

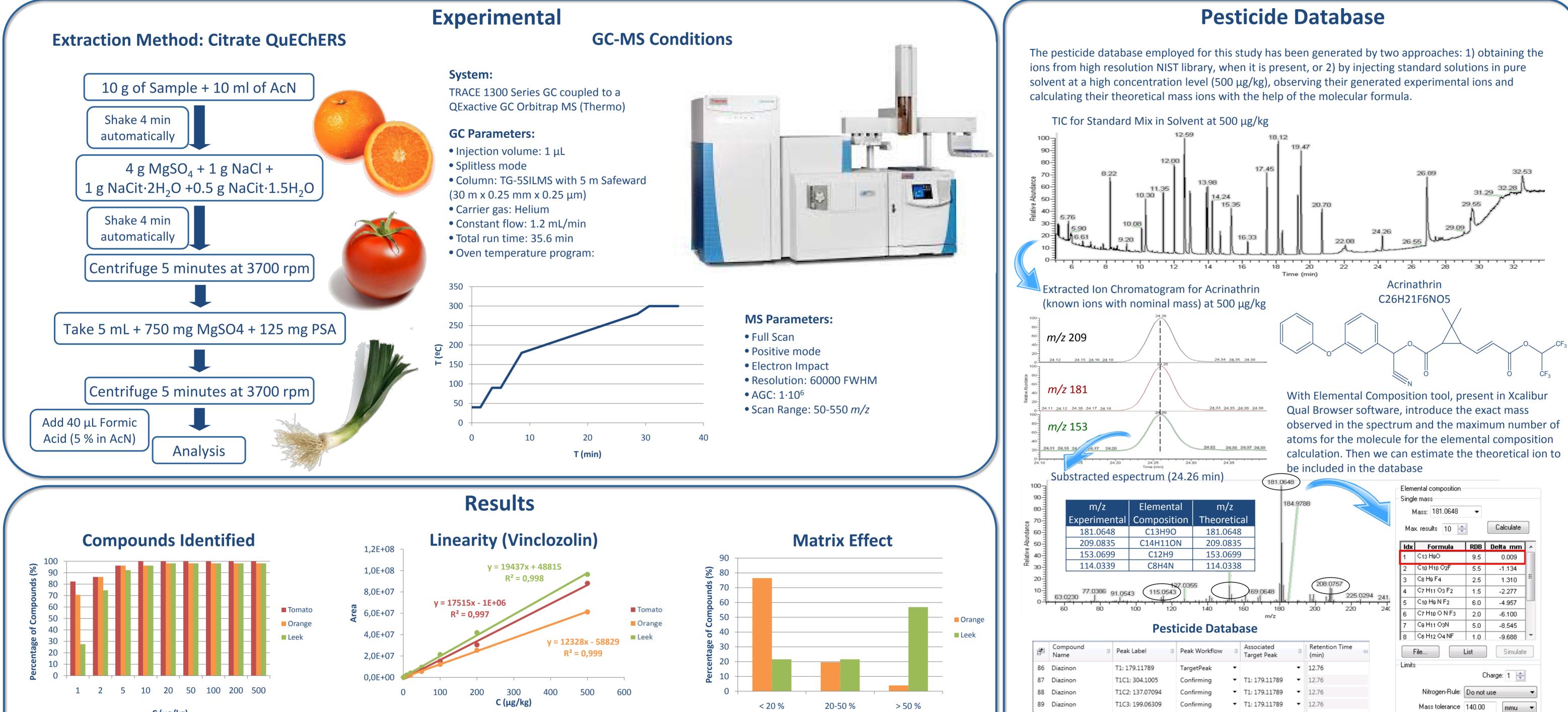
Pesticide Residue Research Group

European Union Reference Laboratory for Pesticide Residues in Fruits and Vegetables UNIVERSITY OF ALMERÍA, ALMERÍA, SPAIN

Identification and Quantification of Pesticides in Fruit and Vegetables with **Accurate Mass Database using Gas Chromatography Coupled to High Resolution Orbitrap Mass Spectrometry**

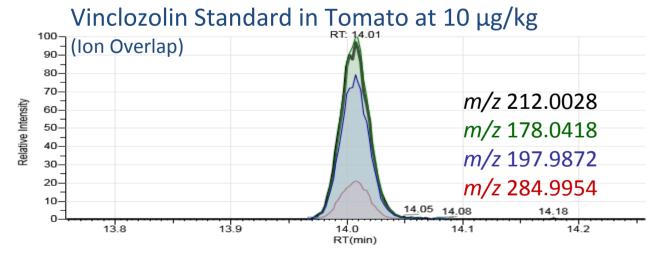
Samanta Uclés, Víctor Cutillas, Amadeo R. Fernández-Alba

Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruits and Vegetables. University of Almería (Spain); e-mail: samantaucles@ual.es


ABSTRACT

To protect and prevent damages in fruit and vegetables crops, the addition of some pesticide residues can be present in the final product. For this reason, to assess the food safety for consumers in fruit and vegetables is an important issue in laboratories.

Typically food samples are analyzed by using high performance or ultra high performance or ultra high performance liquid chromatography (GC) coupled to mass spectrometry (MS) to identify and quantify target compounds. The most common MS systems in routine analysis are based on triple quadrupole (QqQ) analyzers. But, even reaching low detection limits, these techniques have some limitations consequence of their unit mass resolution. That limitation can drive to analytical difficulties consequence of interferences from the matrix. That can represent an incorrect identification. This limitation can be overcome by applying high resolution accurate mass spectrometers (HRAMS) instruments such as Orbitrap-MS.


The present work is focused in the evaluation of GC-Orbitrap-MS, which has a high resolution FWHM at m/z 200, but able to achieve up to 120000) with mass accuracies lower than 5 ppm, according to European Union analytical quality control (EU AQC) procedures, but they were usually < 1 ppm. This evaluation was done by analyzing different representative commodities of fruits and vegetables spiked with 50 different pesticides.

The GC-Orbitrap-MS obtained very low limits of identification, below 5 µg/kg in all cases, good linearity (residuals < 20 % for every calibration level and R² > 0.99) and extremely good mass accuracy (< 1 ppm for around 90 %) for almost all combinations compound/matrix. Repeatability also met criteria described in EU AQC procedures (RSD < 20 %).

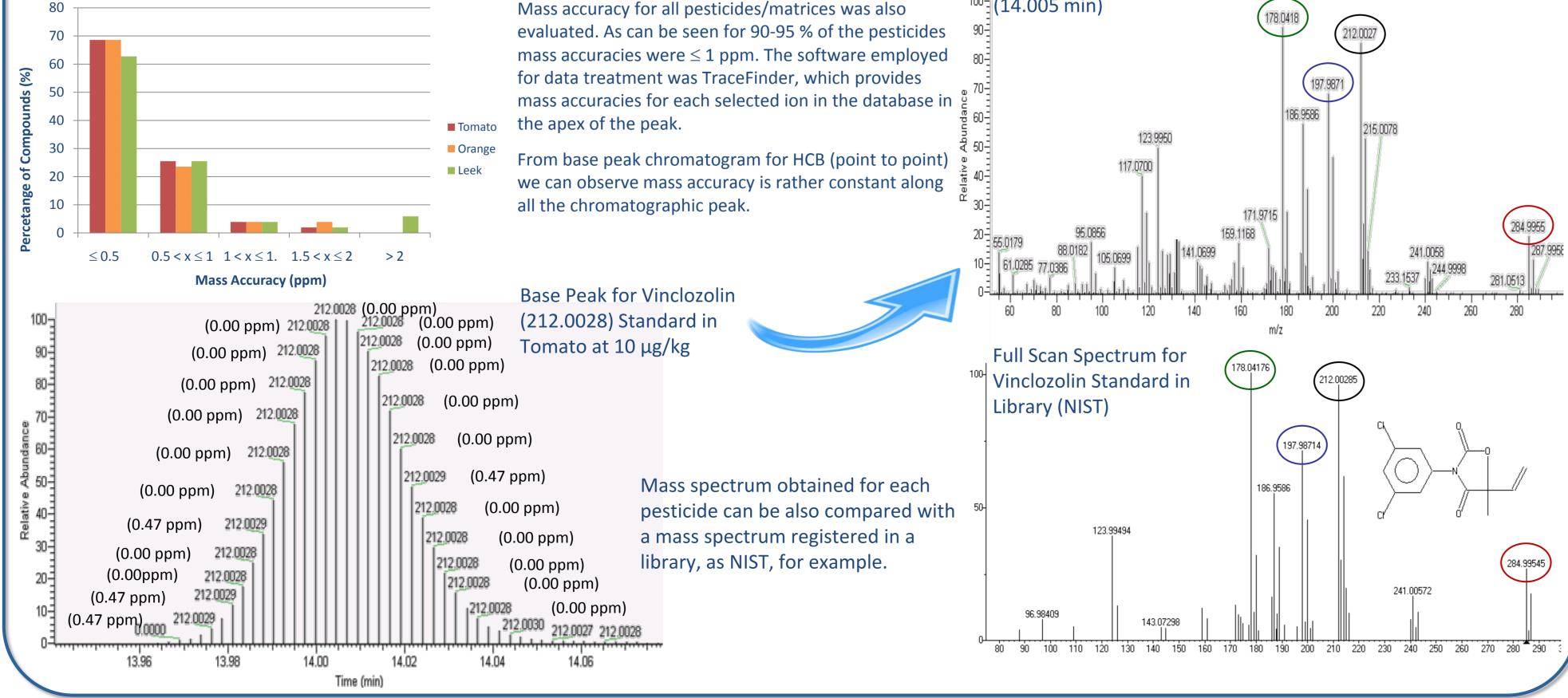
C (µg/kg) A total of 50 different pesticides were selected and spiked in 3 matrices (orange, tomato and leek) at different concentration levels. Identification criteria were: the presence of at least 2 ions, with the correct retention time and mass accuracy < 5 ppm.

Applying the database built for these compounds, all pesticides were identified to SANTE requirements at 10 μ g/kg, except for bromopropylate $\widehat{\mathfrak{S}}$ in leek (20 μg/kg) and chlorothalonil in leek. The limit of detection for the 💈 main quantifying ion was much lower.

Results provided good linearity with residuals < 20 % for each calibration level and R^2 values > 0.99. This system does not saturate for concentrations/conditions tested.

Comparing obtained slopes to tomato matrix, orange presented around 75 % of pesticides with no matrix effect (ME < |20| %). However, leek showed the highest percentage of compounds in the strong matrix effect range (ME > |50| %).

■<5%


5-10 %

> 10 %

Leek

Repeatability was also tested by injecting 5 replicates at $10 \,\mu g/kg$ concentration level and expressed as RSD (%). As average, the result was around 90 % of compounds with RSDs < 5 %.

Full Scan Spectrum for Vinclozolin Standard in Tomato at 10 µg/kg

Substracted espectrum (24.26 min)													
1	E			101.0640	Elemental composition								
1	Pođ				18/ 97	184.9788				- Single mass			
	ᆱ릠	m/z	Elementa	· · · ·				Mass:	181.0648	-			
e	70킠	Experimer	ntal Compositi	on Theoretic	al								
ndan	ᆱ릨	181.0648	8 C13H9O	181.0648	3			Max. resu	lts 10	\$	Ľ		
Abu	൭	209.0835	5 C14H11O	N 209.0835	5		1	ldx F	ormula	RDB	De		
Relative Abundance	40-	153.0699	9 C12H9	153.0699	9			1 C13 F		9.5			
Re	30-	114.0339	9 C8H4N	114.0338	3			2 C10 F	110 O2F	5.5			
:	20-			4		208.0757		3 C8 H9	9 F4	2.5			
	10-	77.0386	31.0543 (115.0543	7.0355	69.0648			4 C7 H1	11 O3 F2	1.5			
	оĘ				<u>a ¦alla a</u> lla <u>a</u>	225.0294		5 C10 H	19 N F2	6.0			
		60 80	100 120	140	160 180 m/z	200 220	240	6 C7 H1	10 O N F3	2.0			
	Pesticide Database							7 C9 H1	11 O3N	5.0			
	resticide Database					·			12 O4 NF	1.0			
	P	Compound Name	Peak Label 🛛 📮	Peak Workflow	Associated Target Peak	Retention Time (min)		File		List] [
	86	Diazinon	T1: 179.11789	TargetPeak 🔹	-	12.76	-	Limits					
	87	Diazinon	T1C1: 304.1005	Confirming •	T1: 179.11789 🔹	12.76				C	harg		
	88	Diazinon	T1C2: 137.07094	Confirming •	T1: 179.11789 🔻	12.76		Nitr	ogen-Rule:	Do not	use		
	89	Diazinon	T1C3: 199.06309	Confirming •	T1: 179.11789 🗸	12.76		Mas:	s tolerance	140.00			
	90	Dichlorvos	T1: 184.9765	TargetPeak 🔹	-	8.25					_		
	91	Dichlorvos	T1C1: 109.00508	Confirming -	T1: 184.9765 -	8.25		Elements ir	{DB equiv:	-1.0-100	J.U		
	92	Dichlorvos	T1C2: 219.94535	Confirming -	T1: 184.9765 -	8.25			_	DD av			
	93	Dichlorvos	T1C3: 127.01554	Confirming -	T1: 184.9765 🔹	8.25		1sotope 14 N	Min Ma 0 1	x DB ec 0.5	<u>-</u>		
	94	Dieldrin	T1: 262.85642	TargetPeak 🔹	-	18.32		16.0	0 5	0.0	+		
	95	Dieldrin	T1C1: 276.8721	Confirming -	T1: 262.85642 -	18.32		12 C	0 26	_			
	96	Dieldrin	T1C2: 344.89834	Confirming -	T1: 262.85642 -	18.32		1 H 35 CI	0 21	-0.5	\rightarrow		
	97	Dieldrin	T1C3: 377.87008	Confirming -	T1: 262.85642 -	18.32		35 CI	-	-0.5	_		
E				2									

Pesticide List

18.32

44

45

46

47

▼ T1: 262.85642

#	Rt (min)	Compound
1	24.70	Acrinathrin
2	30.69	Azoxystrobin (NIST)
3	22.43	Bifenthrin (NIST)
4	9.26	Biphenyl
5	22.55	Bromopropylate (NIST)
6	18.39	Bupirimate (NIST)
7	19.31	Chlorobenzilate (NIST)
8	12.99	Chlorothalonil (NIST)
9	11.40	Chlorpropham (NIST)
10	15.16	Chlorpyrifos (NIST)
11	13.93	Chlorpyrifos-methyl (NIST)
12	24.30	Cyhalothrin, lambda- (NIST)
13	27.64	Cypermethrin (NIST)
14	19.51	DDD pp'- (NIST)
15	18.16	DDE pp'-
16	19.58	DDT op'- (NIST)
17	20.75	DDT pp'- (NIST)

12.73 Diazinon (NIST)

Dichlorvos (NIST)

Endosulfan, alpha- (NIST)

Dieldrin (NIST)

8.23

18.33

17.50

T1C4: 79.05425

98 Dieldrin

18

19

20

21

#	Rt (min)	Compound
27	14.90	Fenpropidin
28	15.36	Fenpropimorph (NIST)
29	16.34	Fipronil (NIST)
30	12.03	НСВ
31	11.92	HCH, alpha- (NIST)
32	12.46	HCH, beta- (NIST)
33	12.62	HCH, gamma- (lindane) (NIST)
34	22.12	Iprodione
35	18.42	Kresoxim-methyl (NIST)
36	14.27	Metalaxyl (NIST)
37	18.33	Myclobutanil (NIST)
38	19.47	Oxadixyl (NIST)
39	14.09	Parathion-methyl (NIST)
40	16.09	Pendimethalin (NIST)
41	10.40	Phenylphenol, 2- (NIST)
42	13.33	Pirimicarb (NIST)
43	16.69	Procymidone (NIST)

12.41 | Propazine (NIST)

12.93 Pyrimethanil (NIST)

12.64 Terbutylazine (NIST)

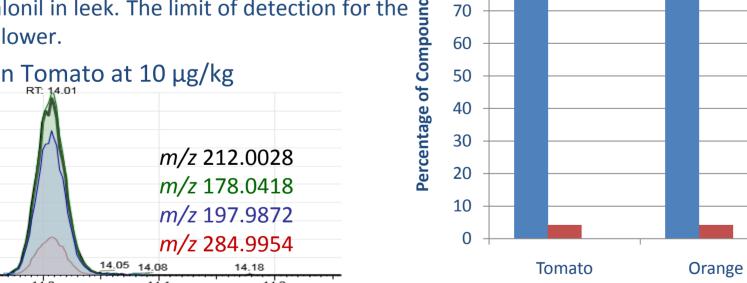
22.35 Tetramethrin (NIST)

Load...

Save as...

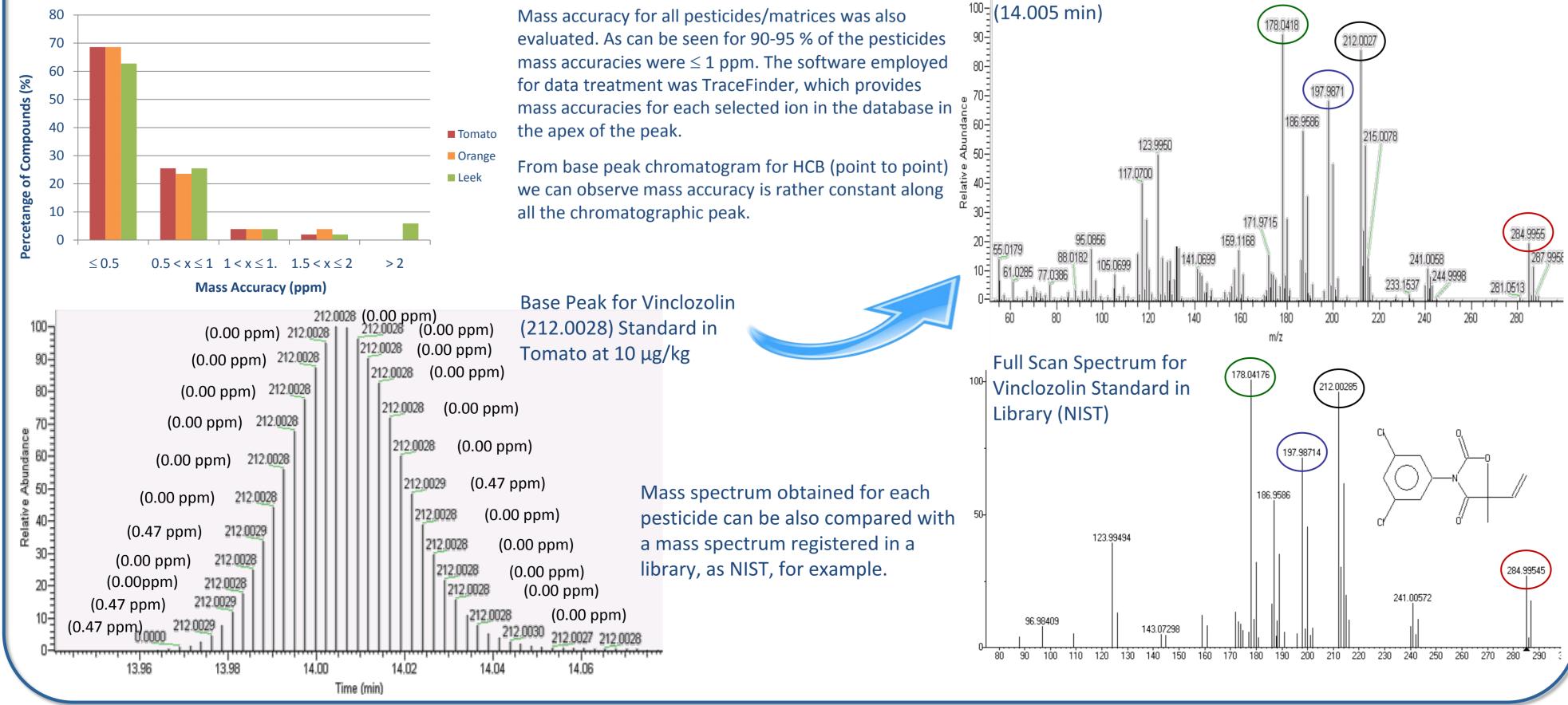
▶ Mass ▲ 14.003 =

15.995


12.000 1.008

Apply

34.969 ----


Help

RSDs, 10 μ g/kg (*n* = 5) 100 90

80

Mass Accuracy at 10 µg/kg

		22	19.32	Endosulfan, beta- (NIST)		48	14.11	Tolclofos-methyl (NIST)			
958		23	20.59	Endosulfan, sulfate- (NIST)		49	21.35	TPP (NIST)			
		24	29.50	Esfenvalerate (SS, RR) (NIST)		50	11.37	Trifluralin (NIST)			
-		25	28.03	Etofenprox (NIST)		51	14.01	Vinclozolin (NIST)			
		26	14.73	Fenitrothion (NIST)					_		
	Conclusions										
	✓ This first evaluation shows the identification power for pesticide residues in fruit and vegetables of this HRAMS platform, being able to evaluate all target selected compounds at 10 μ g/kg, in agreement with the EU AQC procedures.										
✓ Due to the wide linear range is possible to inject real samples with high concentration level pesticide residues with no saturation phenomenon, and so on to adequately quantify them.									s for		

✓ Mass accuracies are < 5 ppm (requirement in EU AQC procedures) and keep constant along chromatographic peak.

✓ This work is an starting point to increase the number of pesticides included in the database for being applied in a higher number of commodities.

THE AUTHORS ACKNOWLEDGE FUNDING SUPPORT FROM THE EUROPEAN COMMISSION, DG SANTE, SPECIFIC AGREEMENT No 7 OF FRAMEWORK PARTHERSHIP AGREEMENT No SANCO/2005/FOOD SAFETY/0025 PESTICIDES IN FRUIT AND VEGETABLES