4-CPA (4-Chlorophenoxy acid)	0.05#
Bentazone (with conjugates of 6-hydroxy-bentazone)	0.1
Dicamba (free acid)	0.05#
Fluazifop (free acid, Fluazifop + Fluazifop-P)	0.05#
MCPA (free acid)	0.05#
Mecoprop (MCPP) (free acid, Mecoprop + Mecoprop-P)	0.05
Quizalofop (free acid, Quizalofop + Quizalofop-P)	0.05#

Not amenable to classical MRMs

CRL-SR

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

- > Require special attention in pH of extraction and cleanup
- Require LC/MS-Analysis or derivatisation

Proficiency Test – List of Potential Pesticides

4 Organotin Pesticides

Pesticide	MRPL (mg/Kg)
Azocyclotin (see Cyhexatin)	0.05
Cyhexatin (Azocyclotin + Cyhexatin, expressed as Cyhexatin)	
Fenbutatin oxide	0.05
Fentin (Fentin hydroxide+ Fentin acetate, expressed as Fentin)	0.05

- > Give low recoveries with traditional MRMs,
- > Require LC/MS or derivatisation

CRL-SRM

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

Proficiency Test – List of Potential Pesticides

Pesticide	MRPL (mg/Kg)
Chlormequat (expressed as Chlormequat cation)	0.05
Mepiquat (expressed as Mepiquat cation)	0.05#

- > Not amenable to traditional MRMs,
- > Require LC/MS and use of isotopically labeled ISTDs
- > Chlormequat is included in the EU-monitoring list

Participation was optional, but...

Labs analyzing <u>chlormequat</u> within the EU co-ordinated monitoring program, were urged to participate at least for this analyte.

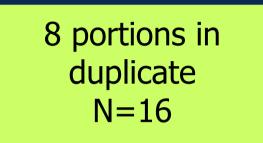
Proficiency Test - Participants

Labs Participating/Reporting

	Parucipau	пулте
	Austria	2/2
	Czech Republic:	2/2
	Denmark:	2/ <u>1</u>
	Finland:	1/1
	France:	2/ <u>1</u>
	Germany:	8/8
	Italy:	1/1
	Latvia:	1/1
	Norway:	1/1
۲	Slovakia:	1/ <u>0</u>
•	Slovenia:	2/2
<u>(8)</u>	Spain:	1/1
	Sweden:	1/1
	United Kingdom:	2/2
	The Netherlands:	1/1
	SUM:	27/24

Community Reference Laboratory for Pesticide Residues using Single Residue Methods

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

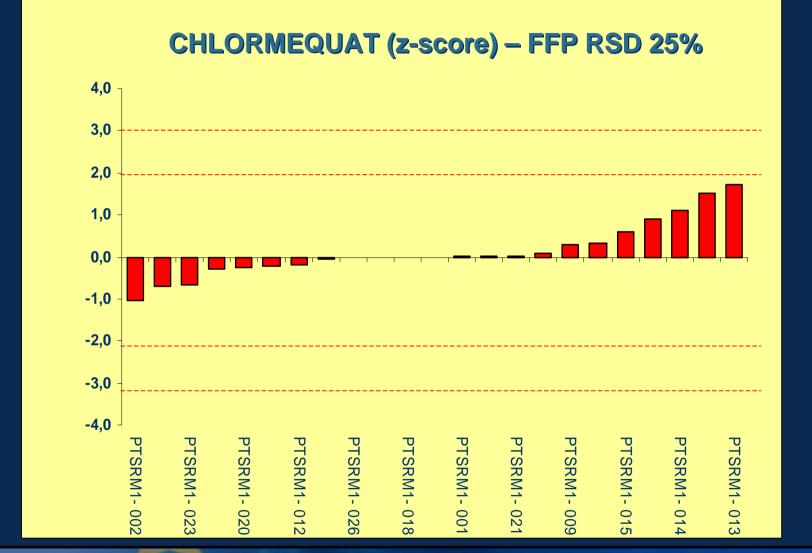

CRL-SRM

Proficiency Test – Homogeneity Test

CRL-SRM

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

Analyte	Mean	% RSD
Chlormequat	0.127 mg/kg	3.3
Fenbutatin Oxide	0.474 mg/kg	1.2
MCPA	0.366 mg/kg	3.2

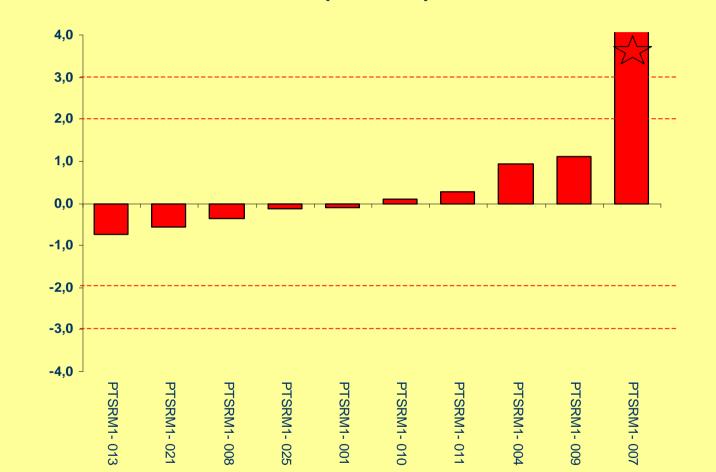

Stability test was also OK !

Proficiency Test- Results

	Lab Code	Chlormequat	z-score	Fenbutatin oxide	z-score	МСРА	z-score
	PTSRM1- 001	0,172	0,0	0,482		0,306	-0,1
	PTSRM1- 002	0,126	-1,1	NA		NA	
	PTSRM1- 004	NA		NA		0,39	1,0
	PTSRM1- 005	0,185	0,3	NA		NA	
	PTSRM1- 006	0,236	1,5	NA		NA	
	PTSRM1- 007	0,210	0,9	NA		0,71	5,0
	PTSRM1- 008	0,158	-0,3	0,464		0,286	-0,4
	PTSRM1- 009	0,183	0,3	0,490		0,402	1,1
Using	PTSRM1- 010	0,172	0,0	NA		0,324	0,1
3	PTSRM1- 011	0,141	-0,7	NA		0,337	0,3
	PTSRM1- 012	0,163	-0,2	NA		NA	
FFP - RSD	PTSRM1- 013	0,189	0,4	0,400		0,257	-0,7
	PTSRM1- 014	0,218	1,1	NA		NA	
of 25%	PTSRM1- 015	0,197	0,6	NA		NA	
012370	PTSRM1- 016	0,174	0,1	NA		NA	
	PTSRM1- 018	0,171	0,0	NA		NA	
	PTSRM1- 019	0,162	-0,2	0,61		NA	
	PTSRM1- 020	0,160	-0,3	NA		NA	
	PTSRM1- 021	0,172	0,0	NA		0,271	-0,6
	PTSRM1- 023	0,142	-0,7	NA		NA	
	PTSRM1- 024	0,131	-0,9	NA		NA	
	PTSRM1- 025	0,171	0,0	NA		0,305	-0,1
	PTSRM1- 026	0,170	0,0	NA		NA	
	PTSRM1- 027	0,132	-0,9	NA		NA	
	Median (labs)	0,171 (23)		0,482 (5)		0,315 (10)	
	Fortif. level	0,156		0,500		0,361	

CRL-SRM 1st Joint CRL-Workshop - Stuttgart, 06/12/2006

Proficiency Test- Results


Community Reference Laboratory for Pesticide Residues using Single Residue Methods

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

CRL-SRM

Proficiency Test- Results

MCPA (z-score) – FFP 25%

Community Reference Laboratory for Pesticide Residues using Single Residue Methods

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

CRL-SR

Proficiency Test- Methods Employed

Analyte Group	Extraction	Measurement	Σ
Acids	6x QuEChERS 3x In-house 1x Dilution	8x LC-MS(/MS) 2x GC-MS (deriv.)	10
O-Tins	3x QuEChERS 1x National 1x Dilution	4x LC-MS/MS 1x GC-FPD (deriv.)	5
Quats	21x MeOH/water 1x Acetone 1x No data	23x LC-MS(/MS) (16x D4-labelled ISTD)	23

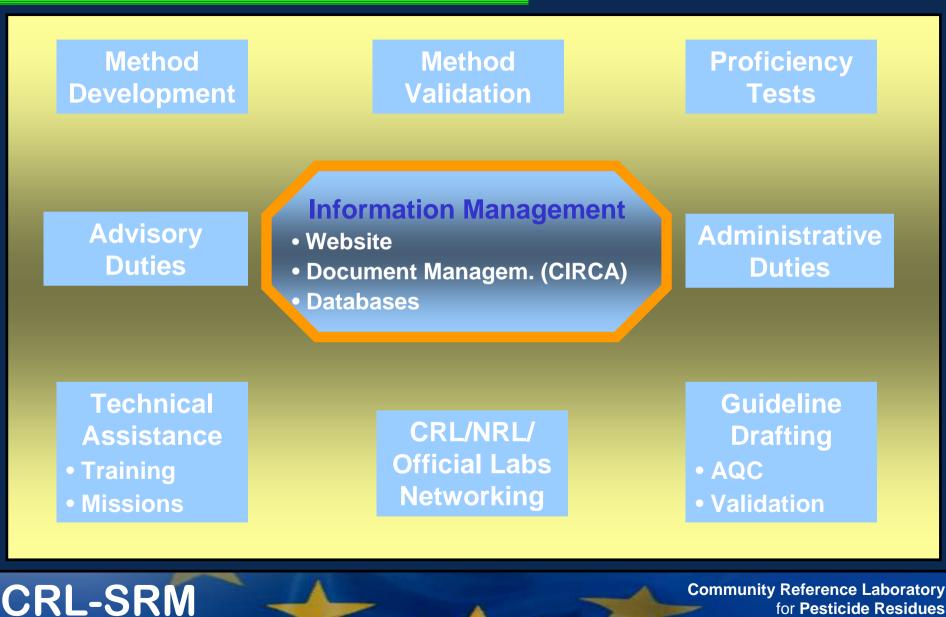
CRL-SRM 1st Joint CRL-Workshop - Stuttgart, 06/12/2006

Proficiency Test - Conclusions

Many labs do not cover important SRM-Analytes

- Existing Methods laborious time-consuming and expensive
- Many Labs lack sophisticated Instrumentation required for simple methodologies

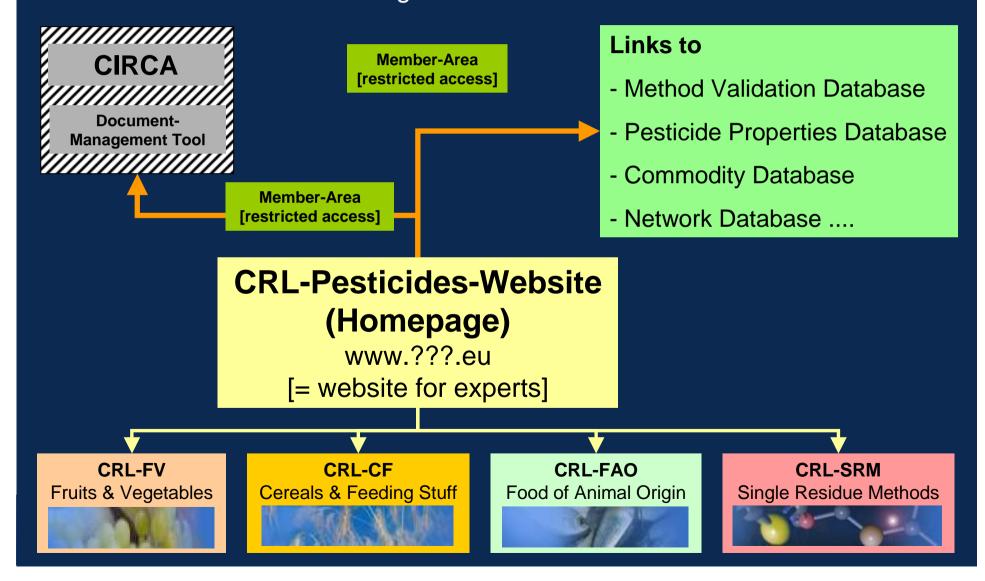
• What should/will be done by CRL?


- Identify Lab shortcomings (Survey)
- Collect information on SRM-Analytes and set priorities
- > Develop simple cheap and thus attractive methods
- Inform labs in advance about analytes to be included in future PTs (i.e. animate labs to establish methods)

Future Plans:

Proficiency Test for Single Residue Analytes in Flour-Matrix in collaboration with CRL for cereals and Feeding Stuff

Working Tasks



1st Joint CRL-Workshop - Stuttgart, 06/12/2006

for Pesticide Residues using Single Residue Methods

Information Management - Overview

Aim: Build an appropriate structure.... for Collection and Exchange of information within the network

Information Management

What has been done by now?

Website:

Base Structure has been programmed (by Stephan Böttcher)
Document Management Tool:

- Closed system based on CIRCA platform
- Contact has been established (we can use platform for free)
- CRL in Freiburg will take over the Administration

Databases:

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

- Database for Method Validation Data (first Version ready)
- Database for Pesticide Properties (in preparation)

Information Management

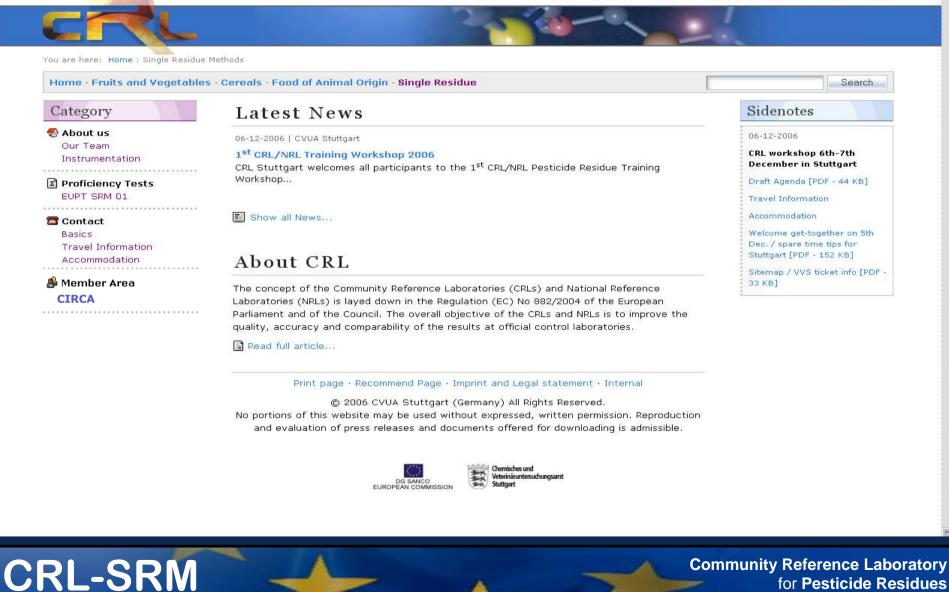
Future Plans:

Website:

- Fill with Information and Links (by Stephan Böttcher)
- Details to be decided in a CRL-Meeting shortly

Document Management Tool (CIRCA Platform):

- Establish Common and CRL-specific Areas
- Colleagues from NRLs and Official Labs will get access


Databases:

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

- Feed Method-Validation and Pesticide-Properties Databases
- Create Commodity-Database
- Create NETWORK Database (Lab-Profiles, Contact Points)

Website

Community Reference Laboratories for Residues of Pesticides

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

for Pesticide Residues using Single Residue Methods

Information Management – Databases

Pesticide Database, Commodity Database

Aims:

- Create a Pool with analytically valuable information
- Exploit synergy potentials in Information Management
- Spend less time in retrieving information
- Facilitate Decision-Making (knowledge Based planning)
 - Define Priorities
 - Targeted Sampling and Analysis
 - Targeted Research
- Allow grouping (profiling) and thus selection of Representative Pesticides and Commodities based on sound information

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

Information Management – Databases

Not only Data collected from Literature... ...but also experimentally generated data where reasonable

Pesticide Database:

- Recovery data with different methods
- Degradation behaviour of pesticides
- Behaviour in Analysis (partitioning, cleanup, Chr/phy)

Commodity Database:

- Amount of co-extracted components
- Behaviour in cleanup
- Matrix Effects

Need for simple Standardized Testing Schemes

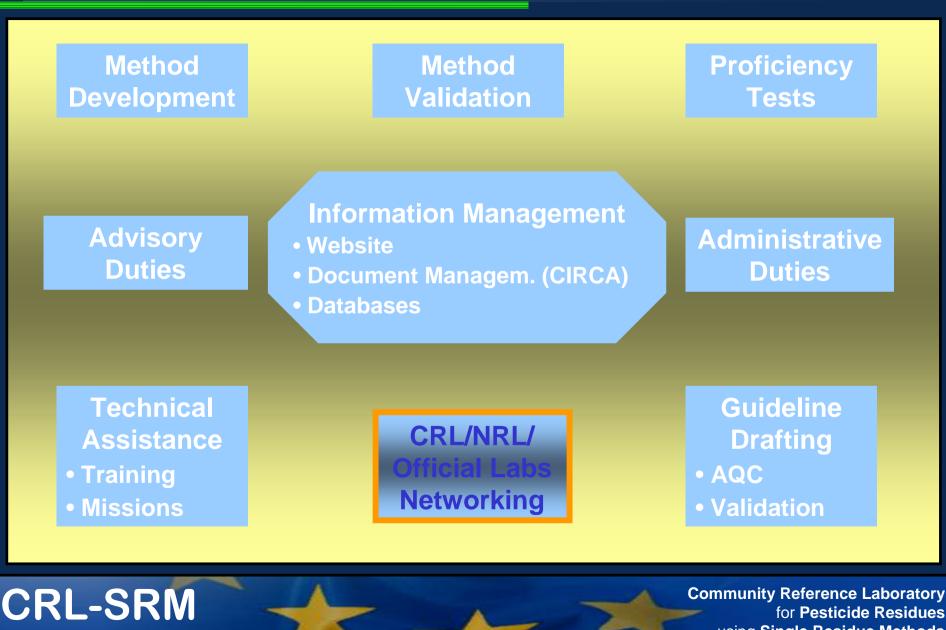
so that experimental data can be generated by various labs

Information Management – Databases

In addition: Network Database

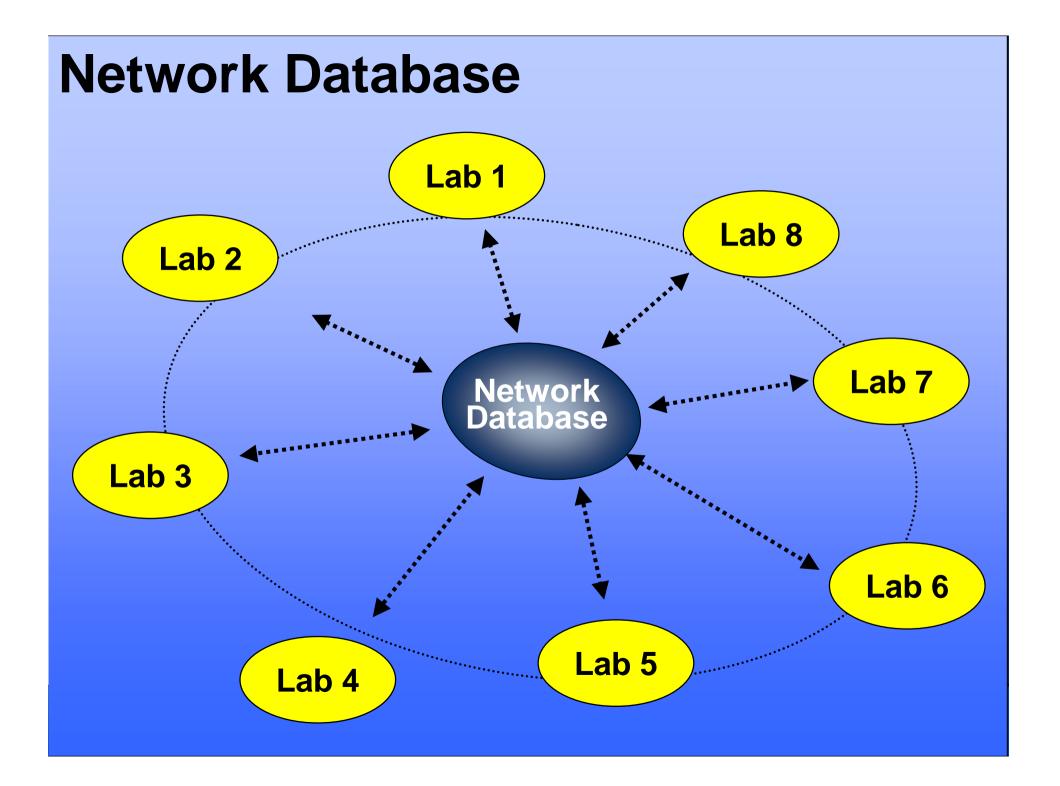
> With information about Laboratories:

- Contact Information (contact persons...)
- Instrumentation available
- > Specializations
- Link to web-site
- Link to annual report
- > Expression of Interest to send or receive trainees
- Photo

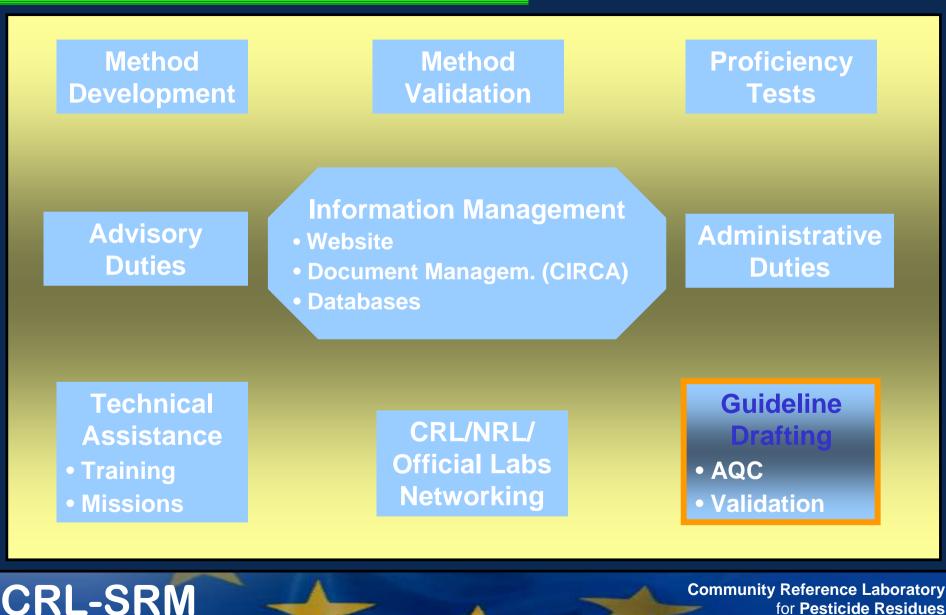

 \succ ...

Aim:

strengthen the Network between official Laboratories

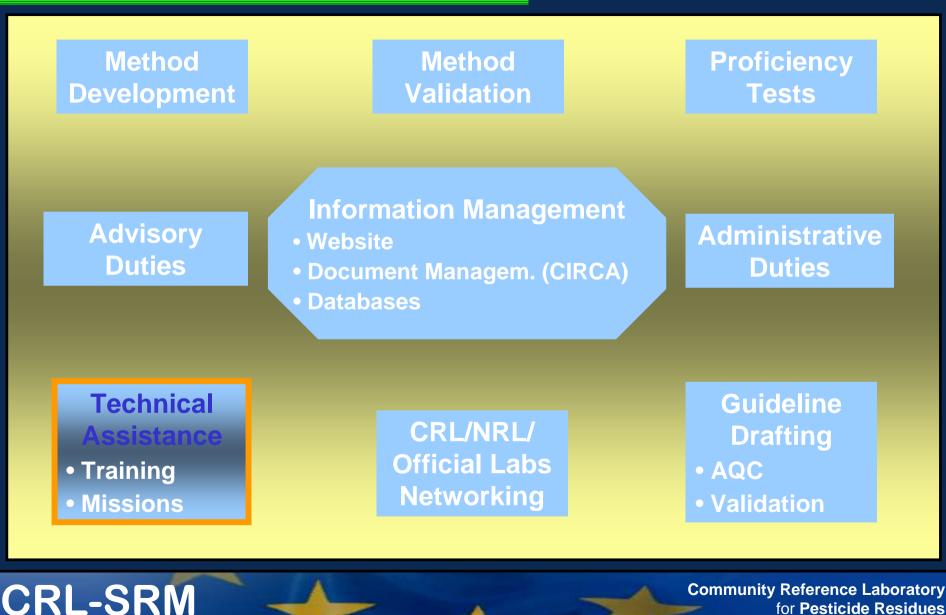


Working Tasks



1st Joint CRL-Workshop - Stuttgart, 06/12/2006

for Pesticide Residues using Single Residue Methods

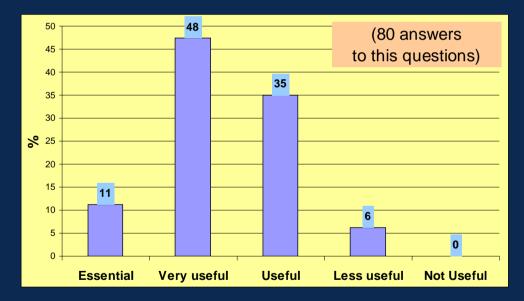

Working Tasks

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

for Pesticide Residues using Single Residue Methods

Working Tasks

1st Joint CRL-Workshop - Stuttgart, 06/12/2006


for Pesticide Residues using Single Residue Methods We look forward to having a Good Collaboration with you !!

Results of Lab-Questionnaire 2006

Website-section of lab-questionnaire:

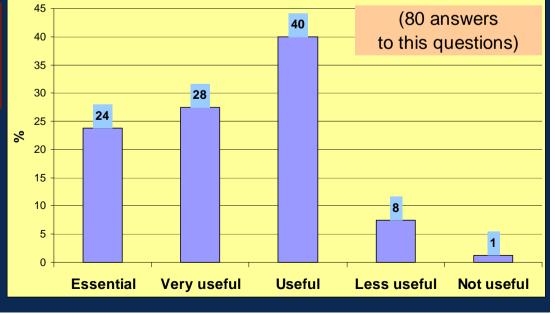
What types of data would you like to see in our common CRL website?

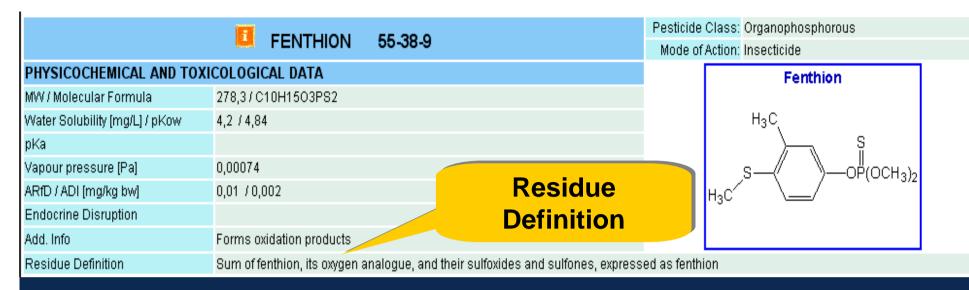

A RESIDUE FINDINGS Database containing residue findings collected from various labs?

CRL-SR

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

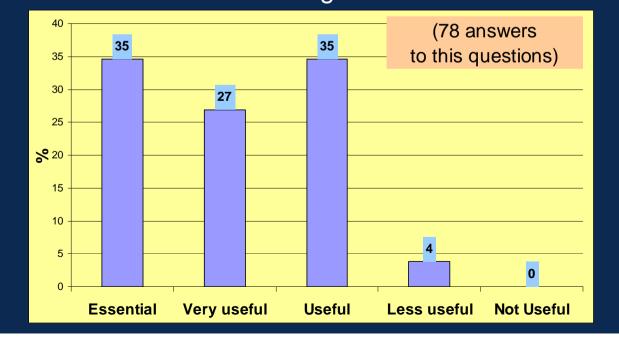
Would you be willing to contribute data to such as database?

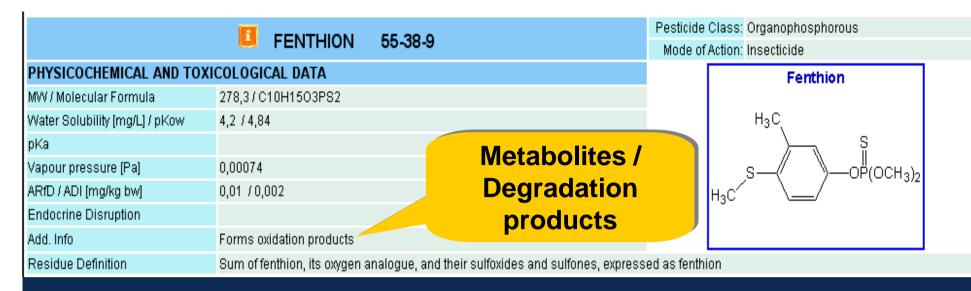

	FENTHION	55-38-9		Pesticide	Class: Organophosphorous
		00-06-9		Mode of	Action: Insecticide
PHYSICOCHEMICAL AND TO	(ICOLOGICAL DATA				Fenthion
MVV / Molecular Formula	278,3 / C10H15O3PS2				
Water Solubility [mg/L] / pKow	4,2 / 4,84		Physicochemic		H ₃ C
рКа			Data		s s
Vapour pressure (Pa)	0,00074				s — ОР(ОСН ₃₎
ARfD / ADI [mg/kg bw]	0,01 / 0,002				H ₃ C
Endocrine Disruption					Ŭ
Add. Info	Forms oxidation products				
Residue Definition	Sum of fenthion, its oxygen a	analogue, and	their sulfoxides and sulfones, express	ed as fenth	ion


Questionnaire 2006 by the CRL for SRM: (85 Feedbacks, 01.12.06)

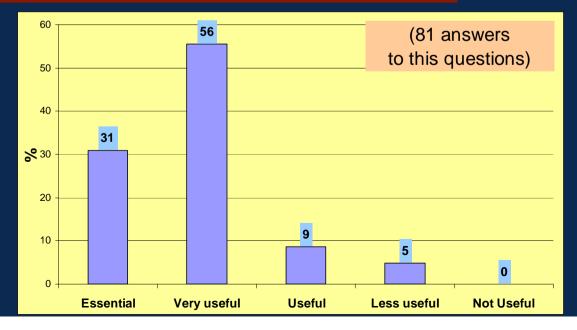
What types of data would you like to see in our common CRL website?

-> A PESTICIDE PROPERTIES Database containing ...


physicochemical properties of pesticides (pKa, solubility, logKow, ...)?

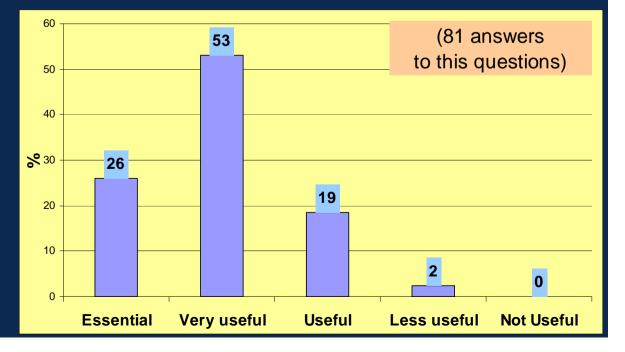


Questionnaire 2006 by the CRL for SRM: (85 Feedbacks, 01.12.06) What types of data would you like to see in our common CRL website? -> A PESTICIDE PROPERTIES Database containing ...


Residue definition?

What types of data would you like to see in our common CRL website? -> A PESTICIDE PROPERTIES Database containing ...

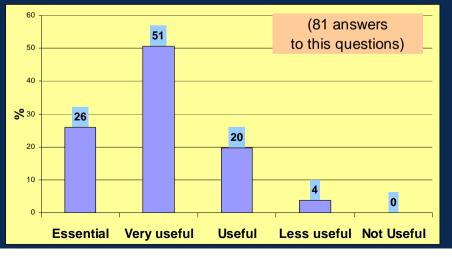
Important metabolites and degradation products?



ANALYTICAL DATA														
TYPICAL RECOVERI	ES USI	NG VAF	RIOUSI	NULTIRE	SIDUE METHODS (in %)		GC-BEHAVIOR							
Method	0-20	20-50	50-70	70-110	Remarks	GC-amenable	Vac	Motrix Effects	NoData					
QuEChERS (MeCN)				Х		pical reco	veries	;	0					
Stuttgart (Acetone)				Х										
SFE (CO2)				Х	with various									
DFG S 19 (Acetone)				Х	mul	<mark>tiresidue</mark> n	netho	ds		m/z				
Dutch (Acetone)					Пи	MODEL()		<u>ecick</u>	278	125	169			
Canadian (MeCN)				Х		MSD CI (+)	+++	<u>CLICK</u>	279	307				
CDFA (MeCN)						MSD CI (-)	0	<u>CLICK</u>						
Swedish (EtAc)						TOF EI (+)		<u>CLICK</u>						
L. Alder (MeOH)						MS/MS EI (+)	+++	<u>CLICK</u>	278>109	278>169				
Stajnbaher (Acetone, SPE)				Х		NPD/ECD/FPD	+++/()/+++							

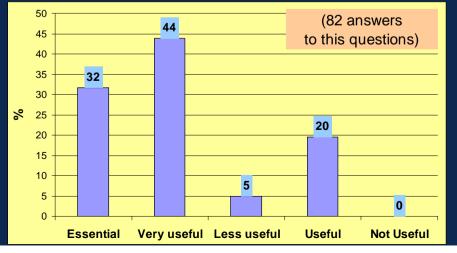
What types of data would you like to see in our common CRL website?

-> A PESTICIDE PROPERTIES Database containing


typical recoveries with various methods?

ANALYTICAL DATA																
TYPICAL RECOVERIES USING VARIO								GC-BEHAVIOR								
Method	0-20	20-50	GC- behavior					Jo-an	nenable	Yes	Matrix Effects	trix Effects NoData				
QuEChERS (MeCN)								Decon	nposition	0	Tailing	0				
Stuttgart (Acetone)			behavior					Decon	position Product							
SFE (CO2)				~												
DFG S 19 (Acetone)				Х					Detector	Sensitivity	Spectrum		m/z			
Dutch (Acetone)								MSD E	l (+)	+++	CLICK	278	125	169		
Canadian (MeCN)				LC-				MSD C	: (+)	+++	CLICK	279	307			
CDFA (MeCN)			la.					MSD C	il (-)	0	CLICK					
Swedish (EtAc)			D	<mark>eha</mark>	vior			TOF E	(+)		CLICK					
L. Alder (MeOH)								MS/MS	El (+)	+++	CLICK	278>109	278>169			
Stajnbaher (Acetone, SPE)				Х				NPD /	ECD/FPD	+++/()/+++						
							LC-BEHA	VIOR								
Ionization Source		Sens	itivity MS (m/z)					N	(S/MS-Transition	s		MS/T(OF			
ESI (+)	++	+					279>169		279>247							
ESI (-)	No	Data														
APCI (+)	No	Data														
APCI (-)	No	Data														

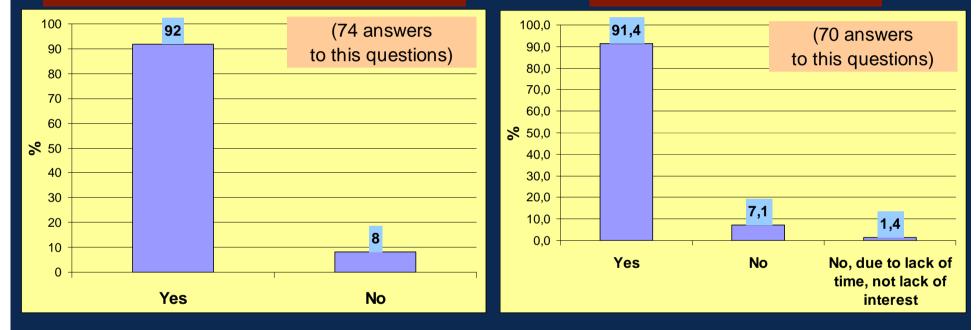
-> A PESTICIDE PROPERTIES Database containing ...


typical sensitivities achieved by various instrumental techniques? (GC-ECD, NPD, FPD, GC-MS, LC-MS, ...)

ANALYTICAL DATA															
TYPICAL RECOVERIES USING VARIA								GC-BEHAVIOR							
Method	0-20	20-50		GC				oo-am	enable	Yes	Matrix Effects	NoData			
QuEChERS (MeCN)								Decom	position	0	Tailing	0			
Stuttgart (Acetone)			behavior					Decom	position Products						
SFE (CO2)				~											
DFG S 19 (Acetone)				Х					Detector	Sensitivi	ty Spectrum		m/z		
Dutch (Acetone)								MSD EI	(+)	+++	CLICK	278	125	169	
Canadian (MeCN)				LC	-			MSD CI	(+)	+++	CLICK	279	307		
CDFA (MeCN)			h					MSD CI	(-)	0	<u>ci k</u>				
Swedish (EtAc)			D	<mark>eha</mark>	vior			TOF EI	(+)						
L. Alder (MeOH)								MS/MS I	El (+)	+++		278>109	278>169		
Stajnbaher (Acetone, SPE)				Х				NPD / E	CD/FPD	+++/()/+++					
							LC-BEHA	VIOR							
Ionization Source		Sens	itivity		MS (m/z)			M	S/MS-Transitions			c c.			
ESI (+)	++	+					279>169	:	279>247		<u>View M</u>	2-2	Jecu	a	
ESI (-)	No	Data													
APCI (+)	No	Data													
APCI (-)	No	Data													

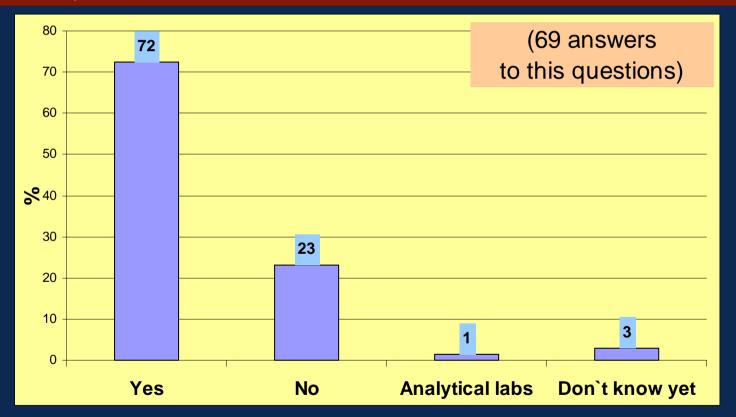
-> A PESTICIDE PROPERTIES Database containing ...

parameters required for programming Instruments (SIM masses, MRM transitions)?



Results of Lab-Questionnaire 2006

What types of data would you like to see in our common CRL website?


Would you like a discussion forum to be established?

Would you be willing to use such a forum?

Results of Lab-Questionnaire 2006

Would you like the forum to be accessible also to colleagues outsite the CRL/NRL-Network (e.g. colleagues from countries outside the EU, from private labs...)?

Pesticide Profiling

Proposal:

Establish a default procedure to <u>systematically generate and</u> <u>collect analytically important information</u> about pesticides:

- Physicochemical properties
- Toxicological parameters
- Analytical behaviour
 - GC-, LC- Amenability
 - MS-Spectra, MS/MS-Transitions, TOF-Exact Masses
 - Recovery Rates with various Methods
 - Stability Data (pH, Storage etc.)

Collection of Pesticide Data

What Data is Analytically relevant:

- Pesticide Profiles
- Pesticide Use Information
- Pesticide Residue findings
- Pesticide Validation Data

≻ Aim:

- Spend less time in retrieving information (CRLs, NRLs)
- Facilitate Decision-Making (knowledge Based planning)
 - Define Priorities

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

- Targeted Research (CRLs, NRLs, other labs)
- Targeted Targeted Sampling and Analysis

> Method Development

- Polar pesticides/metabolites,
- Volatile pesticides

1st Joint CRL-Workshop - Stuttgart, 06/12/2006

- Susceptible Pesticides /metabolites
- Chromatographically difficult Pesticides /metabolites
- Systematic Pesticide Profiling (with Spain?)
 - Study anal. behaviour of Pesticides (standard scheme)
 - Track analytically relevant data in DB (access to all off. labs)