



EURL for Cereals and feeding stuff National Food Institute Technical University of Denmark

Appendix 3

# Validation Report 11

Determination of Pesticide Residues in wheat by GC-MS/MS SweEt method

> Gitte Andersen and Mette Erecius Poulsen March 2013

# CONTENT

| 1      | Intr             | oduction3                                                                                             |
|--------|------------------|-------------------------------------------------------------------------------------------------------|
| 2      | Prin             | ciple of analysis3                                                                                    |
|        | 2.1              | Sample preparation                                                                                    |
|        | 2.2              | Extraction                                                                                            |
|        | 2.3              | Quantification and qualification                                                                      |
|        | 2.4              | Selectivity and specificity                                                                           |
| 3      | Val              | idation design4                                                                                       |
| 4      | Chr              | omatograms and calibration curves4                                                                    |
| 5      | Val              | idation parameters7                                                                                   |
|        | 5.1              | Precision – repeatability                                                                             |
|        | 5.2              | Accuracy – Recovery                                                                                   |
|        | 5.3              | Limit of quantification, LOQ7                                                                         |
| 6      | Crit             | eria for the acceptance of validation results7                                                        |
| 7      | Res              | ults and discussion7                                                                                  |
| 8      | Con              | clusions8                                                                                             |
| 9      | Ref              | erences                                                                                               |
| A      | ppend            | ix 1: MRM transitions for the all south validated pesticides (Samstik A)                              |
| A<br>V | ppend<br>alidate | ix 2: Recoveries, repeatability (RSDr) and Limit of Quantification (LOQ) for pesticides<br>d on wheat |
| A      | ppend            | ix 3: Flow diagram for SweEt method14                                                                 |

# **1** Introduction

This report describes the validation of the SweEt method combined with GC-MS/MS. The method is a Swedish developed method based on simple and efficient process with ethyl acetate as extraction solvent. This validation does not include testing of the methods robustness. The method was south validated for 67 pesticides and degradation products in wheat.

# 2 Principle of analysis

## 2.1 Sample preparation

The sample was grinded and sifted with an 1.0 mm sieve

#### 2.2 Extraction

The sample was mix with water and extracted with ethyl acetate with 1 % acetic acid by shaken. The sample was briefly shaken with sodium sulphate before the extraction continued by ultrasonic. The ethyl acetate and water phase are separated by centrifugation and the supernatant filtered. The final extract was diluted 1:1 with ethyl acetate to obtain the same matrix concentration as in the calibration standards.

#### 2.3 Clean-up

The method does not include any clean-up step.

#### 2.4 Quantification and qualification

The final extract was analysed by GC-MS/MS (electron energy 70eV, source temp. 180°C, transfer line GC interface 250°C) with an injection volume of 5 µl.

#### 2.5 Selectivity and specificity

GC-MS/MS is a highly selective method, and thereby highly specific. All pesticides were detected in the Multi Reaction Monitoring mode (MRM). For each pesticide two precursor ion and two product ions (where possible) were determined - one product ion for quantification and one for qualification. The MRM transitions for the pesticides and degradation products indented validated are given in appendix 1.

# 3 Validation design

The method was south validated for 67 pesticides or degradation products in wheat. The validation was performed on 5-6 replicates at each of the three spiking levels; 0.01, 0.02 and 0.1 mg/kg. A blank sample of wheat was included. The tests were done on same day with six replicates by the same person.

#### 4 Chromatograms and calibration curves

The calibration curve is determined by the analysis of each of the analysts at least five calibration levels, i.e. 0.003, 0.01, 0.033, 0.1, 0.333  $\mu$ g/ml. The calibration curves were best fitted to a linear curve. The quantification was performed from the mean of two bracketing calibration curves. The majority of the correlation coefficients (R) were higher or equal to 0.99. Examples of chromatograms obtained when analysing the extracts by GC-MS/MS and calibration curves are presented in figure 1 and 2, respectively.



Figure 1 Examples of chromatograms and calibration curves for epoxiconazole in wheat obtained when analysing extract spiked with 0.10 mg/kg. (Two MRM transitions are shown for epoxiconazole) The calibration curve is in a concentrations range from 0.003 to 0.333 µg/ml.



Figure 2 Examples of chromatograms and calibration curves for diazinon in wheat obtained when analysing extract spiked with 0.02 mg/kg. (Two MRM transitions are shown for diazinon) The calibration curve is in a concentrations range from 0.003 to 0.333 µg/ml.

## 5 Validation parameters

#### 5.1 Precision – repeatability

Repeatability was calculated for all pesticides and degradation products on all three spiking levels. Repeatability is given as the relative standard deviation on the result from two or more analysis at the same sample, done by the same technician, on the same instrument and within a short period of time. Repeatability in this validation was calculated from the six replicate determinations. Repeatability was calculated as given in ISO  $5725-2^2$ .

Appendix 2 shows the relative repeatability for the validated pesticides and degradation products.

#### 5.2 Accuracy – Recovery

The accuracy was determined by recovery, samples were spiked at three concentration levels. In appendix 2 recovery, repeatability and limit of quantification (LOQ) are given for the validated pesticides and degradation products for all three spiking levels (0.01 mg/kg, 0.02 mg/kg and 0.1 mg/kg). Recoveries are listed in Appendix 2.

#### 5.3 Limit of quantification, LOQ

Quantification limits (LOQ) are calculated from the results at the lowest accepted spike level, as 6 times the standard deviation (absolute recovery). The quantification limits are given in Appendix 2.

# 6 Criteria for the acceptance of validation results

For the pesticides to be accepted as validated the following criteria for precision and trueness must to be fulfilled:

- 1. The relative standard deviation of the repeatability must be less than or equal to the standard deviation proposed by Horwitz<sup>3</sup>.
- 2. The average relative recovery must be between 70 and  $120 \%^4$ .

If the above mentioned criteria have been meeting, the detection limits have been calculated.

# 7 Results and discussion

The SweEt method has been tested for 67 pesticides and degradations products in wheat using GC-MS/MS. For spikes levels at 0.01, 0.02 and 0.1 mg/kg 52 pesticides were validated. Validations for Dimethoate, Endosulfan sulphate, Endosulfan-alpha, Endosulfan-beta, Deltamethrin (cis) and Chlorpropham were only accepted at spike level 0.1 mg/kg. Endosulfan-alpha was not approved at

the low levels probably due to matrix effect. This could maybe be eliminated by choosing other transitions.

The relative repeatability (RSDr) varied between 2-30 %, however for most the values were below 10 %. For the majority of the pesticides the recovery was in range of 80-110 % at all three concentrations levels.

For a few pesticides at some levels the standard deviations and the relative recovery were only just out of the range in proportion to criteria for acceptance. Due to the all over results at the three spiking levels for these pesticides the minor deviation were accepted.

The combined LOQs were in range of 0.01-0.02 mg/kg, although for Dimethoate, Endosulfan sulphate, Endosulfan-alpha, Endosulfan-beta, Deltamethrin (cis) and Chlorpropham the LOQs were calculated higher (0.12-0.19 mg/kg).

# 8 Conclusions

In conclusion 58 pesticides and degradations products for levels at 0.01, 0.02 and 0.1 mg/kg were validated on wheat SweEt method using GC-MS/MS for the analysis. Six pesticides, Dimethoate, Endosulfan sulphate, Endosulfan-alpha, Endosulfan-beta, Deltamethrin (cis) and Chlorpropham, were only accepted at spike level 0.1 mg/kg.

### **9** References

**1** ISO 5725-2:1994. Accuracy (trueness and precision) of measurement methods and results – Part2. Basic method for the determination of repeatability and reproducibility of standard measurement method. First edition. December 1994.

2 W. Horwitz, Anal. Chem., 1982; 54, 67A.

**3** Method Validation and Quality Control Procedures for Pesticide Residue Analysis in Food and Feed, Document No SANCO/10684/2010, 01/01/2010, European Commission, Brussels, 2010.

4 EU Pesticides database available at http://ec.europa.eu/sanco\_pesticides/public/index.cfm

| G  | C-MS/MS             | Precursor 1 | Fragment ion 1 | Col. energy 1 | Precursor 2 | Fragment ion 2 | Col. energy 2 |
|----|---------------------|-------------|----------------|---------------|-------------|----------------|---------------|
| 1  | Azinphos-methyl     | 160         | 77             | 15            | 132         | 77             | 10            |
| 2  | Azoxystrobin        | 344         | 329            | 15            | 388         | 345            | 15            |
| 3  | Bifenthrin          | 181         | 166            | 10            | 165         | 115            | 20            |
| 4  | Boscalid            | 342         | 140            | 15            | 167         | 139            | 20            |
| 5  | Captan              | 149         | 70             | 12            | 149         | 105            | 2             |
| 6  | Carbofuran          | 149         | 121            | 5             | 164         | 149            | 10            |
| 7  | Carboxin            | 235         | 143            | 5             | 143         | 87             | 5             |
| 8  | Chlorfenvinphos     | 323         | 267            | 15            | 295         | 267            | 5             |
| 9  | Chlorothanlonil     | 266         | 133            | 18            | 266         | 231            | 10            |
| 10 | Chlorpropham        | 213         | 127            | 15            | 213         | 171            | 5             |
| 11 | Chlorpyrifos        | 197         | 169            | 10            | 314         | 258            | 12            |
| 12 | Chlorpyrifos-methyl | 286         | 93             | 20            | 125         | 79             | 5             |
| 13 | Cyfluthrin-total    | 226         | 206            | 10            | 163         | 91             | 10            |
| 14 | Cypermethrin-total  | 163         | 127            | 10            | 181         | 152            | 20            |
| 15 | Cyproconazole       | 222         | 125            | 15            | 139         | 111            | 15            |
| 16 | Cyprodinil          | 226         | 225            | 15            | 223         | 208            | 15            |
| 17 | Deltamethrin-cis    | 181         | 152            | 10            | 253         | 174            | 10            |
| 18 | Diazinon            | 304         | 179            | 10            | 276         | 179            | 10            |
| 19 | Dichlorvos          | 109         | 79             | 5             | 187         | 93             | 10            |
| 20 | Difenoconazole      | 323         | 265            | 15            | 325         | 267            | 15            |
| 21 | Dimethoate          | 229         | 87             | 7             | 125         | 79             | 6             |
| 22 | Endosulfan sulfate  | 272         | 236            | 20            | 387         | 252            | 10            |
| 23 | Endosulfan α        | 195         | 159            | 5             | 339         | 159            | 20            |
| 24 | Endosulfan β        | 195         | 159            | 5             | 339         | 159            | 20            |
| 25 | Epoxiconazole       | 192         | 138            | 10            | 206         | 165            | 5             |
| 26 | Ethion              | 384         | 231            | 5             | 231         | 203            | 15            |
| 27 | Fenbuconazole       | 198         | 129            | 10            | 129         | 102            | 15            |
| 28 | Fenitrothion        | 277         | 260            | 5             | 277         | 109            | 15            |
| 29 | Fenpropidin         | 98          | 70             | 10            | 99          | 71             | 10            |
| 30 | Fenpropimorph       | 303         | 128            | 5             | 117         | 115            | 10            |
| 31 | Fenvalerate         | 167         | 125            | 10            | 125         | 99             | 10            |
| 32 | Fipronil            | 367         | 213            | 20            | 367         | 255            | 15            |

Appendix 1: MRM transitions for the all south validated pesticides (Samstik A)

| GC-MS/MS              | Precursor 1 | Fragment ion 1 | Col. energy 1 | Precursor 2 | Fragment ion 2 | Col. energy 2 |
|-----------------------|-------------|----------------|---------------|-------------|----------------|---------------|
| 33 Fluquinconazole    | 340         | 298            | 15            | 339         | 298            | 15            |
| 34 Flutriafol         | 219         | 123            | 15            | 123         | 95             | 10            |
| 35 HCH alpha          | 217         | 181            | 10            | 219         | 183            | 10            |
| 36 HCH beta           | 217         | 181            | 10            | 219         | 183            | 10            |
| 37 Hexaconazole       | 231         | 175            | 10            | 214         | 172            | 15            |
| 38 Iprodione          | 314         | 245            | 10            | 216         | 187            | 5             |
| 39 Isoprothiolane     | 290         | 118            | 10            | 290         | 204            | 2             |
| 40 Kresoxim-methyl    | 206         | 116            | 4             | 206         | 131            | 10            |
| 41 Lambda-cyhalothrin | 197         | 141            | 10            | 208         | 181            | 10            |
| 42 Lindane            | 217         | 181            | 10            | 219         | 183            | 10            |
| 43 Malathion          | 173         | 99             | 10            | 173         | 127            | 5             |
| 44 Metconazole        | 125         | 89             | 10            | 127         | 89             | 10            |
| 45 Metribuzin         | 198         | 82             | 15            | 214         | 198            | 5             |
| 46 2-phenylphenol     | 141         | 115            | 15            | 170         | 169            | 10            |
| 47 Parathion          | 291         | 109            | 10            | 291         | 81             | 20            |
| 48 Penconazole        | 248         | 157            | 20            | 159         | 123            | 15            |
| 49 Pendimethalin      | 281         | 252            | 5             | 252         | 162            | 5             |
| 50 Permethrin         | 183         | 168            | 15            | 183         | 153            | 10            |
| 51 Phosphamidone      | 264         | 127            | 10            | 127         | 109            | 10            |
| 52 Pirimicarb         | 238         | 166            | 10            | 166         | 96             | 10            |
| 53 Pirimiphos-methyl  | 305         | 290            | 10            | 290         | 233            | 10            |
| 54 Prochloraz         | 180         | 138            | 10            | 310         | 268            | 5             |
| 55 Procymidone        | 283         | 96             | 6             | 283         | 254            | 10            |
| 56 Propiconazole      | 173         | 145            | 15            | 259         | 173            | 15            |
| 57 Pyrimethanil       | 199         | 198            | 5             | 198         | 183            | 10            |
| 58 Quinoxyfen         | 237         | 208            | 20            | 272         | 237            | 15            |
| 59 Tebuconazole       | 250         | 125            | 15            | 125         | 89             | 10            |
| 60 Thiamethoxam       | 212         | 139            | 10            | 247         | 182            | 10            |
| 61 Triadimefon        | 208         | 181            | 5             | 181         | 111            | 10            |
| 62 Triadimenol        | 168         | 70             | 5             | 128         | 100            | 10            |
| 63 Triazophos         | 257         | 162            | 5             | 285         | 162            | 10            |
| 64 Trifloxystrobin    | 222         | 190            | 5             | 186         | 145            | 10            |
| 65 Trifluralin        | 264         | 206            | 5             | 290         | 248            | 10            |
| 66 Triticonazole      | 235         | 182            | 15            | 217         | 167            | 15            |
| 67 Vinclozolin        | 285         | 212            | 5             | 198         | 145            | 15            |

# Appendix 2: Recoveries, repeatability (RSDr) and Limit of Quantification (LOQ) for pesticides validated

on wheat

|                     | Spike level |                    |  | Spike level |                    | Spike level |                    |       |
|---------------------|-------------|--------------------|--|-------------|--------------------|-------------|--------------------|-------|
| SweEt - Wheat       | mg/kg       | Horwitz, %         |  | mg/kg       | Horwitz, %         | mg/kg       | Horwitz, %         |       |
|                     | 0.01        | 32                 |  | 0.02        | 29                 | 0.1         | 23                 |       |
|                     | Recovery, % | RSD <sub>r</sub> % |  | Recovery, % | RSD <sub>r</sub> % | Recovery, % | RSD <sub>r</sub> % | LOQ   |
| Azoxystrobin        | 79          | 21                 |  | 82          | 9                  | 71          | 5                  | 0.010 |
| Bifenthrin          | 89          | 6                  |  | 82          | 2                  | 74          | 5                  | 0.003 |
| Boscalid            | 81          | 11                 |  | 73          | 6                  | 67          | 5                  | 0.005 |
| Chlorfenvinphos     | 101         | 6                  |  | 98          | 2                  | 86          | 4                  | 0.004 |
| Chlorpropham        |             |                    |  |             |                    | 93          | 11                 | 0.012 |
| Chlorpyrifos        | 105         | 4                  |  | 109         | 6                  | 88          | 4                  | 0.002 |
| Chlorpyrifos-methyl | 113         | 5                  |  | 105         | 4                  | 79          | 5                  | 0.003 |
| Cyfluthrin-total    | 65          | 20                 |  | 76          | 9                  | 77          | 7                  | 0.008 |
| Cypermethrin-total  | 97          | 8                  |  | 80          | 10                 | 72          | 4                  | 0.004 |
| Cyproconazole       | 89          | 3                  |  | 95          | 5                  | 87          | 5                  | 0.002 |
| Cyprodinil          | 120         | 17                 |  | 119         | 10                 | 85          | 7                  | 0.012 |
| Deltamethrin (cis)  |             |                    |  |             |                    | 86          | 8                  | 0.018 |
| Diazinon            | 115         | 5                  |  | 95          | 3                  | 68          | 4                  | 0.004 |
| Difenoconazole      | 78          | 13                 |  | 77          | 7                  | 67          | 5                  | 0.006 |
| Dimethoate          |             |                    |  |             |                    | 75          | 8                  | 0.195 |
| Endosulfan sulfate  |             |                    |  |             |                    | 73          | 20                 | 0.027 |
| Endosulfan-alpha    |             |                    |  |             |                    | 92          | 9                  | 0.039 |
| Endosulfan-beta     |             |                    |  |             |                    | 79          | 12                 | 0.076 |
| Epoxiconazole       | 82          | 6                  |  | 80          | 2                  | 77          | 5                  | 0.003 |
| Ethion              | 112         | 5                  |  | 94          | 2                  | 70          | 2                  | 0.003 |
| Fenbuconazole       | 92          | 14                 |  | 83          | 7                  | 72          | 4                  | 0.008 |
| Fenitrothion        | 110         | 5                  |  | 100         | 2                  | 77          | 3                  | 0.003 |
| Fenpropidin         | 104         | 11                 |  | 103         | 8                  | 91          | 3                  | 0.007 |
| Fenpropimorph       | 111         | 5                  |  | 88          | 8                  | 76          | 3                  | 0.004 |

|                    | Spike level |                    |  | Spike level |                    |  | Spike level |                    |       |
|--------------------|-------------|--------------------|--|-------------|--------------------|--|-------------|--------------------|-------|
| SweEt - Wheat      | mg/kg       | Horwitz, %         |  | mg/kg       | Horwitz, %         |  | mg/kg       | Horwitz, %         |       |
|                    | 0.01        | 32                 |  | 0.02        | 29                 |  | 0.1         | 23                 |       |
|                    | Recovery, % | RSD <sub>r</sub> % |  | Recovery, % | RSD <sub>r</sub> % |  | Recovery, % | RSD <sub>r</sub> % | LOQ   |
| Fenvalerate RS-SR  |             |                    |  |             |                    |  | 84          | 8                  | 0.004 |
| Fipronil           | 104         | 6                  |  | 95          | 5                  |  | 74          | 2                  | 0.004 |
| Fluquinconazole    | 86          | 14                 |  | 82          | 4                  |  | 71          | 6                  | 0.007 |
| Flutriafol         | 130         | 9                  |  | 109         | 6                  |  | 94          | 5                  | 0.007 |
| HCH - alpha        | 105         | 11                 |  | 112         | 8                  |  | 99          | 4                  | 0.007 |
| HCH - beta         | 111         | 2                  |  | 108         | 5                  |  | 85          | 2                  | 0.001 |
| Hexaconazole       | 94          | 15                 |  | 101         | 12                 |  | 94          | 6                  | 0.008 |
| Iprodione          | 79          | 13                 |  | 110         | 4                  |  | 81          | 6                  | 0.006 |
| Isoprothiolane     | 98          | 6                  |  | 97          | 3                  |  | 79          | 6                  | 0.004 |
| Kresoxim-methyl    | 83          | 7                  |  | 92          | 3                  |  | 78          | 7                  | 0.004 |
| Lambda-cyhalothrin | 102         | 19                 |  | 99          | 5                  |  | 90          | 4                  | 0.012 |
| Lindane            | 112         | 3                  |  | 111         | 7                  |  | 85          | 2                  | 0.002 |
| Malathion          | 71          | 12                 |  | 71          | 3                  |  | 77          | 6                  | 0.005 |
| Metconazole        | 75          | 19                 |  | 73          | 15                 |  | 81          | 7                  | 0.009 |
| Metribuzin         | 77          | 18                 |  | 89          | 8                  |  | 74          | 5                  | 0.025 |
| Parathion          | 108         | 6                  |  | 102         | 4                  |  | 80          | 4                  | 0.004 |
| Pendimethalin      | 109         | 8                  |  | 104         | 10                 |  | 77          | 6                  | 0.005 |
| Permethrin         | 107         | 25                 |  | 90          | 18                 |  | 90          | 5                  | 0.016 |
| Phosphamidone      | 106         | 12                 |  | 95          | 7                  |  | 76          | 5                  | 0.008 |
| Pirimicarb         | 120         | 3                  |  | 117         | 2                  |  | 81          | 6                  | 0.002 |
| Pirimiphos-methyl  | 117         | 4                  |  | 100         | 7                  |  | 71          | 5                  | 0.003 |
| Procymidone        | 91          | 10                 |  | 99          | 4                  |  | 83          | 3                  | 0.005 |
| Propiconazole      | 80          | 30                 |  | 82          | 13                 |  | 73          | 5                  | 0.015 |
| Pyrimethanil       | 109         | 6                  |  | 88          | 2                  |  | 72          | 4                  | 0.004 |
| Quinoxyfen         | 103         | 2                  |  | 101         | 3                  |  | 83          | 4                  | 0.001 |
| Tebuconazole       | 80          | 10                 |  | 80          | 7                  |  | 79          | 6                  | 0.005 |
| Thiamethoxam       | 73          | 30                 |  | 75          | 10                 |  | 69          | 5                  | 0.013 |

|                 | Spike level |                    | Spike level |                    | Spike level |                    |       |
|-----------------|-------------|--------------------|-------------|--------------------|-------------|--------------------|-------|
| SweEt - Wheat   | mg/kg       | Horwitz, %         | mg/kg       | Horwitz, %         | mg/kg       | Horwitz, %         |       |
|                 | 0.01        | 32                 | 0.02        | 29                 | 0.1         | 23                 |       |
|                 | Recovery, % | RSD <sub>r</sub> % | Recovery, % | RSD <sub>r</sub> % | Recovery, % | RSD <sub>r</sub> % | LOQ   |
| Triadimefon     | 89          | 12                 | 74          | 4                  | 80          | 5                  | 0.006 |
| Triadimenol     | 85          | 21                 | 70          | 11                 | 84          | 4                  | 0.011 |
| Triazophos      | 98          | 11                 | 87          | 5                  | 70          | 2                  | 0.007 |
| Trifloxystrobin | 113         | 24                 | 109         | 22                 | 79          | 4                  | 0.019 |
| Trifluralin     | 119         | 6                  | 109         | 7                  | 80          | 4                  | 0.004 |
| Triticonazole   | 108         | 18                 | 109         | 8                  | 88          | 7                  | 0.012 |
| Vinclozolin     | 113         | 19                 | 105         | 7                  | 74          | 4                  | 0.013 |

# Appendix 3: Flow diagram for SweEt method

| In a 50 ml centrifuge tube with screw cap:<br>$5 \pm 0.05$ g grinded sample (1 mm)<br>$10 \pm 1.0$ ml water |
|-------------------------------------------------------------------------------------------------------------|
| $10 \pm 0.05$ ml ethyl acetate with 1 % acetic acid                                                         |
| Shake in 30 second with Voetex-Genie shake instrument                                                       |
| Add:                                                                                                        |
| $10 \pm 0.5$ g sodium sulphate                                                                              |
| Shake in 10 second                                                                                          |
|                                                                                                             |
| Extract in ultrasound bath in 30 minutes                                                                    |
| Centrifuge in 3 minutes at 1500 g                                                                           |
| Filter the organic face true 0.2 $\mu$ m syringe filters                                                    |
| Analysis by GC-MS/MS or LC-MS/MS                                                                            |
|                                                                                                             |