

## PESTICIDE RESIDUE RESEARCH GROUP



# Evaluation of matrix effects in pesticide multi-residue methods by mapping natural components using LC-HRMS

M<sup>a</sup> del Mar Gómez-Ramos, Rajski Łukasz, Ana Lozano and Amadeo R. Fernández-Alba

<sup>1</sup> European Union Reference Laboratory for Pesticide Residues in Fruits and Vegetables. Pesticide Residue Research Group. University of Almeria. 04120 (Spain);

e-mail: mgr337@ual.es



The presence of matrix effects is one of the major concerns in food analysis. It presence affect to analyte signal and can lead to errors in the quantification and the detection of the analytes. In this work the relation between matrix suppression and co-extracted matrix components has been investigated. Twenty three different commodities were extracted by various extraction Multi-residue Methods – MRM-, mapping their natural compounds by retention time and accurate mass. Mapping them allow to evaluate the benefit in using one specific method or what can be the main natural compounds that can interact with the target analytes.

#### MENTAL SECTION: SAMPLE TREATMENT AN LC-TOF-MS A

Agilent MassHunter

UNIVERSITY OF ALMERIA

## SAMPLE TREATMENT

Extraction of blank matrices **Citrate** buffered **QuEChERS** \* 1.2

Blank extract

Spiked with 80 pesticides  $100 \mu g/L$ 

\* Modified QuEChERS **1** CaCl<sub>2</sub> addition in clean-up (0.2 g sample/ml) **2** Additional step of SPE with  $ZrO_2$ 



UNIVERSITY OF ALMERÍA, ALMERÍA, SPAIN



**Operational conditions** Full-scan ESI (+) mode Nebulizer: 40psi Gas Temp: 400°C Cap. Voltage: 4000 V. Frag. Voltage: 90 V

**Chromatography** Agilent 1200 HPLC system

Column: XDB-C18 Agilent. 50mm x 4.6 mm (1.8  $\mu$ m)

### Mobile phase:

AcN (A) (5% water, 0.1% formic acid) and MiliQ Water (B) (0.1 % formic acid) 10% (A) isocratic  $t=1 \min$ , then to 100% (A) in 10 min and maintained for 6 min, Flow rate of 0.6 mL/min.





| Commodit<br>y groups  |                      | N° of co-extracted compounds  |                                |                           | IIC      | % of Pesticides with High (>50%),<br>Medium (20-50%) and Low Signal<br>Suppression (<20%) |        |     |
|-----------------------|----------------------|-------------------------------|--------------------------------|---------------------------|----------|-------------------------------------------------------------------------------------------|--------|-----|
|                       | Matrix               | Retention<br>Time:<br>0-17min | Retention<br>Time:<br>7-13 min | MW>500<br>RT:<br>7-13 min | (Counts) | High                                                                                      | Medium | Low |
|                       | Рарауа               | 1270                          | 214                            | 38 (18%)                  | 3.70E+09 |                                                                                           |        |     |
| High water<br>content | Aubergine            | 1400                          | 573                            | 36 (6%)                   | 3.00E+09 |                                                                                           |        |     |
|                       | Plum                 | 2008                          | 260                            | 51 (20%)                  | 3.12E+09 |                                                                                           |        |     |
|                       | Lettuce              | 1586                          | 625                            | 208 (33%)                 | 3.70E+09 |                                                                                           |        |     |
|                       | Tomato (Kumato type) | 2155                          | 668                            | 147 (22%)                 | 4.18E+09 | 0                                                                                         | 10     | 90  |
|                       | Tomato (Cherry type) | 2833                          | 746                            | 201 (27%)                 | 5.63E+09 | 0                                                                                         | 16     | 84  |
|                       | Pear                 | 2919                          | 708                            | 173 (24%)                 | 3.64E+09 |                                                                                           |        |     |
|                       | Apple                | 3047                          | 726                            | 270 (37%)                 | 4.25E+09 |                                                                                           |        |     |
|                       | Mango                | 2649                          | 765                            | 199 (26%)                 | 3.77E+09 |                                                                                           |        |     |
|                       | Pepper               | 3419                          | 919                            | 329 (36%)                 | 5.51E+09 | 0                                                                                         | 23     | 78  |
|                       | Green bean           | 2398                          | 913                            | 88 (10%)                  | 3.92E+09 |                                                                                           |        |     |
|                       |                      |                               |                                | / /                       |          |                                                                                           |        |     |

#### Mapping of Co-extracted matrix compounds-Pesticides

Signal suppression, number and concentration of co-eluting matrix compounds. Orange matrix (0.2 gsample/ml)

|       | "Difficu                                                    | ult" ma | trices        |                                        |                 |                        |               |
|-------|-------------------------------------------------------------|---------|---------------|----------------------------------------|-----------------|------------------------|---------------|
| 1,250 | Mass Orange , 5768 Matrix compounds<br>Total Area 1.91 E+10 | 1,250   | Red           | onion                                  | 3823 №<br>Total | 1atrix con<br>Area 1.7 | npou<br>78 E+ |
| 1,125 |                                                             | 1,125   |               | <b>t</b>                               |                 | •                      | _             |
| 1,000 |                                                             | 1,000   |               | •••• ••• •••                           | p •8 ••         |                        |               |
| 875   |                                                             | 875     |               |                                        |                 |                        |               |
| 750   |                                                             | 750     | :             | · ···································· | 200             |                        | •             |
|       |                                                             | /00     |               |                                        | ~ L .           | 1 - 2 - 4              |               |
| 625   |                                                             | 625     | 1. 1. 1.      | a strange a large                      |                 |                        | ••••          |
| 500   |                                                             | 500     | 1.5           | San ale and                            |                 |                        |               |
| 375   |                                                             | 375     |               |                                        |                 | 4.2.5.5.5.             |               |
| 250   |                                                             | 250     | 3 A 11 7 11 1 |                                        |                 |                        | •             |
| 125   |                                                             | 125     |               |                                        | 1 1 4 4 T       | s                      | •             |

| Pesticide     | Mass     | Rt (min) | Suppresion | N° of co-eluting<br>matrix<br>compounds<br>(± 0.05 min) | Σ Compounds signal<br>height of co-eluting<br>compounds<br>(counts) |
|---------------|----------|----------|------------|---------------------------------------------------------|---------------------------------------------------------------------|
| Cinosulfuron  | 413.1005 | 8.09     | -6         | 63                                                      | 3E+06                                                               |
| Propoxur      | 209.1052 | 8.23     | 0          | 44                                                      | 4E+06                                                               |
| Carbofuran    | 221.1046 | 8.32     | 0          | 34                                                      | 3E+06                                                               |
| Isoproturon   | 206.1419 | 8.73     | -88        | 84                                                      | 2E+07                                                               |
| Metalxyl      | 279.1465 | 8.74     | -74        | 84                                                      | 2E+07                                                               |
| Ofurace       | 281.0819 | 8.84     | 1          | 39                                                      | 2E+06                                                               |
| Heptenophos   | 250.0162 | 8.97     | -8         | 65                                                      | 7E+06                                                               |
| Isoprocarb    | 194.1176 | 9.01     | -100       | 94                                                      | 2E+07                                                               |
| Flazasulfuron | 407.0511 | 9.22     | -93        | 83                                                      | 2E+07                                                               |
| Metazachlor   | 277.0982 | 9.25     | -83        | 93                                                      | 3E+07                                                               |
| Bupirimate    | 316.1563 | 9.27     | -83        | 125                                                     | 4E+07                                                               |
| Triadimenol   | 295.1082 | 9.42     | -18        | 45                                                      | 9E+06                                                               |
| Promecarb     | 207.1259 | 9.95     | -15        | 42                                                      | 3E+06                                                               |
| Azoxystrobin  | 403.1162 | 10.03    | -4         | 29                                                      | 5E+06                                                               |





All pesticides with high suppression present an elevated number of co-eluting species (> 75), some of them very concentrated (sum of height signal  $\geq$  2e7)



The majority of the pesticides eluted in the 7–13 min range. In general matrices with more than 5000 interfering components or/and a TIC over 8E+9 present more than 50 % of A sample dilution decreases the number of competing molecules and thus the analyte signal increases and matrix effects improved for the majority of pesticides.

**Evaluation of Multi-Residue Extraction Methods** QUECHERS vs QUECHERS+SPE with ZrO2 in Parsley matrix QuEChERS vs QuEChERS+CaCl2 in Green tea matrix Number of co-extracted compounds PCA on co-extracted compounds QuEChERS 6008 QuEChERS Matrix compounds 5070 1,200 Matrix compounds 336 cpds. more concentrated in 1,200 1,100 765 cpds CaCl2 QuEChERS only in CaCl2 QuEChEF 1,100 1,000 1,000 900 2433 2550 900 800 700 600 500 QuEChERS+ZrO2 QuEChERS PCA on co-extracted compounds 300 200 100



## CONCLUSION

Mapping of matrix components by molecular weight and retention time is a very good approach for assessing matrix difficulty, risk of matrix suppression effects and evaluation of sample preparation methods. The number and distribution of co-extracted compounds, vary much depending on vegetable matrix even those included in the same commodity group according to the AQC SANCO Procedures. "Difficult" matrices providing a high number and concentration of natural components have associated a high suppression. Dilution of the extracts was shown as an effective method to reduce the interfering compounds and to diminish the signal suppression for the majority of the pesticides in all commodities. In tea and parsley matrices the he use of CaCl2 and ZrO2 respectively, in the clean-up step, showed to be much more efficient removing interfering compounds than the original QuEChERS clean-up.

The authors acknowledge funding support from the European Commission, DG SANCO (Specific Agreement No. 5 to Framework Partnership Agreement No. 5 SANCO/2005/FOOD SAFETY/0025-Pesticides in fruit and vegetables)

pesticides with strong suppression. Matrices with less than 3000 compounds or TIC below 6E+9 don't have pesticides with high ion suppression.