
Stability Study of Five Pesticides in the Preparation of Home-Made Fruit Jams and Establishment of a Processing Factor

Reichert Bárbara^{1,2}, Pizzutti Ionara³, Costabeber Ijoni¹, Gomes-Ramos María del Mar⁴, Fernández-Alba Amadeo⁴

¹Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Roraima 1000/42, 97105-900 Santa Maria, RS, Brazil ²CAPES Foundation, Ministry of Education of Brazil, Brasília-DF 70040-020, Brazil

³Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), Santa Maria, RS, Brazil ⁴European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables. University of Almeria, Agrifood Campus of International Excellence.

E-mail: reichert.farmacia@gmail.com

Introduction

The presence of certain pesticide residues in raw and processed foods is a consumer concern due to the fact that residues may have negative health effects. The main route for exposure to pesticide residues for consumers is food. Therefore, a proper monitoring and risk assessment of pesticide residues in both raw and processed products is crucial for better consumer protection [1]. The goals of this study were to monitory the stability of 5 pesticides (which have known metabolites) after the preparation of home-made fruit jams from spiked fruit samples and compare the pesticide residues concentration in the home-made jams with pesticide concentration in the raw fruits, both spiked at the same concentration (the pesticide concentration found in the jams/pesticide concentration found in the raw fruits).

To verify the correct execution of the QuEChERS extraction method and the μ LC-ESI-MS/MS injection, recoveries (%) and RSD (%) were calculated and are shown in table 2. The home-made jams acetonitrile extracts were also analysed by LC-ESI-QTOF-MS/MS and, as demonstrated in the Figure 2, none of the five pesticides metabolites was detected.

Experimental Conditions

Thereby a mixture of the pesticides, namely carbendazim, chlorpyrifos, imidacloprid, iprodione and propargite, was spiked to six different types of fruits (apple, grape, orange, peach, pear and strawberry) at 500 μ g kg⁻¹. Home-made jams were prepared with these samples by cooking the crushed spiked fruits with sugar and water (ratio, 25:25:10), in an open pan for 30 min. The QuEChERS extraction method was applied either to blank fruits, to the fruits spiked at 500 μ g kg⁻¹ and to the home-made jams (also spiked at 500 μ g kg⁻¹). The figure 1, below, shows the scheme used for the preparation of the home-made fruit jams and the QuEChERS extraction procedure used.

Indivi	idual fruits
Crust	n for 1 min
Spike	500 μg kg ⁻¹
	sugar and U.P. water 25:10, w/w/w)
Cook in a op	en pan for 30 min
	am slurries (1/1.5)
10 g of jam slu	urry (1/1.5) or fruits
amples	Blank extract
	Crush Spike Mix the fruits with (ratio 25: Cook in a op Prepare the ja

Table 2. Average recoveries (%), RSD (%) and matrix effect (%) for the 5 spiked pesticides in all matrices.

	Fruits - Group 1					Fruits - Group 2					Jam					
Pesticide	Apple		Pear	Pear Peach				Grape ^a	Orange		Strawberry			Peach Jam		
	Average Recovery (%)	RSD (%)	Average Recovery (%)	RSD (%)	Average Recovery (%)	RSD (%)	ME ^b (%)	Average Recovery (%)	Average Recovery (%)	RSD (%)	Average Recovery(%)		ME ^c (%)	Average Recovery (%)	RSD (%)	ME (%)
Carbendazim	78	1	69	13	60	2	-2	96	64	3	67	16	-21	86	3	-31
Chlorpyrifos	95	1	93	6	84	9	-11	99	70	19	90	6	-10	94	8	6
Imidacloprid	88	1	84	2	81	14	-7	79	77	13	63	10	-2	102	1	-20
Iprodione	92	1	108	29	117	30	1	104	87	1	78	7	-2	91	6	48
Propargite	81	4	92	3	81	9	-26	75	58	19	74	7	-12	92	2	18

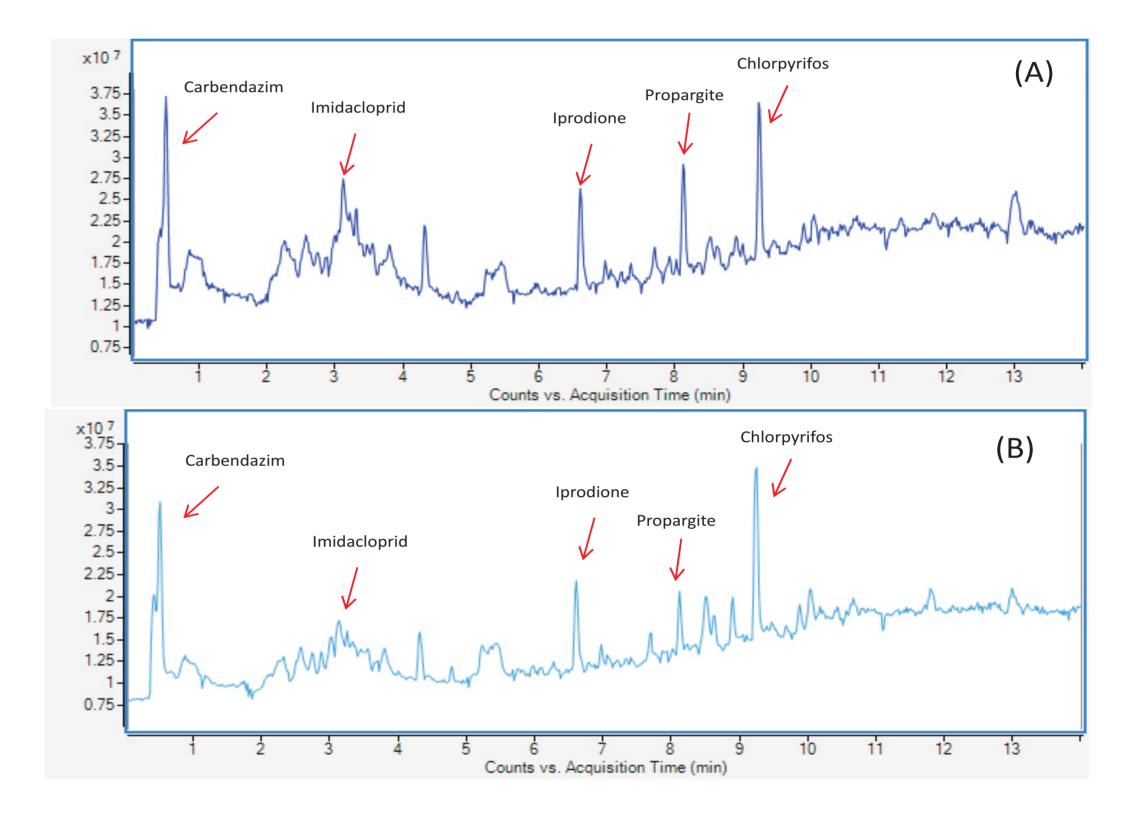


Figure 2. Total ion chromatograms obtained by analysis via LC-ESI-QTOF-MS/MS of (A) apple acetonitrile extract

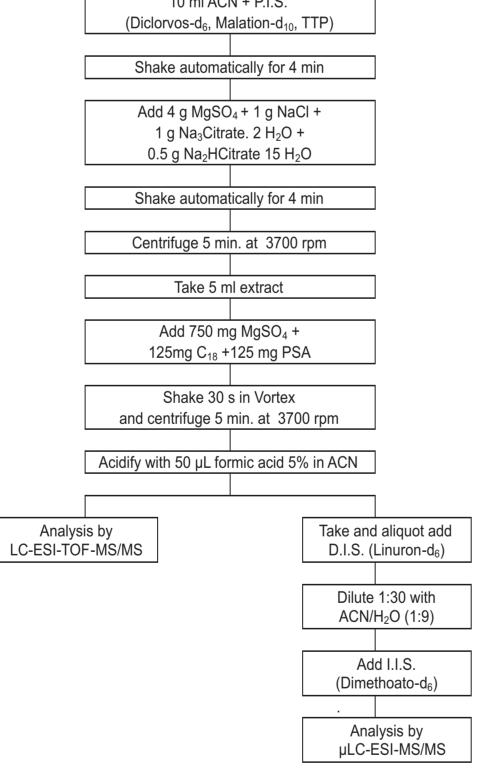


Fig. 1. Home-made fruit jams preparation scheme (A) and QuEChERS citrate extraction procedure (B).

The acetonitrile extracts of the jams were analyzed by LC-ESI-QTOF-MS/MS to ascertain the presence of metabolites of the 5 pesticides. Moreover, all the samples (blank fruits, spiked fruits and home-made jams) were analyzed by μ LC-ESI-MS/MS for the establishment of a processing factor (the pesticide concentration found in the jams/pesticide concentration found in the raw fruits).

Table 1. Chromatographic parameters of the LC-ESI-QTOF-MS/MS method.

Compound	t _R (min)	Neutral Mass	$(M+H)^{+}$	Description

spiked with the mixture of the 5 studied pesticides at 500 μ g kg⁻¹ and (B) home-made apple jam acetonitrile extract, also spiked at 500 μ g kg⁻¹.

By the comparison of the pesticides concentrations found in the jams and in the spiked fruits could be seen a decrease of the pesticide levels in the jams. The percentages of the pesticides that remained present in the home-made jams, calculated from the samples, presented variations depending on the pesticide and the fruit used for the preparation of the jam. But the average percentage of carbendazim, chlorpyrifos, imidacloprid, iprodione and propargite that remained in the jams, was 50%, 30%, 50%, 50% and 40%, respectively. Thus, the factors of $\frac{1}{2}$, $\frac{3}{10}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{2}{5}$, respectively, could by established in the preparation of the home-made fruit jams (Table 3).

Table 3. Stablished processing factor for studied jams

	Processing Factor											
Pesticide	Strawberry Jam	Peach Jam	Orange Jam	Pear Jam	Apple Jam	Grape Jam	Average					
Carbendazim	0,5	0,6	0,4	0,6	0,6	0,4	0,5					
Chlorpyrifos	0,3	0,3	0,4	0,2	0,3	0,2	0,3					
Imidacloprid	0,7	0,7	0,6	0,6	0,6	-	0,6					
Iprodione	0,6	0,5	0,6	0,4	0,5	0,5	0,5					
Propargite	0,4	0,4	0,7	0,3	0,4	0,3	0,4					

In this study the stability of 5 pesticides was demonstrated due the fact that none of the pesticides metabolites was detected in the home-made jams prepared from crushed spiked fruits. Moreover, a processing factor have been established for each pesticides and the decrease in concentration of the pesticides was shown in the preparation of the home-made jam samples.

	196.9202	197.9275	Metabolite of chlorpyrifos
	118.0531	119.0604	Metabolite of carbendazim
0.98	191.0695	192.0768	Pesticide
8.95	348.9263	349.9336	Pesticide
	248.1776	249.1849	Metabolite of propargite
	510.6684	511.6757	Metabolite of iprodione
3.17	255.0523	256.0596	Pesticide
	253.0367	254.0439	Metabolite of imidacloprid
	271.0472	272.0545	Metabolite of imidacloprid
6.90	329.0334	330.0407	Pesticide
9.27	350.1552	351.1625	Pesticide
	8.95 3.17 6.90	118.0531 0.98 191.0695 8.95 348.9263 248.1776 510.6684 3.17 255.0523 253.0367 271.0472 6.90 329.0334	118.0531119.06040.98191.0695192.07688.95348.9263349.9336248.1776249.1849510.6684511.67573.17255.0523256.0596253.0367254.0439271.0472272.05456.90329.0334330.0407

ACKNOWLEDGEMENT

EURL-FV, CEPARC/UFSM, CAPES

[1] Martin, L., Mezcua, M., Ferrer, C., et al., Food Addit. Contam. 2013, 30, 466-476.