

ANALYSIS OF "DIFFICULT COMPOUNDS" IN FRUITS AND **VEGETABLES USING MULTIRESIDUE METHODS**

<u>Díaz-Galiano, Francisco José</u>; Cutillas, V.; Murcia-Morales, M.; Rajski, Ł.; Lozano, A.; Ferrer, C.; Fernández-Alba, A. R.*

Agrifood Campus of International Excellence ceiA3 (ceiA3), Department of Chemistry and Physics, University of Almería

e-mail: amadeo@ual.es

The extraction and analysis of certain compounds included multiresidue methods in entails difficulties that should be overcome to ensure the quality of the results. Some commonly most the

COMPLEX RESIDUE DEFINITION: MULTIPLE ANALYTES OR ISOMERS

Compounds whose residue definition includes a variety of analytes such as derivatives and/or isomers. The ratio of these components is not always specified by the vendors

Abamectin – Avermectin B1a (2 isomers with UV interconversion), and B1b

Emamectin – Emamectin B1a (2 isomers with UV interconversion) and B1b

Spinosad – Spinosyn A, spinosyn D; **Spinetoram** – J & L

Spinosad Sum of spinosyn A and D

problematic compounds are described herein.

Cyhalothrin – Complex sum of stereoisomers resulting in multiple chromatographic peaks. Gamma isomer only separable by chiral column. Not all isomers approved for their use

Metaflumizone & Fenpiroxymate – *E* and *Z* isomers in variable proportions

COMPLEX RESIDUE DEFINITION: MULTIPLE DEGRADATION PRODUCTS

Compounds that degrade into multiple metabolites. Residue definition includes all degradation products

Amitraz - DMF, DMPF, DMA

Dazomet – methylisothiocyanate and metam sodium

Fenthion – sulfone, sulfoxide and their oxons

Methiocarb – sulfone and sulfoxide

Prochloraz – BTS 44595, BTS 44596, BTS 45186, BTS 9608, BTS 40348, 2,4,6-trichlorophenol

DEGRADATION INTO OTHER ANALYTES

Compounds that decompose easily into a metabolite that should be included in the analyses

Carbosulfan Benfuracarb Furathiocarb

Degradation into carbofuran

Benomyl – Degradation into **carbendazim**

Alanycarb – Degradation into **methomyl**

Spirotetramat - enol, enol-glucoside, monohydroxy and ketohydroxy metabolites

DEGRADATION BY DIFFERENT CAUSES

SFC analysis

COMPOUNDS AFFECTED BY OTHER COMPONENTS

Captan - Thermal degradation **Folpet** - Thermal degradation

Diafenthiuron - Enzymatic degradation

Prothioconazole - Loss of the thio- moiety

Aniline - Oxidation in the absence of antioxidants

Ethoxyquin - Oxidation

Prothiofos - UV degradation

The presence of sulphur (as a natural matrix component or employed as a plant protection product) or water affects the stability of these compounds

Anthraquinone – Water (coextracts interferences) **Chlorothalonil** – Sulphur (degradation)

Carboxim – Sulphur (oxidation)

Fenthion – Sulphur (oxidation)

COMPOUNDS NOT SUITABLE FOR

QuECHERS-PSA EXTRACTION PROCEDURE

Acidic or basic compounds that need acidic extraction (undergo hydrolysis in basic pH) and/or are incompatible with the use of primary secondary amine (PSA) in the clean-up step. Analyze an aliquot of the sample prior to the clean-up step.

MCPA	МСРВ
2,4-D	Fluazifop-P
Haloxyfop-P	Quizalofop-P
Dithianon	Dichlofluanid
Tolylfluanid	Ioxynil

Compounds with difficulties different to those described above

Dichlorvos, biphenyl – Highly volatile

Bifenazate + bifenazate diazene – Interconversion

Nicotine – Adsorption into glass surfaces