

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

THEMED DAY: SAMPLE SAMPLING- SAMPLE PEREPARATION AND SAMPLE PROCESSING

Pesticides which require special treatment during processing / homogenization and extraction

Michelangelo Anastassiades Ellen Scherbaum Anne Benkenstein Anja Barth Daniela Dörk cshop Cristin Wildgrube

11th European Pesticide Residue Workshop 24th-27th May 2016, Limassol, Cyprus

Sampling and Sample Preparation

Lot

- **Take portions from diff. points**
- **Primary Samples**
 - Combine

Bulk Sample (Composite sample)

- Reduce (if needed) e.g. using sample divider
- **Laboratory Sample**
- -Size reduction (segmenting...), remove stones

Analytical Sample (partly prepared)

Homogenization (using mill/mixer)

Analytical Sample (fully prepared)

- Weigh
- **Analytical Portion**

Extraction, Aliquotation, Cleanup ...

Final Extract -> Aliquot injected

LABORATORY SAMPLE

Questions

- Is the portion to portion variability acceptable ?
- What losses occur during sample preparation, processing and homogenization?
- What losses occur between homogeneization and start of analysis ?
- How can I minimize those losses?
- What is the impact of homogeneization on extraction yields?
- What measures can I take during extraction to match for defficiencies during milling (large particles)?

Questions

- Is the portion to portion variability acceptable ?
- What losses occur during sample preparation, processing and homogenization?
- What losses occur between homogenization and start of analysis ?
- How can I minimize those losses?
- What is the impact of homogenization on extraction yields?
- What measures can I take during extraction to match for deficiencies during milling (breakup large particles)?

Typical Ambient Milling Approach of wet samples

Cut in segments

Cut into smaller pieces if <u>needed</u>

+ Fill in a bag

Extract

Wait for enough Portions to run a sequence

Portion

Puree like material

Mill Material

Typical Cryogenic Milling Approach

Contact between Peel & Juices (+ bag)

Cut in segments

Cut into smaller pieces if needed

+ Fill in a bag

Extract

Freeze-out > 5h (typically over-night)

Add Dry Ice

+ Remill

Mill Frozen Material

Losses during Sample Preparation/Processing

No single mechanism involved

Volatility (e.g. fumigants, biphenyl, dichlorvos)
Chemical reactions (e.g. hydrolysis, oxidation)

Many Factors play a role:

- ⊳ pH
- Presence of reactive matrix-components
- > Presence of retentive matrix-components (water, lipids)
- Presence of active enzymes
- Presence of oxygen
- > Temperature
- Exposition time

Implications

- True concentration underestimated
- MRL-exceedances /misuse may not be detected

No single mechanism involved

Evaporation (e.g. fumigants, biphenyl, dichlorvos)
Chemical reactions (e.g. hydrolysis, oxidation)

Losses during Sample Preparation/Processing

Many Factors play a role:

⊳ pH

EURL-SRM 🛒

- Presence of reactive matrix-components
- Presence of retentive matrix-components (water, lipids)
- > Presence of active enzymes
- Presence of oxygen
- > Temperature
- Exposition time

Implications

- True concentration underestimated
- **MRL-exceedances / misuse may not be detected**

Critical Steps prior to extraction Ambient Processing

Cryogenic Processing

Wait time between homogenization and extraction (could be 1 min but not rarely hours)

Wait time needed for coarsely cut sample to freeze. During this time contact of pesticides on peel with juices

Additionally critical in case of <u>Ambient Milling</u>: <u>Distributional inhomogeneity</u>

Large Peel Pieces

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 19 20 21 22 19 RT milling Cryo milling

Degradation of pesticides in homogenates at room temperature

	Cucumber				Apples		
30 min	180 min	Note		180 min	Note		

Ester Saponification (formation of free carboxylic acids)

Carfentrazone-ethyl	fentrazone-ethyl -7% <mark>-22%</mark> Tra		Transforms to carfentrazone acid (NA) -:		-28%	Transforms to carfentrazone acid (NA)
Clodinafop-propargyl	<mark>-21%</mark>	-63%	Transforms to clodinafop acid (NA) -1		-42%	Transforms to clodinafop acid (NA)
Isoxadifen-ethyl	-4%	-20%	Transforms to isoxadifen acid (NA)	-28%	-56%	Transforms to isoxadifen acid (NA)
Mefenpyr-diethyl	-2%	-4%	Transforms to M. ethyl and M. acid (NA)	-28%	-60%	Transforms to M. ethyl and M. acid (NA)
Pyrafluofen-ethyl	-6%	-16%	Transforms to pyrafluofen acid (NA)	-29%	-58%	Transforms to pyrafluofen acid (NA)
Cinidon-ethyl	-7%	-6%	Transforms to cinidon acid (NA)	-6%	-27%	Transforms to cinidon acid (NA)
Acibenzolar-S-Me	-12%	-45%	Transforms to acibenzolar acid (NA)	NA	NA	

Oxidations of sulfur moieties (formation of oxones, sulfoxides, sulfones)

Famphur	-21% -40% Transforms to oxone (N			6		Stable
Disulfoton	-6%	-44%	D. Sulfoxide ▲ (26%), D. sulfone (8%), respective oxones NA	-16%	-56%	D. sulfoxide ▲ (49%), D. sulfone (10%), respective oxones (NA)
Demeton-S-methyl	-2%	-5%				Oxydemeton methyl 🔺 (24%)
Fenthion	-18%	-33%	Sulfoxide (11%); oxon sulfoxide (24%) 🔺	-7%	-29%	F. sulfoxide 🔺 (26%); oxon sulfoxide(1%)
Ethiofencarb	5%	5%	Stable (-4%)	-11%	-43%	E. sulfoxide 🔺 (27%); sulfone (NA)
Terbufos	-1%	-16%	Transforms to T. sulfoxide, sulfone (NA)	-11%	- <mark>2</mark> 6%	Transforms to T. sulfoxide, sulfone (NA)
Carboxin	-2%	-4%	Stable	-6%	-32%	Transforms to sulfoxide + oxathiine amide sulfoxide and sulfone (oxicarboxin) (NA)

Degradation of pesticides in homogenates at room temperature

Cucumber			Apples		
30	180		30	180	
min	min	Note	min	min	Note

Hydrolysis of N-trihalomethylthio Compounds (sensitive at high pH)

Captan	-63% -9	6% THPI ▲ (not quantified)	-5%	-15%	THPI 🔺 (not quantified)
Folpet	-51% -8	5% Phthalimid 🔺 (not quantified)	8%	-9%	Phthalimid 🔺 (not quantified)
Dichlofluanid	-35% -8	7% DMSA ▲ (not quantified)	-3%	-6%	DMSA 🔺 (not quantified)
Tolylfluanid	- 22% -6	3% DMST ▲ (not quantified)	3%	-2%	DMST ▲ (not quantified)

Methomyl Pro-pesticides (Alanycarb is acid sensitive; Thiodicarb is base-sensitive)

Alanycarb	NA	NA		-100%	-100%	Transforms to methomyl (NA)
Thiodicarb	-8%	-34%	Transforms to methomyl (NA)	1%	7%	stable

Thiolcarbamates

EPTC	-4% -23% Transforms to mercaptane (NA)	-4%	-14% Transforms to mercaptane (NA)
Vernolate	-13% -28% Transforms to mercaptane (NA)	-1%	-20% Transforms to mercaptane (NA)

Degradation of pesticides in homogenates at room temperature

			Cucumber	Apples			
	30 min			30 min	180 min	Note	
Miscellane	eous	s Co	mpounds				
Spirotetramate	-6%	-34%	Formation of Enol 🔺 (7% /28%)	3%	3%	stable	
тсмтв	-2/% -61%		Hydrolysis to 2-mercaptobenzothiazole (MBT)	5%	4%	stable	
Prothioconazole	e -28% -62% Transforms to P. desthi		Transforms to P. desthio (NA)	NA	NA		
Profoxydim	-34%	-86%		NA	NA		
Naled (Dibrom)	-29%	-86%	Debrominates to Dichlorvos ▲ (6%/16%) In parallel degradation to Chlorodibromo- acetaldehyde (NA)	-1%	-7%	stable	
Chlorothalonil	-22%		Binding to matrix + degradation (NA)			stable	
Clofentezine	-1% -42% Hydrolysis to hydrazide hydrazone (NA) and 2-chlorobenzoic acid (NA)		and Z-chlorobenzoic acid (NA)	-7%	17%	Hydrolysis to hydrazide hydrazone (NA) and 2-chlorobenzoic acid (NA)	
Pyrifenox 1	-12%		Hydrolysis of the oxime group,	14%	31%		
Pyrifenox 2	-28%	-100%	degradation product (NA), Indications of isomerization	4%	4%	indications of isomerization	

Typical Cryogenic Milling Approach

Contact between Peel & Juices (+ bag)

Cut in segments

Cut into smaller pieces if needed

+ Fill in a bag

Extract

Freeze-out > 5h (typically over-night)

Mill

Add Dry Ice

+ Remill

Frozen Material

Wait time until sample is placed in freezer

8

Stephan

Wait time until sample gets froze

Experiment on Degradation during Homogenization

P1) Ambient Milling \rightarrow wait 15 min \rightarrow Extraction P2) Ambient Milling \rightarrow wait 2 h \rightarrow Extraction P3) Ambient Milling $\underline{+AA} \rightarrow$ wait 2 h \rightarrow Extraction

<u>AA = Ascorbic Acid</u>

P4) Cover with <u>**Dry ice**</u> \rightarrow wait 15 min \rightarrow <u>**Cryo-milling**</u> \rightarrow Extraction P5) Wait 15 min \rightarrow Freeze 16h \rightarrow <u>**Cryo-milling**</u> \rightarrow Extraction P6) Wait 15 min \rightarrow Freeze 16h \rightarrow <u>**Cryo-milling**+AA</u> \rightarrow Extraction P7) Wait 15 min (<u>**CONTACT**</u>) \rightarrow Freeze 16h \rightarrow <u>**Cryo-milling**+AA</u> \rightarrow Extr.

Experiment on Degradation during Homogenization

#	Sample status	_		Waiting time		RELAT (via ISTD an	Comments			
	during milling	conditions	Addeu		Chlorothalonil	Dichlofluanid	Tolylfluanid	Chlozolinate	Dithianon	
P1	Fresh	Ambient	No	15 min	<mark>3</mark> 7	2	6	35	27	
P2	Fresh	Ambient	No	120 min	10	0	1	<mark>1</mark> 6	11	
P3	Fresh	Ambient	Yes	120 min	<mark>4</mark> 7	1	3	36	190	Not acidic enough for Tolylfluanid and Dichlofluanid
P4	Semi-Frozen	Cryo	No	16 h (freezer)	62	<mark>1</mark> 8	25	55	90	Fresh sample mixed w. dry ice for 15 min before milling
P5	Frozen	Cryo	No	16 h (freezer)	100	100	100	100	100	set at 100%
P6	Frozen	Cryo	Yes	16 h (freezer)	103	112	96	111	272	
	Frozen (w. contact)	Cryo	Yes	16 h (freezer)	<mark>4</mark> 8	31	52	52	63	<u>Contact</u> between peel and juices prior

and during freezing

Pesticides spiked superficially on Cucumbers IS Chlorpyrifos (set at 100%)

- Massive losses during ambient milling (P1-3)
- Losses upon contact between peel & juices (P7) !!
- Oxidations not effectively prevented by cryo-milling

Possible solutions ;-)

-

Eyes and Tongue are OPTIONAL

Ambient versus Cryogenic Processing and impact of HCI-Addition

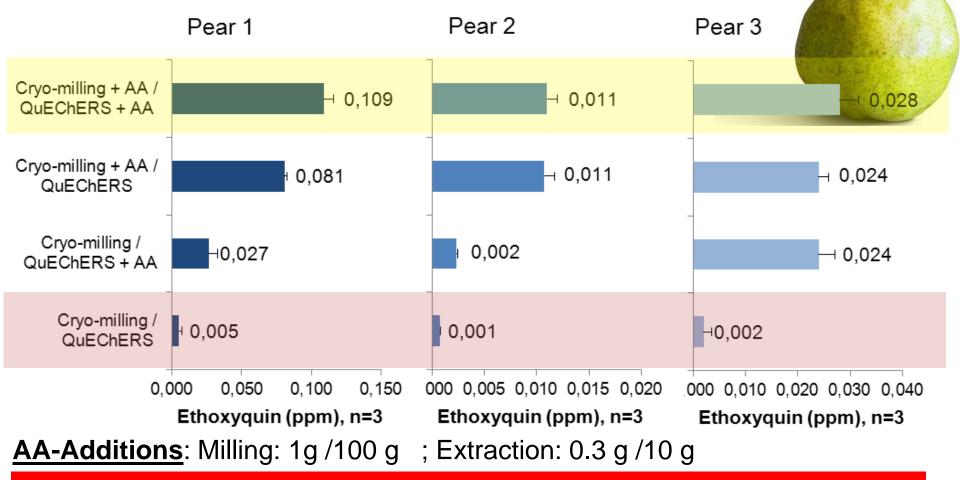
	Tolylfluanid	DMST formed	Rec. SUM [%]
CUCUMBER	Rec. [%]	(expressed as parent)	(expressed as parent)
Ambient	2%	83%	85%
Ambient +HCl	70%	22%	92%
Cryogenic	77%	25%	102%
Cryogenic + HCl	79%	20%	99%

	Dichlofluanid	DMST formed	Rec. SUM [%]
CUCUMBER	Rec. [%]	(expressed as parent)	(expressed as parent)
Ambient	7%	77%	84%
Ambient +HCl	74%	17%	91%
Cryogenic	81%	30%	111%
Cryogenic + HCl	88%	16%	104%

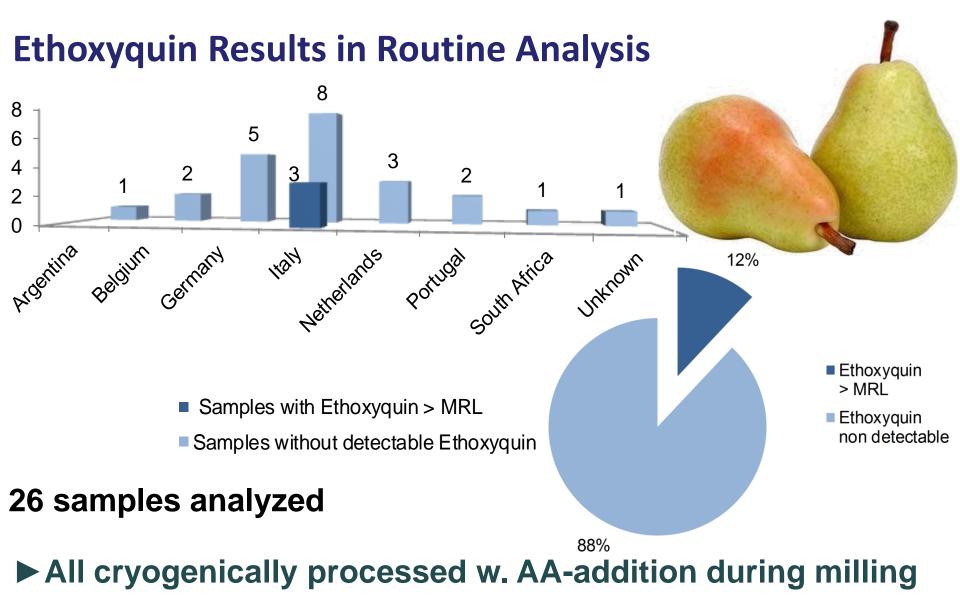
CUCUMBER	Thiodicarb Rec. [%]	Methomyl formed (expressed as parent)	Rec. SUM [%] (expressed as parent)
Ambient	7%	73%	80%
Ambient +HCl	5%	54%	59%
Cryogenic	83%	16%	99%
Cryogenic + HCl	45% (?)	33% (?)	78%

Cucumbers were spiked superficially prior to processing After milling all samples were left 30 min standing before analysis

<u>Conclusion</u>: Cryogenic milling w/o acidication worked well enough

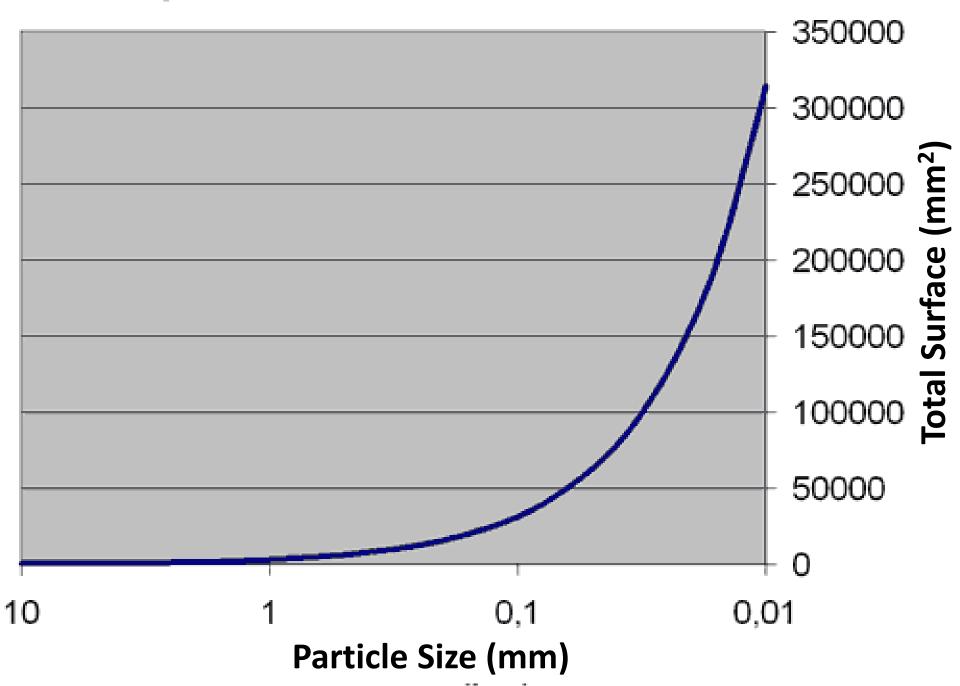

Ambient versus Cryogenic Processing and impact of HCl addition

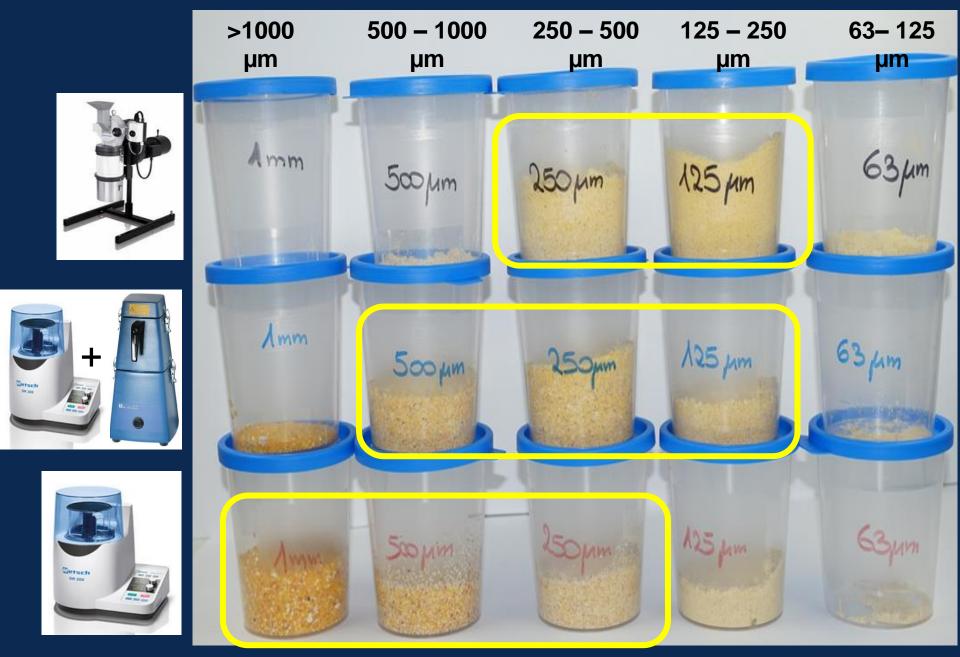
CUCUMBER Ambient Ambient +HCl Cryogenic Cryogenic + HCl	Clodinafop-propargy Rec [%] 38% 90% 97% 91%	
	Dithianon	
CUCUMBER	Rec [%]	
Ambient	4%	
Ambient +HCl	109%	Here acidification
Cryogenic	61%	during milling
Cryogenic + HCl	93%	seems necessary


1

Ethoxyquin losses during Sample Processing + Extraction

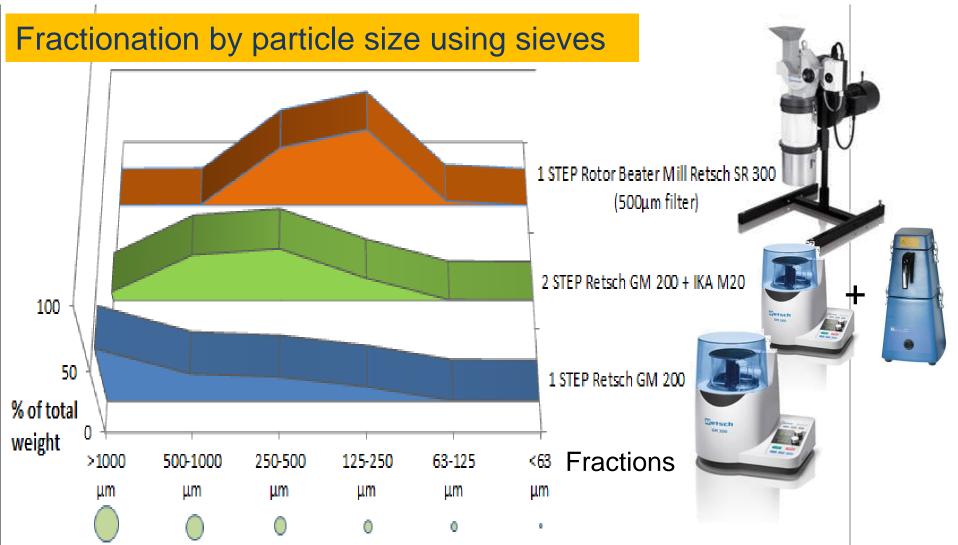
Pears w. incurred EQ (real samples of US-origin)


Adding AA during extraction \rightarrow not enough !! EQ-protection must already start during homogenization !!!

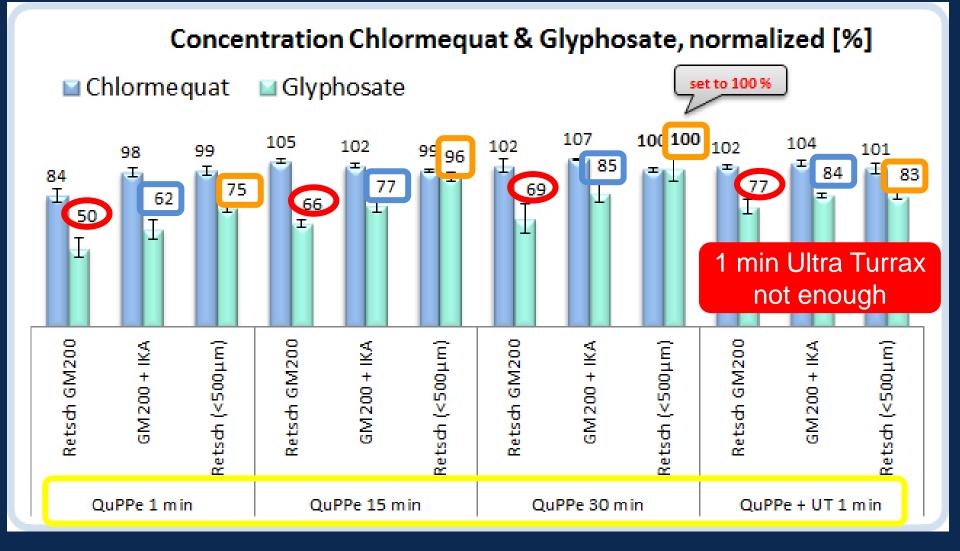

► 3 Italian pears >MRL (also illegal use)

WHAT ABOUT THE IMPACT OF HOMOGENIZATION GRADE ON EXTRACTABILITY?

Impact of Particle Size on Surface Area



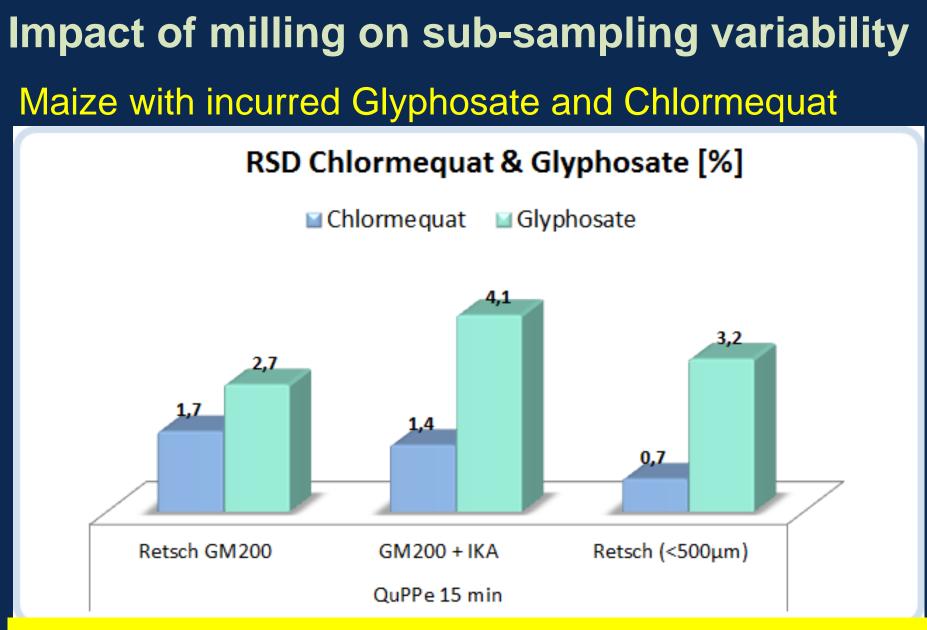
Impact of milling (particle size) on extractability



Maize with Incurred Glyphosate milled in different ways

Impact of milling on extractability Maize with incurred Glyphosate and Chlormequat

Pending Experiments: Milling at <250 µm



Maize with Incurred Glyphosate (PT-sample)

	Mean Rec		
Extraction mode	[%], (n=3)	RSD [%]	
1 min by hand	86	6.7	
15 Min mechanical	100	1.1	
1 Min Ultra Turrax	105	5.5	
15 Min soaking in H2O +1 shaking by hand	103	6.6	

Soaking time had the same impact as agitation time Ultra-Turrax was more effective

Practically no impact on RSDs

(Obviously enough number of particles of each size present)

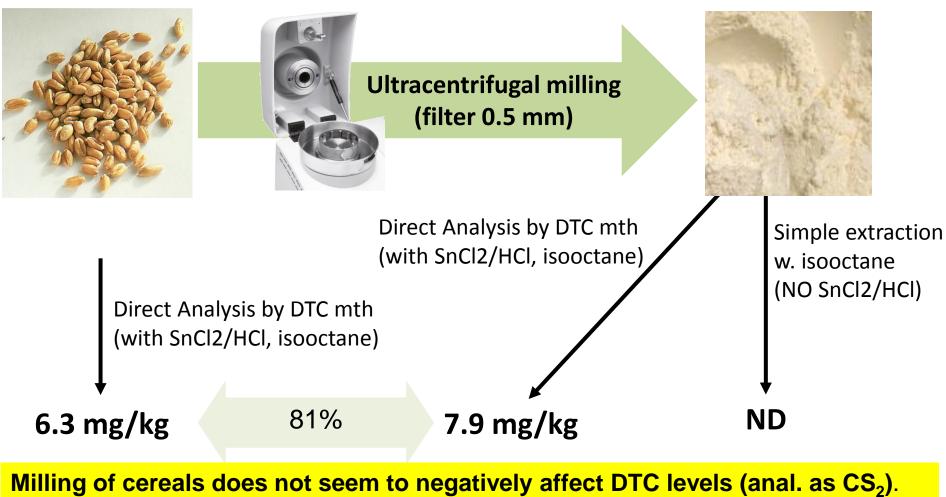
WHAT ABOUT THE IMPACT OF HOMOGENIZATION ON VOLATILES ?

QuMFU (Quick Multi-Method for Fumigants)

- 1. Weigh 10 g of the samples into 50 mL PP tubes
- 2. Add 10 mL of n-Hexane
- 3. Add 100 μ L of internal standard solution (Chlorobenzene D5, 10 μ g/mL)
- 4. Shake tube for 1 minute
- 5. Centrifuged for 5 min at 4000 rpm
- 6. Filter through a syringe filter (0.45 μm), if necessary
- 7. Transfer 1 mL of extract into vials
- 8. Measure via GC-MS/MS / GC-ECD

Impact of milling on extraction yields of incurred fumigants

Maize fumigated in the lab (in a vacuum desiccator)


Approach	1,2-Dibromo- 3-chloro- propane	1,3- Dichloro- propene	Carbon tetra- chloride	p- Dichloro- benzole	p- Nitrochlor- benzol	Tetrachloro- ethan	
	Relative recoveries (%)						
Milled <u>with</u> dry Ice (ultracentrifugal mill 0.5 mm filter)	100	100	100	100	100	100	
Milled <u>without</u> dry ice (ultracentrifugal mill 0.5 mm filter) → HEAT	95	80	75	91	120	95	
Non-milled (1 min shaking)	39	14	48	6	24	32	
Non-milled (15 min shaking)	55	25	74	18	50	47	
		1-1	4	1	Stand I.C.	No.	

Fumigants obviously diffused inside the corn becoming difficult to extract

- Prolonging extraction time to 15 min was helpful but by far not sufficient
- Milling raised extraction yields considerably
- Milling without dry-ice cooling resulted in moderate losses

Wheat with Incurred CS₂ (real market sample provided by NRL)

DTCs endure milling w/o markable CS₂ being formed

Thank you for your attention!

