

EURL-SRM - Analytical Observations Report

concerning the following...

- **Compound(s)**: Dithianon, Dithianon D4
- **Commodities**: Fruit and vegetables, cereals
- Extraction Method(s): QuEChERS, QuEChERS (variations)
- Instrumental analysis: LC-MS/MS, ESI (neg.)

Analysis of Dithianon by the QuEChERS Method - Impact of pH on recovery rates

Version 2.1 (last update: 09.05.2016)

Background information / Initial Observations:

Using QuEChERS (EN 15662), dithianon often shows low or variable recovery rates from various commodities. Especially from commodities exhibiting high natural pH, recoveries are often very low. In acidic commodities recoveries are typically acceptable (see examples in Table 1). However, cleanup with PSA also leads to low recoveries.

Extraction	Level (mg/kg)	dSPE cleanup	Mean Recovery %	RSD %	n
Cucumber	0.1	None	68	12,5	5
Lemon	0.1	None	100	13.9	5
Apple	0.1	with PSA	5	43%	6

Table 1: Exemplary Recovery rates of dithianon extracted from the EURL-DataPool:

Dithianon is a foliar fungicide with protective and curative action used to control a variety of foliar diseases on a wide range of crops including table and wine grapes, pome fruit, stone fruit, berries, spinach, lettuce, brassica crops, solanaceous crops and rice. In connection with the current MRLs, which were established in 2008¹, acute and chronic intake concerns were identified by EFSA^{2,3}. An acute intake concern was identified for grapes (MRL= 3.0 mg/kg), whereas the theoretical exceedance of the chronic toxicological thresholds (TMDI) are mainly driven by the MRLs for pears, apples, table grapes and oranges.

¹ Reg. (EC) No 839/2008 Applicable from: 01/09/2008

² EFSA (European Food Safety Authority), 2010. Conclusion on the peer review of the pesticide risk assessment of the active substance dithianon. EFSA Journal 2010;8(11):1904, 121 pp. doi:10.2903 /j.efsa.2010.1904 ³ Peer review of the pesticide risk assessment for the active substance dithianon in light of confirmatory data submitted (http://www.efsa.europa.eu/sites/default/files/scientific_otput/files/main_documents/4278.pdf), November 2015)

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Compound details

DITHIANON (CAS: 3347-22-6), IUPAC: 5,10-dihydro-5,10-dioxonaphtho[2,3-b]-1,4-dithiine-2,3-dicarbonitrile								
Parameter	Value	Notes						
Molecular Mass	296.3 g/mol			O N				
Pka	No dissociation in	water [4]		S S				
LogPow	3,2	(20°C; pH 2), pH	lindependent					
Water solubility	0.31 mg/L	(20°C; pH 4) [4]		S' N				
Stability	Decomposed by a	Ikaline media, con	centrated acids, and prolonged heating [1]	0				
Hydrolysis rates in	12 days	20°C; pH 5						
water (DT50) According to EFSA Peer	0.6 days	20°C; pH 7						
Review report ⁴	8 min.	20°C; pH 9						
	11.6 days	50°C; pH 4	Hydrolysis products reported					
Hudrolygia rates in	6.3 days	30°C; pH 7	Phthalic acid, Phthaldialdehyde, 1,2-benzenedimethanol					
Hydrolysis rates in water (DT50)	1.5 hours	40°C; pH 7						
According to BASF report ⁵	0.12 hours	25°C; pH 9						
	stable	pH 1.2						
Residue definition EU	Dithianon [2]							
Approved in	AT, BE, BG, CY, CZ,	AT, BE, BG, CY, CZ, DE, DK, EE, EL, ES, FI, FR, HR, HU, IE, IT, LT, LU, LV, NL, PL, PT, RO, SE, SI, SK, UK						
ADI / ARfD	0.01 mg/kg bw/day	0.01 mg/kg bw/day / 0.12 mg/kg bw [4]						

Materials⁶:

- Dithianon (purity 99.9%) from Riedel-de-Haen,
- Dithianon D4 (99.1 atom %) was purchased from HPC Standards GmbH / Germany;
- Nicarbazin containing N,N'-bis(4-Nitrophenyl)urea (BNPU) was purchased from Sigma-Aldrich
- Sulfuric acid (>95%) was purchased from Fluka
- Formic acid (>96%) was purchased from Sigma-Aldrich
- Acetic acid (>99%) was purchased from Sigma-Aldrich
- Stock solutions of native dithianon and ILIS at 1 mg/ml was prepared by dissolving 15mg of the compound in 1 mL acetone and filling it up to 15 mL with acetonitrile containing 0.4 % acetic acid (v/v)
- Working solutions were prepared by appropriately diluting stock solutions with acetonitrile containing 0.4% acetic acid (v/v)
- All other materials and chemicals used as listed in EN 15662

⁴ EFSA Peer Review report: http://www.efsa.europa.eu/en/scdocs/doc/1904.pdf

⁵ http://www.bvl.bund.de/SharedDocs/Downloads/04_Pflanzenschutzmittel/01_zulassungsberichte/006459-00-

^{00.}pdf?__blob=publicationFile&v=2

³ Disclaimer: Names of companies are given for the convenience of the reader and do not indicate any preference by the EURL-SRM towards these companies and their products

Measurement conditions

Measurement was conducted by LC-MS/MS instrument (ESI-negative mode). Details are given in Table 2 and Table 3

Table 2: Instrumentation details

LC	Waters Acquity								
MS/MS	ABSCIEX 5500, run in ESI n	egative mode							
MRMs	296 / 264 (target); 296 / 1	64 (qualifier), 296 / 238	(qualifier)						
Column	Acquity UPLC BEH Shield R	P 18, 2.1x100 mm, 1.7	μm						
Pre-column	Van Guard BEH Shield RP 2	l8; 1.7μm							
Mobile Phase	A: 0.01% acetic acid in water + 5 % ACN (use brown bottles to avoid formation of algae) B: 0.01% acetic acid in ACN								
Gradient	Time (min)	Mobile Phase A (%)	Mobile Phase B (%)	Flow (mL/min)					
	0	80	20	0.4					
	4 70 30 0.4								
	7 10 90 0.4								
	8.5	10	90	0.4					
	8.6	80	20	0.4					
	13.5 80 20 0.4								
Column temperature	40 °C								
Injection volume	2 μL								
Internal Standard	BNPU, Dithianon D4								

Tab. 3: MRM Details for Dithianon (ESI-neg. mode using ABSciex API 5500 QTrap):

Name of Transition	Rel. Sensitivity	Parent mass	Daughter mass	DP	CE	СХР	Mode
Dithianon 296/264	1	296*	264	-80	-30	-8	ESI neg.
Dithianon 296/164	2	296*	164	-80	-38	-0	ESI neg.
Dithianon 296/238	3	296*	238	-80	-24	-2	ESI neg.
Internal Standard (option)							
BNPU		301**	137	-25	-16	-7	ESI neg.
Dithianon D4		300*	268	-80	-30	-1	ESI neg.

* [M•]⁻ in the case of Dithianon and Dithianon D4 (due to the formation of a stabilized radical)

** [M-H] in the case of BNPU

Experiments conducted and observations:

In order to explore the impact of sample pH on dithianon recovery rates we have conducted recovery experiments on lettuce and blueberries using the QuEChERS procedure in 4 different versions as follows:

- 1) **QuEChERS**: EN-15662⁷;
- QuEChERS + 4 % HAc: EN-15662 modified by using 10 mL ACN containing 4 % (v/v) acetic acid for the 1st extraction step and 4g MgSO₄ / 1g NaCl for partitioning;
- 3) **QuEChERS + 1 % FA:** EN-15662 modified by using 10 mL ACN containing 1 % (v/v) formic acid for the 1st extraction step and 4g MgSO₄ / 1g NaCl for partitioning;
- 4) **QuEChERS + 1 % SA:** EN-15662 modified by using 10 mL ACN containing 1 % (v/v) H_2SO_4 conc. for the 1st extraction step and 4g MgSO₄ / 1g NaCl for partitioning;

In none of the four versions d-SPE cleanup was performed. Two different internal standards were tested: BNPU⁸ was used in the earlier experiments, and dithianon D4 (ILIS) was used in parallel later on.


Matrix-matched calibration standards were prepared using blank extracts prepared with the respective procedure, however without addition of an IS. The results of these experiments are shown in Table 4.

Matrix Matrix		Spiking	IS	QuEChERS			QuEChERS + 4 % HAc			QuEChERS + 1 % FA				QuEChERS + 1 % SA		
Туре		Level	15	n	Mean Rec.%	RSD %	n	Mean Rec.%	RSD %	n	Mean Rec.%	RSD %	n	Mean Rec.%	RSD %	
	Lettuce	0.1	BNPU	3	22	13.7	3	46	12.7	5	76	3.2	5	90	4.1	
	Cucumber	0.1	BNPU				_			3	66	7.4	5	84	6.9	
	Cucumber	0.1	ILIS	-	-	-	-	-	-		<mark>110</mark>	6.7	5	<mark>103</mark>	7.4	
High water		0.1	0.1	BNPU	5	4	23.5	_			5	70	8.0	5	93	6.0
	Spinach	0.1	ILIS	5	-	23.5	-	-	-	J	<mark>96</mark>	5.1	5	<mark>104</mark>	5.1	
	Spinach	0.1 (waiting time ca. 10 min)	BNPU							5	14	17.3				
High water	Blueberry 1	0.1	BNPU	3	61	4.9	3	63	6.6	5	82	10.3	5	79	9.4	
+ low pH	Blueberry 2	0.01	BNPU	-	-	-	-	-	-	5	94	3.1	-	-	-	
		0.1	BNPU	5	No peak	n.d.	-	-	-	-	-	-	5	85	8.9	
Dry	Rice	0.1 (waiting time ca. 10 min)	BNPU							5	17	15.0	5	39	3.6	

Tab. 4: Recovery data for Dithianon from various commodities:

⁷ Detailed instructions on the QuEChERS method are given in the CEN method EN 15662 (citrate buffered), see also brief description under www.quechers.de .

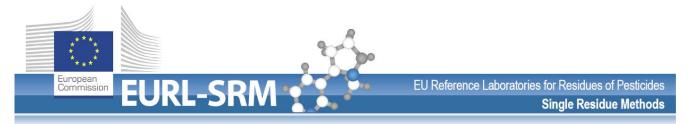
⁸ BNPU (1,3-bis(4-nitrophenyl)urea) is one of the two components of Nicarbazin

These experiments show that strong acidic conditions are needed for achieving good recoveries. Even formic acid alone does give sufficient protection. If no ILIS is used to correct for recovery losses acidification with sulfuric acid is preferred.

By using ILIS recovery correction is possible.

It was further observed that in commodities with high pH the degradation is very fast so that extraction at acidic conditions should also start immediately. Even with short waiting times of 5-10 min between spiking the blank sample portions and the start of the analysis a strong decline in the recoveries can be seen.

Given this strong recovery decline it is obvious that if ILIS is employed to correct for recoveries it should spiked to the sample portions immediately. To study these effects an experiment was conducted where the addition of the dithianon-ILIS as well as the start of the extraction was delayed by 10 min after spiking with the native dithianon standard. The results of this experiment are shown in Table 5.


		Delay between	Delay betweenDelay betweenspiking nativespiking native			Recovery rates [%]							
Extraction Method	IS	dithianon and spiking of ILIS	dithianon and dithianon and	1	2	3	4	5	Avg	RSD (%)			
	ILIS		No dolou	118	109	103			110	6,7			
QuEChERS + 1 % FA	BNPU	No delay	No delay No delay	67	70	60			66	7,4			
	ILIS		No dolou	114	97	108	98	97	103	7,4			
	BNPU	No delay	No delay No delay	93	79	85	83	79	84	6,9			
	ILIS		an 10 min	115	100	94	-	-	103	10,4			
QuEChERS + 1 % SA	BNPU	No delay	ca. 10 min	73	67	62	-	-	68	8,1			
	ILIS		ca. 10 min	57	57	54	-	-	56	3,5			
	BNPU	ca. 10 min	(shortly after ILIS-addition)	51	49	50	-	-	50	2,3			

Tab. 5: Recovery data for Dithianon depending on the delay time between spiking and extraction under acidic conditions:

The experiments shown in Table 5 confirm that extraction with formic acid does not always provide acceptable recoveries. They also confirm the effectiveness of the ILIS to compensate matrix effects. As can be seen a delay of just 10 minutes causes severe recovery drop that can be still effectively corrected through the use of ILIS provided that ILIS was added at the same time as dithianon D4. At a delayed addition of ILIS any losses occurred prior to the addition of the ILIS cannot be compensated. Thus if ILIS is used to match for the losses the addition of ILIS should also be done as early in the procedure as possible.

Impact of cleanup:

No significant losses were observed during the dSPE cleanup step with GCB. The test was conducted on cucumber extracts obtained using two different methods a) **QuEChERS + 1 % SA** and b) **QuEChERS + 1 % FA**. 2.5 mg GCB and 150 mg MgSO₄ per mL cucumber extract were used in each case.

Discussion and conclusions:

11.

Using the original citrate buffered QuEChERS method very low recoveries of dithianon are obtained from commodities with high pH. Also low recoveries are obtained when dSPE cleanup with PSA is conducted, whereas dSPE cleanup with GCB does not seem to induce losses. Acidification during the QuEChERS extraction step helps to improve the recovery rates. Sulfuric acid offers better protection than formic acid or acetic acid. If no ILIS is used to compensate recovery losses extraction with 1% sulfuric acid is indicated, especially for commodities having high natural pH. Using dithianon-D4 as ILIS recovery losses can be effectively compensated provided that it is added at a very early step in the procedure. As losses of dithianon are very rapid in high-pH commodities it is of paramount importance to conduct analysis as fast as possible and keep sample temperature low. Acidification during sample comminution helps to reduce losses further.

Action	When	Document Version				
Initial Experiments	May 2013 – March 2014, November 2014					
Further Experiments	November 2014,					
Observation document placed on-line	22.11.2014	V1				
Further Experiment	March 2015 January 2016, March/April 2016					
Major revision of document	April 2016	V2				
Addition of a detail regarding preparation of the stock solution	<mark>09.May 2016</mark>	V2.1				