

1st CRL/NRL PESTICIDE RESIDUE TRAINING WORKSHOP

6th – 7th December, 2006 – Stuttgart GERMANY

LARGE SCALE PESTICIDE MULTIRRESIDUE METHODS BY LC-TOF/MS FOLLOWED BY LC-QqQ/MS

Amadeo R. Fernández-Alba CRL Pesticides for Fruits and Vegetables University of Almería SPAIN

? pesticides in MRM

Number of Registered Pesticides

EUPT 6

PESTICIDES	Nº of reported results	Nº of NA reported	False negatives	% of results from the total 127
Acrinathrin	69	52	4	58
Azoxystrobin	91	27	7	77
Bromopropylate	117	7	1	93
Chlorothalonil	113	9	3	91
Diazinon	123	2	0	97
Dimethoate	113	4	8	95
Endosulfan	118	5	2	95
Imazalil	87	23	15	80
Imidacloprid	51	69	5	44
CS2	77	45	3	63
Oxydemeton-methyl	42	72	11	42
Procymidone	119	6	0	94
Thiabendazole	87	31	7	74

EUPT 7

PESTICIDES	N⁰ of reported results	N⁰ of NA (not sought)	False negatives	% of results from the total 125
Acetamiprid	56	67	2	44.8
Carbaryl	101	24	0	80.8
Cyprodinil	99	24	2	79.2
Diazinon	123	2	0	98.4
Dimethoate	119	2	4	95.2
Fenhexamid	89	36	0	71.2
Fludioxonil	85	36	4	68.0
Imidacloprid	64	60	1	51.2
Iprodione	113	8	4	90.4
Kresoxim-methyl	104	20	1	83.2
Methomyl	71	45	9	56.8
Monocrotophos	89	30	5	71.2
Procymidone	121	4	0	96.8
Pyrimethanil	98	25	2	78.4
Tetraconazole	70	49	6	56.0
Thiabendazole	104	17	3	83.2

EUPT 8

PESTICIDES	Nº of reported results	N⁰ of NA (not sought)	False negatives	% of results from the total 128
Acetamiprid	78	47	3	61
Azoxystrobin	113	15	0	88
Bifenthrin	119	9	0	93
Bromopropylate	125	3	0	98
Carbaryl	108	17	3	84
Carbendazim	94	34	0	74
Chlorpyrifos	127	1	0	99
Cyprodinil	114	13	1	89
Diazinon	127	1	0	99
Dichlofluanid	113	5	10	88
Fludioxonil	92	33	3	72
Imazalil	107	14	7	84
Lambda-cyhalothrin	121	5	2	95
Myclobutanil	114	14	0	89
Parathion	114	10	4	89
Pirimicarb	114	14	0	89

Types of analyte encountered in GC-LC/MS relative to the associated identification processes and respective techniques

On

SPE clean-up

SOLVENT EXTRACTION METHOD

Commodities with high water content (e.g. lettuce, tomatoes, strawberries) Fruits with high acid content (e.g. lemons, oranges, grapefruits)

without clean-up

SPE

High Sensitivity (LOQ) Multiclass compounds High identification criteria

SPE clean.

Practical design of a batch of samples

QC PROCEDURES FOR PEST. RES. ANAL. Guidelines for Residues Monitoring Control in the European Union

Document 7826/VI/97

• 20 min (analysis time) + 10 min (equilibration) = 30 min/analysis

around 50 analysis/day

samples???

LC-TOF/MS

Inlets – Electrospray Ion Source

Dual sprayer design for Sample and lock mass compound

Analytical Sprayer

Reference Sprayer

Pump Bin Pump2 Column DAD MS T	OF
Data Acquisition Ref. Masses Chroma	atogram Optimization Calibration Tune
Enable Reference Mass Correction	Select Reference Masses
🔽 Use Bottle A	Edit Mass Lists.
Auto Recalibration Parameters Average 7 scans	322.048121 ☑ 622.02896 ☑ 922.009798
Reference Mass Detection 100 ppm Window	□ 1221.990637 □ 1521.971475 □ 1821.952313 ■ 1821.952313
Minimum 50 counts Height	Check All Check None

Accurate Mass in Small Molecules

- Single quad reports mass to +/- 0.1 = 165 ppm
- Number of possible formulas (approx.) using only C, H, O & N:
 - 165 ppm (quad) 209
 - 10 ppm 13
 - 5 ppm 7
 - 3 ppm 4
 - 2 ppm 2
- Accurate mass reduces the number of possible molecules.

Database-assisted LC/TOF/MS accurate mass identification of non-targeted pesticide residues

Database-assisted LC/TOF/MS accurate mass identification of non-targeted pesticide residues

Comp DIURON	Formula C9H10Cl2N2O	
Est Diuron Positive Mode	-NHCON(CH ₃)2	
[M+H]	233,0243	rrar formulario
Registro: 🚺 🔹 1	▶ ▶ ▶ ▶ ★ de 1	

Does it match with the elemental composition provided by the instrument?

YES

	Formula	Calculated m/z (amu)	mDa Error	ppm Error	DBE
1	C9 H11 N2 O C12	233.02429	0.205	0.8798	4.5
	-H⁺ С ₉ Н 0.9	10N2OCI2 ppm			

Database-assisted LC/TOF/MS accurate mass identification of non-targeted pesticide residues

7	ntor Daramata	ar Malua			
		a value	_		
	Masa				
	233.0245				
		ОК	Cancel		
		.			
)al	abase re	esults	<u> </u>	atch	57
	Comp	Formula			
	Est	C9H10Cl2N2O			
	Diuron Positive Mode				
		-NHCON(CH ₃) ₂			~
	a /				
	C ₉ H ₁₀ Cl ₂ N ₂ O				
	[M+H]	233,0243		Cerrar formulario	
R	egistro: 📕 🔳 👔 1	▶ ▶ ▶ ▶ ★ de 1			

Linearity and matrix effects LC-TOF/MS

Linearity by LC/TOFMS (3 orders of magnitude)

Drawbacks of LC/TOFMS

Linearity over 3 orders of magnitude Quantitation performance might depend upon each individual compound, its sensitivity and MRLs

Imazalil MRL in citrus 5-10 mg/kg

Drawbacks of LC/TOFMS

Confirmation criteria: Identification Points (IPs) Selected pesticides often yield poor in-source CID fragmentation and does not meet 3(4) IP Confirmation criterion

Drawbacks of LC/TOFMS Confirmation criteria: Identification Points (IPs)

Drawbacks of LC/TOFMS Confirmation criteria: Identification Points (IPs)

Drawbacks of LC/TOFMS Confirmation criteria: Identification Points (IPs)

Comparative evaluation of LC-TOF/MS and LC/MS/MS for pesticide residue analysis

	TARGET	NON-TARGET	UNKNOWNS
TQuad - QTRAP (SRM)	OK [Average V LOD < 1 ng/g]	KO	KO
TOF	OK [Average LOD 1-10 ng/g]	ок 🗸	ОК

TOF offers complementary features to MS/MS (SRM) instruments for comprehensive investigations of pesticides on FOOD

PROPOSED WORKFLOW FOR THE SCREENING, CONFIRMATION AND QUANTITATION OF "TARGET" PESTICIDE RESIDUES IN VEGETABLE SAMPLES

Development of an LC-TOF/MS automated procedure to identify target pesticides at low concentration levels using retention time / m/z data

As example: 104 MULTICLASS PESTICIDES IN FRUITS, VEGETABLES,...

Acetamiprid	Chloroxuron	Fluometuron	Methidathion	Simazine
Albendazole	Cymoxanil	Fluroxypir	Methomyl	Spinosyn A
Aldicarb	Cyproconazole	Hexaflumuron	Methyl-thiophanate	Spinosyn D
Aldicarb sulfoxide	Cyromazine	Hexythiazox	Metobromuron	Spiroxamine
Aldicarb sulphone	Diazinon	Imazalil	Miconazole	Tebuconazole
Atrazine	Diazoxon	Imazalil metabolite	Monolinuron	Teflubenzuron
Azoxystrobin	Dichlofluanid	Imidacloprid	Monuron	Tetraconazole
Bendiocarb	Difenoxuron	loxynil	Neburon	Terbuthylazine
Bromacil	Diflubenzuron	Iprodione	Nitempyram	Thiabendazole
Bromoxynil	Dimethoate	Isoproturon	Oxadixyl	Thiacloprid
Bromuconazole	Dimethomorph	Lenacil	Oxamyl	Thiamethoxam
Buprofezin	Diuron	Linuron	Oxfendazole	Thiobencarb
Butocarboxin	Ethiofencarb	Lufenuron	Prochloraz	Thiofanox
Butoxicarboxin	Ethiofencarb sulphone	Malathion	Prochloraz-metabolite	Thiofanox sulfone
Cambendazole	Ethiofencarb sulfoxide	Metalaxyl	Procymidone	Thiofanox sulfoxide
Carbendazim	Ethoxyquin	Mebendazole	Prometryn	Thiram
Carbofuran	Fenamiphos	Mecarbam	Propazine	Triadimenol
Chloridazon	Fenbendazole	Metamytron	Promecarb	Triadimefon
Chlorotoluron	Flazasulfuron	Methiocarb	Propoxur	Triflumuron
Chlorobromuron	Flubendazole	Methiocarb sulphone	Pyrimethanil	Vinclozolin
Chlorfluazuron	Flufenoxuron	Methiocarb sulfoxide	Pyriproxifen	$\Sigma = 104 \text{ pests}$
Automatic assignment of retention time/m/z data for the targeted pesticides

COMPOUND	ACCURATE MASS	M/Z WINDOW	
Acetamiprid	223.0745	223.02-223.12	>
Albendazole	266.09577	266.04-266.14	
Aldicarb	191.0847	191.03-191.13	A
Atrazine	216.10104	216.05-216.15	
Azoxystrobin	404.12409	404.07-404.17	
Bendiocarb	224.09173	224.04-224.14	
Bromacil	261.02331	260.97-261.07	· 🔥 📕
Bromoxynil	275.86541	275.81-275.91	
Bromuconazole	375.96135	375.91-376.01	
Buprofezin	306.1639	306.11-306.21	Retention time – m/z data
Butocarboxin	213.06682	213.01-213.11	
Cambendazole	303.09102	303.04-303.14	
Carbendazim	192.07675	192.03-192.13	
Carbofuran	222.11246	222.06-222.16	
Chloridazon	222.04286	222.0-222.1	×
Chlorotoluron	213.07891	213.03-213.13	
Chlorobromuron	292.96869	292.92-293.02	

RESULTS

Lemon extract spiked with 0.05 mg/Kg of 25 targeted pesticides

The Sample matrices can be complex and the target compounds do not necesarily appear as distinguisable peaks

Lemon extract spiked with 0.05 mg/Kg of 25 targeted pesticides

Acetamiprid	Chloroxuron	Fluometuron	Methidathion	Simazine
Albendazole	Cymoxanil	Fluroxypir	Methomyl	Spinosyn A
Aldicarb	Cyproconazole	Hexaflumuron	Methyl-thiophanate	Spinosyn D
Aldicarb sulfoxide	Cyromazine	Hexythiazox	Metobromuron	Spiroxamine
Aldicarb sulphone	Diazinon	Imazalil	Miconazole	Tebuconazole
Atrazine	Diazoxon	Imazalil metabolite	Monolinuron	Teflubenzuron
Azoxystrobin	Dichlofluanid	Imidacloprid	Monuron	Tetraconazole
Bendiocarb	Difenoxuron	loxynil	Neburon	Terbuthylazine
Bromacil	Diflubenzuron	Iprodione	Nitempyram	Thiabendazole
Bromoxynil	Dimethoate	Isoproturon	Oxadixyl	Thiacloprid
Bromuconazole	Dimethomorph	Lenacil	Oxamyl	Thiamethoxam
Buprofezin	Diuron	Linuron	Oxfendazole	Thiobencarb
Butocarboxin	Ethiofencarb	Lufenuron	Prochloraz	Thiofanox
Butoxicarboxin	Ethiofencarb sulphone	Malathion	Prochloraz-metabolite	Thiofanox sulfone
Cambendazole	Ethiofencarb sulfoxide	Metalaxyl	Procymidone	Thiofanox sulfoxide
Carbendazim	Ethoxyquin	Mebendazole	Prometryn	Thiram
Carbofuran	Fenamiphos	Mecarbam	Propazine	Triadimenol
Chloridazon	Fenbendazole	Metamytron	Promecarb	Triadimefon
Chlorotoluron	Flazasulfuron	Methiocarb	Propoxur	Triflumuron
Chlorobromuron	Flubendazole	Methiocarb sulphone	Pyrimethanil	Vinclozolin
Chlorfluazuron	Flufenoxuron	Methiocarb sulfoxide	Pyriproxifen	

Using the automatic screening procedure...... 28 out of 104 pesticides found

Acetamiprid	Chloroxuron	Fluometuron	Methidathion	Simazine
Albendazole	Cymoxanil	Fluroxypir	Methomyl	Spinosyn A
Aldicarb	Cyproconazole	Hexaflumuron	Methyl-thiophanate	Spinosyn D
Aldicarb sulfoxide	Cyromazine	Hexythiazox	Metobromuron	Spiroxamine
Aldicarb sulphone	Diazinon	Imazalil	Miconazole	Tebuconazole
Atrazine	Diazoxon	Imazalil metabolite	Monolinuron	Teflubenzuron
Azoxystrobin	Dichlofluanid	Imidacloprid	Monuron	Tetraconazole
Bendiocarb	Difenoxuron	loxynil	Terbuthylazine	
Bromacil	Diflubenzuron	Iprodione	Nitempyram	Thiabendazole
Bromoxynil	Dimethoate	Isoproturon	Oxadixyl	Thiacloprid
Bromuconazole	Dimethomorph	Lenacil	Oxamyl	Thiamethoxam
Buprofezin	Diuron	Linuron	Oxfendazole	Thiobencarb
Butocarboxin	Ethiofencarb	Lufenuron	oulto	X
Butoxicarboxin	Ethiofencarb sulphone	Malat		pe
Cambendazole	Ethiofencarb sulfoxide	Metal	ntification of 2	o spiked
Carbendazim	Ethoxyquin	Mebenda 3 **	false positives'	,
Carbofuran	Fenamiphos	Mecarbam	Порел	Triadimenol
Chloridazon	Fenbendazole	Metamytron	Promecarb	Triadimefon
Chlorotoluron	Flazasulfuron	Methiocarb	Propoxur	Triflumuron
Chlorobromuron	Flubendazole	Methiocarb sulphone	Pyrimethanil	Vinclozolin
Chlorfluazuron	Flufenoxuron	Methiocarb sulfoxide	Pyriproxifen	

Final confirmation by LC/TOF/MS accurate mass measurements

Pesticide	Accurate mass (experimental)	Theoretical value Error (ppm)		Confirmation
Acetamiprid	223.0744	223.0745	0.5	YES
Atrazine	216.1006	216.1014	2.0	YES
Azoxystrobin	404.1243	404.12409	0.5	YES
Buprofezin	306.1635	306.16346	0.1	YES
Carbendazim	192.0764	192.07675	1.8	YES
Dimethoate	230.0070	230.0069	0.4	YES
Dimethomorph	388.1313	388.13101	0.7	YES
Diuron	233.0240	233.02429	1.3	YES
Flufenoxuron	489.0414	489.04351	4.3	YES
lmazalil	297.0557	297.05559	0.4	YES
Imidacloprid	256.0593	256.05957	1.1	YES
Isoproturon	207.1487	207.14918	2.4	YES
Lufenuron	510.9861	510.98570	0.8	YES
Methyl-thiophanate	343.0524	343.05292	1.5	YES
Piriproxifen	322.1442	322.14377	1.3	YES
Prochloraz	376.0376	376.03808	1.3	YES

Final confirmation by LC/TOF/MS accurate mass measurements (CONT....)

Pesticide	Accurate mass (experimental)	Theoretical value	Error (ppm)	Confirmation
Simazine	202.0850	202.08539	2.0	YES
Spinosyn A	732.4682	732.46812	0.1	YES
Spinosyn D	746.4844	746.48377	0.8	YES
Teflubenzuron	380.9828	380.98152	3.3	YES
Terbuthylazine	230.1168	230.11669	0.4	YES
Thiabendazole	202.0433	202.04334	0.2	YES
Triflumizol	346.0932	346.09285	1.0	YES
Cambendazole	303.0861	303.09102	15 ppm (5 mDa)	NO
Difenoxuron	287.0906	287.13901	>100 ppm (>50mDa)	NO
Fluometuron	233.0428	233.08962	>100 ppm (>40mDa)	NO

Apple extract spiked with 0.2 mg/Kg of 15 targeted pesticides

Apple extract spiked with 0.2 mg/Kg of 15 targeted pesticides

Acetamiprid	Chloroxuron	Fluometuron	Methidathion	Simazine
Albendazole	Cymoxanil	Fluroxypir	Methomyl	Spinosyn A
Aldicarb	Cyproconazole	Hexaflumuron	Methyl-thiophanate	Spinosyn D
Aldicarb sulfoxide	Cyromazine	Hexythiazox	Metobromuron	Spiroxamine
Aldicarb sulphone	Diazinon	Imazalil	Miconazole	Tebuconazole
Atrazine	Diazoxon	Imazalil metabolite	Monolinuron	Teflubenzuron
Azoxystrobin	Dichlofluanid	Imidacloprid	Monuron	Tetraconazole
Bendiocarb	Difenoxuron	loxynil	Neburon	Terbuthylazine
Bromacil	Diflubenzuron	Iprodione	Nitempyram	Thiabendazole
Bromoxynil	Dimethoate	Isoproturon	Oxadixyl	Thiacloprid
Bromuconazole	Dimethomorph	Lenacil	Oxamyl	Thiamethoxam
Buprofezin	Diuron	Linuron	Oxfendazole	Thiobencarb
Butocarboxin	Ethiofencarb	Lufenuron	Prochloraz	Thiofanox
Butoxicarboxin	Ethiofencarb sulphone	Malathion	Prochloraz-metabolite	Thiofanox sulfone
Cambendazole	Ethiofencarb sulfoxide	Metalaxyl	Procymidone	Thiofanox sulfoxide
Carbendazim	Ethoxyquin	Mebendazole	Prometryn	Thiram
Carbofuran	Fenamiphos	Mecarbam	Propazine	Triadimenol
Chloridazon	Fenbendazole	Metamytron	Promecarb	Triadimefon
Chlorotoluron	Flazasulfuron	Methiocarb	Propoxur	Triflumuron
Chlorobromuron	Flubendazole	Methiocarb sulphone	Pyrimethanil	Vinclozolin
Chlorfluazuron	Flufenoxuron	Methiocarb sulfoxide	Pyriproxifen	

Using the automatic screening procedure...... 20 out of 104 pesticides found

Acetamiprid	Chloroxuron	Fluometuron	Methidathion	Simazine
Albendazole	Cymoxanil	Fluroxypir	Methomyl	Spinosyn A
Aldicarb	Cyproconazole	Hexaflumuron	Methyl-thiophanate	Spinosyn D
Aldicarb sulfoxide	Cyromazine	Hexythiazox	Metobromuron	Spiroxamine
Aldicarb sulphone	Diazinon	Imazalil	Miconazole	Tebuconazole
Atrazine	Diazoxon	Imazalil metabolite	Monolinuron	Teflubenzuron
Azoxystrobin	Dichlofluanid	Imidacloprid	Monuron	Tetraconazole
Bendiocarb	Difenoxuron	loxynil	Neburon	Terbuthylazine
Bromacil	Diflubenzuron	Iprodione	Nitempyram	Thiabendazole
Bromoxynil	Dimethoate	Isoproturon	Oxadixyl	Thiacloprid
Bromuconazole	Dimethomorph	Lenacil	Oxamyl	Thiamethoxam
Buprofezin	Diuron	Linuron	Oxfendazole	Thiobencarb
Butocarboxin	Ethiofencarb	Lufenuron		- LandX
Butoxicarboxin	Ethiofencarb sulphone	Malathi Re	esults:	vę
Cambendazole	Ethiofencarb sulfoxide	Metala	entification of 1	5 spiked
Carbendazim	Ethoxyquin	Mebendaz 5	"false positives	"
Carbofuran	Fenamiphos	Mecarbam	1.44	madimenol
Chloridazon	Fenbendazole	Metamytron	Promecarb	Triadimefon
Chlorotoluron	Flazasulfuron	Methiocarb	Propoxur	Triflumuron
Chlorobromuron	Flubendazole	Methiocarb sulphone	Pyrimethanil	Vinclozolin
Chlorfluazuron	Flufenoxuron	Methiocarb sulfoxide	Pyriproxifen	

Final confirmation by LC/TOF/MS accurate mass measurements

Pesticide	Accurate mass (experimental)	theoretical value	Error (ppm)	Confirmation
Butocarboxin	213.0667	213.06682	0.6	YES
Chloridazon	222.0426	222.04286	1.2	YES
Chlorotoluron	213.0794	213.07891	2.3	YES
Diazinon	305.1585	305.10832	0.6	YES
Dichlofluanid	332.9704	332.96958	2.4	YES
Fluroxypir	254.9735	254.9734	0.4	YES
Imazalil	297.0565	297.05557	3.0	YES
loxynil	371.8376	371.83769	0.3	YES
Lenacil	235.1440	235.1441	0.4	YES
Linuron	249.0192	249.0192	<0.1	YES
Malathion	331.0437	331.04334	1.1	YES
Metamytron	203.0928	203.09273	0.3	YES
Methidathion	324.9509	324.95108	0.6	YES
Prometryn	242.1433	242.14339	0.4	YES

Final confirmation by LC/TOF/MS accurate mass measurements (CONT....)

Pesticide	Accurate mass (experimental)	Theoretical value	Error (ppm)	Confirmation
Cambendazole	303.0499	303.09102	>100 ppm (>40 mDa)	NO
Cyromazine	167.0843	167.10397	>100 ppm (20 mDa)	NO
Dimethomorph	388.1823	388.13101	>100 ppm (50 mDa)	NO
Fluometuron	233.1542	233.08962	>100 ppm (60 mDa)	NO
Monolinuron	215.0681	215.0580	50 ppm (10 mDa)	NO

1st CRL/NRL Pesticide Residue Training Workshop 6th – 7th December, 2006 - Stuttgart, Germany **REAL SAMPLES (FROM ANDALUSIAN FOOD SAFETY AUTHORITY (SAS)) Confirmation (1) Confirmation (2) + Screening** LC-TOF/MS (accurate mass measurements & Quantitation LC-TOF/MS (presence, time retention, *m/z*) LC-MS/MS isotopic pattern matching) Max. 1.1e8 cps TIC of +TOF MS: from Sample 4 (Manzana_22080) of Samples_QuEChERS.wif 1.08e8 Apple # 22080 1.05e8 1 00e8 9.50e7 9.00e7 8.50e7 8.00e7 7 50e7 7.00e7 6 50e7 6.00e7 2.42 5.50e7 5.00e7 27.47 4.50e7 14.73 4.00e7 3.50e7 12.28 17.72 3.00e7 17 04 14.41 2.50e7 2.00e7 1 50e7 1.00e7

> 16 Time, min

18

14

12

22

20

26

24

28

30

5.00e6

REAL SAMPLES (FROM ANDALUSIAN FOOD SAFETY AUTHORITY (SAS))

Screening Confirmation (1) ople # 22080 LC-TOF/MS (presence, time retention, m/z) LC-TOF/MS (accurate mass measurements & isotopic pattern matching)							
Compound detected	RT (min) Expected	RT (min) Experimental	Peak Area (counts x10 ⁴⁾	<i>m/z</i> calculated	m/z experimental	Error, ppm	Confirmation
Carbendazim	7.34	7.30	47.5	192.07675	192.0765	1.3	YES
Ethoxyquin	20.01	19.98	63.8	218.15394	218.1541	0.7	YES
Imazalil	17.72	17.78	1350	297.05557	297.0561	1.7	YES
Imazalil-met	14.49	14.42	8.82	257.02429	257.0236	2.7	YES
Malathion	25.33	25.32	1.84	353.0256	353.0239	4.8	YES
Lenacil	19.20	19.22	1.48	235.1441	235.1026	> 10ppm	NO
Thiacloprid	17.78	17.83	2.42	253.03092	253.0305	1.6	YES
Thiofanox sulfone	16.38	16.42	1.49	251.10600	251.1645	> 10ppm	NO
Thiabendazole	9.00	9.04	2.33	202.04334	202.0439	2.7	YES

REAL SAMPLES (FROM ANDALUSIAN FOOD SAFETY AUTHORITY (SAS))

Apple # 22080

Confirmation (2) + Quantitation LC-MS/MS

Sample	Pesticides	MRM1	MRM2	MRM ratio standard	MRM ratio Sample	Concentration (µg.Kg ⁻¹)
22080	Carbendazim	192→160	192→132	5.5	5.1	49.7
	Imazalil	297→159	297→109	3.5	5.6	79.2
	Thiacloprid	253→126	253→99	4.4	2.4	0.3
	Thiabendazole	202→131	202→175	3.3	2.2	1.27
	Malathion	331 →127	331 →285	2.1	2.5	10.2
	Ethoxyquin	218→146	218→160	2.8	3.2	6.7
	Imazalil-Me					

1st CRL/NRL Pesticide Residue Training Workshop 6th – 7th December, 2006 - Stuttgart, Germany **REAL SAMPLES (FROM ANDALUSIAN FOOD SAFETY AUTHORITY (SAS)) Confirmation (2) +** LC-TOF/MS Quantitation LC-TOF/MS (accurate mass measurements & (presence, time retention, *m/z*) LC-MS/MS isotopic pattern matching) TIC of +TOF MS: from Sample 6 (Pera 22078) of Samples QuEChERS.wiff Max. 1.0e8 cps. 1.02e8 1.00e8 Pear # 22078 9 50e7 9.00e7 17.70 8.50e7 8.00e7 7 50e7 7.00e7 6 50e7 6.00e7 ,2.42 5.50e7 19 23 5.00e7 4.50e7 13.91 4.00e7 3.50e7 3.00e7 12 43 18.50 2.50e7 15.58 2.00e7 1 50e7 1.00e7

30

5.00e6 0.00

2

6

8

10

12

14

16

Time, min

18

20

22

24

26

28

REAL SAMPLES (FROM ANDALUSIAN FOOD SAFETY AUTHORITY (SAS))

Pear # 22078

Screening
LÇ-TOF/MS 🗖
(presence, time retention, <i>m/z</i>)

LC-TOF/MS (accurate mass measurements & isotopic pattern matching)

Compound detected	RT (min) Expected	RT (min) Experimental	Peak Area (counts x10 ⁴⁾	<i>m/z</i> calculated	m/z experimental	Error ppm	Confirmation
Albendazole	17.86	17.71	10.2	266.09577	266.1430	> 10 ppm	NO
Aldicarb sulfone	11.35	10.75	3.37	223.0747	223.0561	> 10 ppm	NO
Carbendazim	7.33	7.30	12.7	192.07675	192.0771	1.8	YES
Ethoxyquin	20.01	20.07	1850	218.15394	218.1539	0.2	YES
Imazalil	17.72	17.71	4820	297.05557	297.0553	0.9	YES
Imazalil-met	14.49	14.42	8.82	257.02429	257.0236	2.7	YES
Tebuconazole	24.50	24.54	269	308.15241	308.1525	0.3	YES
Thiabendazole	9.00	8.98	71.3	202.04334	202.0434	0.3	YES

REAL SAMPLES (FROM ANDALUSIAN FOOD SAFETY AUTHORITY (SAS))

Confirmation (2) +
Quantitation
LC-MS/MS

Pear # 22078

Sample	Pesticides	MRM1	MRM2	MRM ratio standard	MRM ratio Sample	Concentratio n (µg.Kg ⁻¹)
22078	Imazalil	297→159	297→109	3.5	3.6	297.3
	Thiabendazole	202→131	202→175	3.3	5.8	9.1
	Tebuconalzole	308→70	308→125	5.6	4.2	12.8
	Ethoxyquin	218→160	218→146	1.6	1.2	10.0
	Imazalil-Me					
	Carbendazim	192→160	192→132	5.5	1.3	1.1

REAL SAMPLES (FROM ANDALUSIAN FOOD SAFETY AUTHORITY (SAS))

REAL SAMPLES (FROM ANDALUSIAN FOOD SAFETY AUTHORITY (SAS))

Grape # 2733

LC-TOF/MS (accurate mass measurements & isotopic pattern matching)

Compound detected	RT (min) Expected	RT (min) Experimental	Peak Area (counts x10 ⁴⁾	<i>m/z</i> calculated	m/z experimental	Error ppm	Confirmation
Azoxystrobin	24.07	24.02	236	404.12409	404.1237	1.0	YES
Cambendazole	14.88	14.77	21.2	303.09102	303.0511	> 10 ppm	NO
Carbendazim	7.34	7.31	57.3	192.07675	192.0772	2.3	YES
Oxfendazole	15.54	15.58	1.04	316.07503	316.0642	> 10 ppm	NO
Thiabendazole	9.00	9.01	12.9	202.04334	202.0432	0.7	YES

REAL SAMPLES (FROM ANDALUSIAN FOOD SAFETY AUTHORITY (SAS))

Grape # 2733		Confirmat Quantit LC-MS				
Sample	Pesticides	MRM1	MRM2	MRM ratio standard	MRM ratio Sample	Concentration (µg.Kg ⁻¹)
2733	Azoxystrobin	404→372	404→344	2.9	3.8	19.4
	Carbendazim	192→160	192→132	5.5	1.3	1.5
	Thiabendazole	202→131	202→175	3.3	2.2	5.2

RESULTS (SAS)

< 0.01 mg/kg	0.01-0.05 mg/kg	0.05-0.1 mg/kg	0.1-0.5 mg/kg	>0.5 mg/kg
17	41	13	20	

Total samples:304Total positive findings:91 (30%)Total positive findings (0.01-0.1mg/kg) :54 (18%)

RESULTS (Coexphal)

< 0.01 mg/kg	0.01-0.05 mg/kg	0.05-0.1 mg/kg	0.1-0.5 mg/kg	>0.5 mg/kg
7	37	14	34	41
	7			

ACKNOWLDGEMENTS

DG SANCO European Commission for financial support

for instrumentacion facilities

POSIBILIDAD DE FALSOS POSITIVOS

Thiabendazole, MRM optimization

Thiabendazole, matrix

Sample #2733, grapes

positive Sample #2733, grapes Analyst - [Data List fer "XIC of -MRM (223 pairs). 404.0/372.0 amu from Sample 18 (sample 27.33bis 2016) of DataSE11.w//f (Turbe Spray), Smoothed, _ T 🗱 _ # X Ein Sult Year Jook Daglars Wridow Script Help CARMENASAS . 做各次 + + + 产品元发出品面词拥有个学习的用品加杂与系统方式具体负发点 生生性术的健康不同 + 而且如此 19.4 ppb 💻 740 of HMRM (223 paint) 404 0672 D amo trum Sample 19 (rample2733) ki2016) of DataSiET 1 with (Tarbo Spray), Smoothed, Smoothed, Smoothed, Smoothed Max: 5 Red upp E Configure A Security Configuration 5.8 +4 Hadvan Configuration 50+4 S Report Template Editor 40.4 8 10 Ture (2) azoxystrobin 4 20+4 -//- Resolution Optimization 륃 A Quantitative Optimization 20+4 A Manual Turing 1.0+4 10.40 *d Acquire (2) 0.0 S EA Nethod Wined 140 145 15.0 15.5 15.0 10.5 17.0. 17.5 18.0 12.5 19.D 19.5 20:0 20.5 21.0 21.5 Time, min 1 Build Acquisition Method T Build Acquisition Batch 22 Expense View Data List Pauls List Explore (1) Time imini **Baseline** Type Area (counts) Height (cps) Weth Immi % Area % Height C OpenData File Base to Base 9.0840 317.7937 0.0440 62,50.00 0.0831 0.2118 318.0098 62,5000 0.0831 0.211B Dpen Compound Database 9.6136 0.0441 Base to Base 13.1624 317.8995 0.0440 62.5000 0.0831 0.2119 Base to Base 12 Quardiste 16.1022 3.6853e4 5.1081 5718,7500 7.6015 0.3972 Base to Base E Build Quantitation Method 16.8703 5.8020e5 77.5219 80.389 5.8331e4 0.6092 🔨 Quantitation Worked 17:3471 1629.2309 0.2256 309.7014 0.411B 0.1854 Value 17.5589 796.4847 0.1104 123,4369 0.1641 0.1854 Valley Review Secult: Table 17,7972 1263.7002 0.1751 119.9214 01504 0.2382 Valley 17.9561 481,4863 0.0667 94.6406 0.1258 0.1854 Base to Base 18.1149 143.9941 0.0200 40.6250 0.0540 0.1059 Bese to Base 💻 XIC of HMRM (223 paint) 404 DISH4 D area team Sample 19 (sample2723)//2016 of DataSET 1 with (Tatto Spray), Smarthest, Smoothest, Marc 2 De4 spa 2.044 1.5 =4 8 1 1.0+4 5000.0 0.0 140 15.0 15.5 21.0 21.5 145 the 10.5 17.0 17.5 18.0 19.5 19.0 19.5 20.0 20.5 Time, min For Help, press Fit User Namer COMPUTERNAME)administrator 🛛 Dr)Analyst Data 🧭 Ude 👖 Ude 🧵 Ready de start avant sample Comm. and the second second second and the state of t E C & K & O Analyst - Data List P ... R . 11:29 AM

Sample #2733, grapes Negative? Analysi [XIC of -NRW (223 pairs): 202.0/131.2 amu from Sample 18 (sample2733bis2016) of DataSET1.wilf (Turbo Spray), Smoothed, E 🗗 🐹 E Die Salt Verv Joole Daglars Window Script Help _ # X CARNEWASAS 當今○◆◆◆命光光光山山山遊遊喝水保設前長均面於屬到修介光光面容的広を立ち素美感♀7Ц→元前前。 -1.01 XIC of +MRM (223 paint): 202 0/101 2 and two Sample 19 (sample2733bl22016) of DataGET 1 with (Tarbo Spray), Smoothed, Smoot Mas. 1572.9. up E Configure A Security Configuration 9373 1400 Hadvare Configuration 28.91 1200 S Report Template Editor 10 Turne (2) 1000 25.12 800 -M- Repolution Optimization 22.51. 000 23.60 A Quantitative Optimization 2.96 400 A Manual Turing 200 Ad Acquer (2) CA Mathod Winad 1 Build Acquisition Method T Build Acquisition Batch 27 Expense View Data List Peak List Explore (2) Area (counts) Time (min) % Area Height (cps) % Height With immi **Baseline** Type 😅 OpenDataFile 1753.7274 206.73Bt 6.8329 1.0463 1.1866 0.2648 **Walley** 7.0978 1491.4226 Base to Base 😫 Open Compound Database 1.2227.e4 7.2953 8.5603 0.4502 1.9 7.5214 656.0986 0.3915 102.56B 0.2119 Base to Base 1/2 Quartitate 7.7599 4375.4486 2.6106 353,4544 2.0287 0.4502 Valley E Build Quantitation Method 8.2102 1868.5498 1.1149 163,7966 0.9401 0.4237 Valley 👻 Quantitation Wined B.6073 1067.4098 0.6369 149.7601 0.8596 0.317B Base to Base 1668.1611 01105 0.0053 192.5181 1.1050 0.3178 Base to Base 24 Review Seruh: Table 25 9.4018 1562,6090 0.9323 182.8164 1.0493 0.2382 Valley 9.6136 1589,8072 0.9485 143.2301 0.8221 0.2648 Valley 28 27 1637.4522 0.4767 Base to Base 10.010B 0.9770 108.9020 0.6251 💻 XIC of HMRM (223 paint) 202 2/175 2 anu tran Sample 19 (tanpin27338h2015) of DataSET 1 with (Tatto Spray), Smanthed, Smoothed Max: 2429.7 its 3000 600 8 600 1440 refe 400 200 0 5.4 5.0 5.9 6.2 6.4 6.6 10.9 7.0 72 7.4 7.6 7.8 9.0 9.2 8.4 9.6 9.9 9.0 9.2 6.0 Time raid For Help, press Fit Liser Name: COMPUTERNAMELadministrator 🛛 CrijAnalyst Data 🛷 Edle 🏦 Edle 🧵 Edle # start a strant sample Comm. avant sample 20080. E # # # # @ Analyst - DOC of HN ... 🍓 strant sample Strict ppt

Sample #22078, pear

Sample #22078, pear

Carbendazim Negative

Sample #22080, apple

Sample #22080, apple negative E 🗗 🔀 Analyst - [XIC of -NRW (223 pairs): 241.2/57.2 amu from Sample 16 (sample22080his2014) of DataSET1 will [Turbo Spray]] _ # X The Last Year Jook Daylors Wesdow Script Help CARNENASAS 盛ら☆★★★★金光だだ山証」直接喝水が改善長均加补募到物力だち回会れた水文製素業の早年以外に立て、 1.1 TIC of HMRM (223 paint): from Sample 18 (cample/20003-63014) of DataSET1 with (Tarbo Spray). Max 4 Bell spe All Configures A Security Configuration 44.02 40.4 TIC Sample#22080 Hadvare Configuration 40.45 X Report Template Edite 8 10 Tune (2) 3.045 ntensty. -/- Repolution Optimization 12 14 2.045 A Quantitative Optimization A Manual Turing 1.0.05 -144.62 Ad Acquer (2) 12.06 29.94 9.09 11.71 18 45 25 45 17 93 19 21 92, 22 80 ,23 49 ,24 71 26 46 20.02 31.44 22:03 24.77. 0.764 S EA Nethod Wined Tine, nic E Build Acquintion Method XJC of HMRM (223 pain): 241.2/984.1 anv. from Sample 18 (pample22080.bs2014) of DataSET Looff (Table Spray) T Build Acquisition Batch Marc. 400.0-me 27 Expense View 9.00 40 Explore (1) 350 C OpenDataFile MRM 241→184, 333 G Open Compound Database 瓮 250 thiofanox sulfone 12 Quartitate 21.43 10 2.64 4.74 .977 THE 11.00 11110-012-04 34.06 200 E Build Quantitation Method 홑 150 🔨 Quantikation Woned 100 Review Seruit: Table 60 24 20 22 25 28 30 32 42 14 15 100 ъà Tires, min XIC of HMRM (223 paint): 341-387-2, and two Sumple 48 pample20090kii2014) of DatalieT Left (Table Spray) May, 1000 D to ¥1.99 1000 ànn MRM 241→57, 000 thiofanox sulfone 1491.35.33 3 87.9 22 11.80 430 21 3232 35 , 22 73 12.20 20 74 20 09 200 Time, mis User Name: COMPUTERNAME)administrator D/JAnalyst Data 🧭 Jde 🧵 Ready 👘 Ide For Help, press Fit 💏 start 🔰 🗢 🗗 🗸 🦉 🖉 🖓 Andyst - Jac el 48... a internet R 11004 AP

1st CRL/NRL Pesticide Residue Training Workshop 6th - 7th December, 2006 - Stuttgart, Germany

Thiabendazole, MRM optimization

Thiabendazole, pear Sample

99 pesticides, Rt and MRM transitions

Pesticides	Rt	MRM1	MRM2	Pesticides	Rt	MRM1	MRM2
Prometrym	19.8	242→200	242→158	Diuron	20.7	233→72	233→160
Parathion	26.7	292→236	292→123	Imazalil	17.7	297→159	297→109
Spiromesifen	31.3	371→273	371→255	Imidacloprid	15.3	256→209	256→175
Promecarb	23.8	208→151	208→109	Methomyl	211.8	163→88	163→106
Metolcarb	19.0	166→109	166→94	Dimetomorph	20.7	388→301	388→165
Monuron	18.6	199→72	199→126	Buprofezin	27.0	306→201	306→116
Fenuron	19.0	166→109	166→72	Acetamiprid	16.1	223→126	223→56
Chlorfenvinphos	25.9	361→155	361→127	Thiacloprid	17.6	253→126	253→99
Thiocyclam	4.7	182→137	182→73	Difenoxuron	21.0	287→72	287→123
Methidation	23.5	302.9→145	302.9→84.9	Benalaxyl	26.3	326→208	326→148
Difenoconazole	25.8	406→251	406→337	Terbutilazina	23.1	230→174	230→146
Thiabendazole	8.4	202→131	202→175	Alachlor	15.5	270→162	270→147
Azoxystrobin	23.7	404→372	404→344	Metolachlor	25.3	284→176	284→252
Metiocarb	23.1	226→169	226→121	Isoproturon	20.9	207→72	207→165
Triflumizole	25.3	346→278	346→73	Triclocarban	26.9	315→127	315→162
Spynosyn A	20.6	732→142	732→189	Diphenylsulfone	22.2	219→141	219→77
Spynosyn D	21.2	746→189	746→142	Fenbendazole	19.9	300→268	300→268
Diflubenzuron	24.7	311→158	331→141	Malathion	25.3	331→127	331→285
Aldicarb	18.0	213→89	213→116	Iprodione	27.0	330→101	330→245
Flufenoxuron	29.0	489→158	489→141	Chloroxuron	23.2	291→72	291→218
Hexaflumuron	26.9	461→158	461→141	Aldicarb sulfoxide	6.4	207→89	207→132
Lufenuron	28.3	511→158	511→141	Lenacil	18.9	235→153	235→136
Prochloraz	22.5	376→308	376→308	Flumeturon	20.7	233→72	233→213
Ethiophencarb	21.2	226→107	226→164	Chlorbromuron	23.8	293→204	293→182
Carbofuran	20.2	222→165	222→123	Bromuconazole	23.0	376→159	376→70
Vinclozolin	25.3	286→214	286→179	Tebuconazole	24.2	308→70	308→125

99 pesticides, Rt and MRM transitions

Pesticides	Rt	MRM1	MRM2	Pesticides	Rt	MRM1	MRM2
Chloridazon	15.1	222→70	222→77	Chlortoluron	20.2	213→72	213→140
Bromacil	18.3	261→205	261→187	Spiroxamine	19.5	298→144	298→100
Dichlofluanid	26.4	333→224	333→123	Flazasulfuron	22.0	408→182	408→226
Albendazol	17.6	266→234	266→191	Teflubenzuron	27.3	381→158	381→141
Oxfendazol	15.3	316→159	316→191	Thiametoxam	13.5	292→211	292→132
Butoxicarboxim	10.3	223→106	223→63	Triflumuron	26.2	359→156	359→139
Metobromuron	21.7	259→170	259→148	Carbendazim	6.8	192→160	192→132
Propazine	22.7	230→146	230→188	Oxamilo	10.8	220→90	220→72
Fluroxypyr	18.6	255→237	255→209	Mebendazole	17.8	296→264	296→105
Butocarboxin	17.3	213→75	213→156	Monolinuron	21.3	215→126	215→148
Neburon	25.6	275→88	275→57	Terbuthrin	19.8	242→186	242→72
Metamitron	14.4	203→104	203→175	Carbaryl	20.6	202→145	202→127
Methiocarb sulfone	17.0	258→122	258→201	Ethoxyquin	13.6	218→160	218→146
Methiocarb sulfoxide	14.1	242→185	242→170	Monocrotophos	11.8	224→127	224→98
Cyproconazole	22.9	292→125	292→70	Desethylterbuthylazin	19.1	202→146	202→104
Miconazole	20.8	415→159	415→227	Simazina	18.5	202→132	202→124
Fenamiphos	23.5	304→276	304→217	Atrazina	20.7	216→174	216→104
Metalaxyl	20.8	280→220	280→192	Diazinon	27.2	305→169	305→153
Oxadixyl	18.5	279→219	279→102	Dimethoate	15.9	230→199	230→125
Nytempyram	11.4	271→225	271→99	Cymoxanil	17.1	199→128	199→111
Linuron	23.4	249→160	249→182	Bendiocarb	12.0	224→167	224→109
Cambendazol	14.5	303→217	303→261	Pyrimethamyl	11.3	200→77	200→67
Aldicarb sulfone	11.1	223→86	223→148	Cyromacine	3.1	167→85	167→108
Pyriproxyphen	28.9	322→96	322→227				

