Analysis of Acidic Pesticides in Wheat Flour Samples by LC-MS(/MS) using the QuEChERS Method

(incl. optional alkaline hydrolysis to release covalently bound compounds)

The Wheat Flour sample is already homogeneous and can be employed as is. NOTE: This protocol refers to the use of 5g sample for sample preparation.

Apparatus and Consumables:

- Sample processing equipment, for example Stephan UM 5 universal or Robot-Coupe Blixer
- Automatic pipettes, suitable for handling volumes of 10 to 100 μl , 200 to 1000 μl and 1 to10 ml.
- 50 ml centrifuge tubes with screw caps, for example: a) 50 ml Teflon® centrifuge tubes with screw caps (e.g. Nalgene/Rochester, USA; Oak-ridge, article-no. 3114-0050) or b) disposable 50 ml centrifuge tubes (e.g. Sarstedt/Nümbrecht, Germany, 114x28 mm, PP, article-no. 62.548.004)
- 10 ml solvent-dispenser for acetonitrile
- Centrifuges, suitable for the centrifuge tubes employed in the procedure and capable of achieving at least 3000 rounds per minute (rpm)
- Powder funnel, to fit to the openings of the centrifuge tubes
- Injection vials, 1,5 ml, suitable for GC and LC auto-sampler

Optional:

- Plastic cups (stackable), for example flame photometer cups 25 ml article no. 10-00172 from GML-Alfaplast/Munich, Germany (>1000 pieces) or from b) JURO-LABS/Henfenfeld, Germany (> 100 pieces). These are used for the storage of the buffersalt mixture portions which are used for each sample.
- Sample divider, to automatically portion salts and sorbents, for example from Retsch/Haan, PT 100 or Fritsch/Idar-Oberstein, Laborette 27 or Bürkle/Lörrach, Repro high-precision sample divider.

Chemicals:

- Acetonitrile, HPLC quality
- Sodium chloride
- Disodium hydrogencitrate sesquihydrate, for example Aldrich No. 359084 or Fluka No. 71635

- Trisodium citrate dehydrate, for example Sigma No. S4641 or Riedel-de Haën No. 32320
- Magnesium sulphate, anhydrous, grit, for example Fluka No. 63135, NOTE: Phthalates can be removed in a muffle furnace by heating to 550 ℃ (e.g. overnight)
- Sodium hydroxide, c = 5 mol/l (5N): 2 g sodium hydroxide are dissolved in some ml of water; and filled to 10 ml.
- Sulfuric acid, c = 2.5 mol/l (5 N), Carefully dilute 13.9 mL concentrated H₂SO₄ in 100 mL water
- Water (deionized)
- ISTD-Solutions for Test samples: Containing 10µg/mL one or more of the following compounds
 - (2,4,6-Trimethyl-Phenoxy)-acetic acid (e.g. Sigma Aldrich S236055)
 - (4-chloro-3,5-dimethyl-phenoxy)-acetic acid (e.g. Sigma Aldrich S236071)
 - (3-chloro-4-methyl-phenoxy)-acetic acid (e.g. Sigma Aldrich R539236)

- N,N'-bis(4-Nitrophenyl)urea (Nicarbazin) (e.g. Dr. Ehrenstorfer C15508000), due to limited solubility prepare stock solution at 20 μ g/mL in acetonitril, dimethylformamid addition increases solubility

• **ISTD-Solutions for Calibration Standards:** Containing 1µg/mL one or more of the following compounds Prepare a 1:10 dilution of the abovementioned solution.

Note: In this protocol, the ISTD-mixture is added after the neutralization step. It could be also added before, for example in cases when alkaline hydrolysis step is assisted by a mixer to break up sample participles and allow a better interaction with the matrix. However, in this case Nicarbazin should not be used as ISTD since it may experience losses during alkaline hydrolysis.

SAMPLE PREPARATION

1) WEIGHING:

Weigh 5 g of the wheat flour sample in the 50 mL centrifuge vial

Note: The sample amount can be changed. In this case, however, all solvent and salt additions should be also scaled accordingly.

2) PREPARATION OF SALT-MIXTURES FOR PARTITIONING

A sufficient number of small containers (e.g. stackable plastic vessels) are loaded with

4 g \pm 0,2 g magnesium sulphate anhydrous,

- $1 \text{ g} \pm 0,05 \text{ g}$ sodium chloride,
- 1 g \pm 0,05 g trisodium citrate dihydrate and
- $0,5 \text{ g} \pm 0,03 \text{ g}$ disodium citrate sesquihydrate.

Note: The use of a sample divider, as shown above under Apparatus and Consumables, can considerably facilitate this task. The complete mixture is also commercially available (e.g. from Supelco Cat No.: 55227-U)

3) WATER-ADDITION:

Add 10 mL of water

4) ALKALINE HYDROLYSIS STEP (OPTIONAL)

Note: This step is performed to break-up any covalent bonds between acidic pesticides and matrixcomponents.

- Add 300µl of a 5N NaOH solution (this brings pH to a value of ca. 12).

- Tightly close the tube and shake vigorously for 1 min. (by hand or with a powerful mechanic shaker).

- Let the mixture stand for 30 min occasionally shaking it (e.g. every 10 min.)

5) NEUTRALIZATION STEP (OPTIONAL)

Add 300µl of a 5N H₂SO₄ solution

6) Acetonitrile- and ISTD-Addition:

Add **10 ml of acetonitrile** (e.g. using a solvent dispenser) followed by 100µL of the ISTDsolution to the sample

7) FIRST EXTRACTION:

Tightly close the centrifuge vial and shake vigorously for 1 min. (by hand or with a powerful mechanic shaker)

8) SALT-ADDITION:

Add the prepared salt-mixture (see 2)).

Note: When running series of samples, a short shaking of each sample immediately after salt-addition helps to avoid the formation of big salt-conglomerates. Should these still be formed, continue normally with the procedure.

9) SECOND EXTRACTION (AND PARTITIONING):

Tightly close the centrifuge vial and shake vigorously for 1 min. (by hand or with a powerful mechanic shaker).

10) CENTRIFUGATION:

Centrifuge for 5 min. (at 3000 g).

11) CLEANUP BY FREEZING (Optional):

7 mL of the Extract are transferred into a PP-Centrifuge vial and placed in a freezer for at least 2 hours (e.g. over night), this procedure removes most of the co-extracted fat as well as other components with limited solubility in acetonitrile.

12) EXTRACT-TRANSFER:

1 mL of each extract is transferred into an HPLC-autosampler-vial to be used for LC-MS/MS

Note: An equalization of the volume of the test sample extract with that of the calibration solutions may be necessary to equalize matrix induced effects

PREPARATION OF MATRIX-MATCHED CALIBARTION STANDARDS

13) PREPARATION OF CALIBRATION STANDARDS AND VOLUME ADJUSTMENT FOR THE EXTRACTS OF THE RECOVERY AND SAMPLES

Take a 5 g **blank matrix** portion and **proceed sample preparation (1-11) exactly the same way as described for the test sample**. However, **DO NOT ADD ISTD**. Instead of ISTD add acetonitrile of the same volume (here 100µL).

- Transfer sufficient 1 mL aliquots of the blank extract to HPLC-autosampler vials.

- Add exactly 1/10th of the ISTD portion added to the test samples in each of them (It is adviceable to add the same volume of the 10-fold diluted ISTD solution added to the test samples).

- Add pesticide standard solutions as required to prepare a calibration curve covering the appropriate concentration range (Example: 1µg would correspond to 1 mg/kg in the sample).

- Equalize the total volumes of the test sample extracts and calibration solutions.

Measurement

LC-MS/MS MEASUREMENT CONDITIONS

Any suitable LC and MS/MS conditions may be used. Below you will find some MS/MS parameters that you may use.

Proposed LC-MS/MS conditions:

Column	Zorbax XDB C18, length 150 mm, inner diameter 2,1 mm, particle size 3,5 μm
Mobile phase A2	Acetic acid solution in water, ρ = 0,1 ml glacial acetic acid /l
Mobile phase B2	Acetic acid solution in acetonitrile, ρ = 0,1 ml glacial acetic acid /l
Column temperature	40 °C
Injection volume	5 μΙ

Time min	Flow rate µl/min	Mobile phase A ₂ %	Mobile phase B ₂ %
0	300	80	20
20	300	0	100
22	300	0	100
22,1	300	80	20
30	300	80	20

Table 1 — Flow rate and elution gradient:

Table 1: List of some acidic compounds and MRM parameters in ESI neg. mode (DP= Declustering Potential [V], and CE=Collision Energy [V], valid for Applied Biosystems API-3000 instrument)

		1st Transition			2nd Transition				
Nr.	Pesticide	Q1	Q3	DP	CE	Q1	Q3	DP	CE
1	2,4,5-T	253	195	-46	-18	253	159	-46	-38
2	2,4-D	219	161	-36	-16	219	125	-36	-36
3	2,4-DB	247	161	-36	-16	247	125	-36	-36
	4-CPA	185	127	-56	-20	187	129	-51	-18
	Bentazon	239	132	-56	-38	239	197	-56	-30
6	Bromoxynil	274	79	-41	-42	276	81	-41	-42
	Dicamba	219	175	-31	-8	221	177	-31	-10
	Dichlorprop	233	161	-41	-16	233	125	-41	-40
9	Fenoprop	267	195	-36	-16	267	159	-36	-40
	Fenoxaprop-P	332	260	-41	-18	332	152	-41	-30
	Fluroxypyr	253	195	-26	-18	253	233	-26	-10
	Imazethapyr	288	244	-46	-20	288	201	-46	-32
	loxynil	370	127	-46	-46	370	215	-46	-42
	МСРА	199	141	-21	-20	201	143	-21	-20
	МСРВ	227	141	-26	-10	229	143	-26	-10
	Mecoprop	213	141	-46	-22	213	105	-46	-44
	Naphthyloxyacetic acid	201	143	-61	-20	201	115	-61	-54
18	Picloram	239	195	-31	-16	241	197	-31	-16
19	Triclopyr	254	196	-56	-14	256	198	-56	-16
ISTD	(4-chloro-3,5-dimethyl-phenoxy)-acetic acid	213	155	-45	-20	213	169	-45	-14
ISTD	(2,4,6-Trimethyl-Phenoxy)-acetic acid	193	135	-55	-22	193	149	-55	-14
ISTD	(3-chloro-4-methyl-phenoxy)-acetic acid	199	141	-45	-18	199	155	-45	-14
ISTD	N,N'-bis(4-Nitrophenyl)urea (Nicarbazin)	301	137	-31	-20	301	137	-31	-20

CALCULATION

Calibration: Determine the calibration functions for each active substance by plotting the peak ratio $PR^{cal mix} (A_{pest}^{cal mix} / A_{ISTD}^{cal mix})$ of each calibration level **against the mass of active substance in the standard solution** $m_{pest}^{cal mix} (C_{pest} \times V_{pest}^{cal mix})$. The corresponding calibration graph is

$$PR^{cal mix} = a_{cal} \times m_{pest}^{cal mix} + b_{cal}$$
⁽¹⁾

The mass fraction w_R of the pesticide in the sample is calculated using the peak ratio of pesticide and internal standard PR^{sample} (A_{pest}^{sample} / A_{ISTD}^{sample}) obtained from final extract as

$$w_{R} = \frac{(PR^{sample} - b_{cal})}{a_{cal}} \times \frac{1}{m_{a}} \times \frac{m_{ISTD}^{sample}}{m_{ISTD}^{cal mix}} \left(\frac{\text{mg}}{\text{kg}}\right)$$
(2)

Variables used:

Mass of pesticide in calibration mixture		$m_{pest}^{cal\ mix}$	μg
Mass of internal standard in calibration mixture		m ^{cal mix} ISTD	μg
Mass of internal standard added to test portion		m ^{sample} ISTD	μg
Concentration of pesticide in pesticide working solution		$C_{pes t}$	µg/ml
Volume of pesticide working solution used for preparation of calibration mixt	ure	$V_{pest}^{cal\ mix}$	ml
Mass of test portion		m_a	g
Mass fraction of pesticide in the sample		WR	mg/kg
Peak area of pesticide obtained from calibration mixture		$A_{pest}^{cal\ mix}$	(counts)
Peak area of ISTD obtained from calibration mixture		$A_{ISTD}^{cal\ mix}$	(counts)
Peak area of pesticide obtained from the final extract		A_{pest}^{sample}	(counts)
Peak area of ISTD obtained from the final extract		A_{ISTD}^{sample}	(counts)
Peak ratio obtained from calibration mixture	PR ca	al mix (dimei	nsionless)
Peak ratio obtained from final extract	PR sa	ample(dimer	sionless)
Slope of calibration graph using the simplified approach		a_{cal}	1/µg
Bias of calibration graph		b_{cal} (dimension)	sionless)

For any questions please contact: Michelangelo.Anastassiades@cvuas.bwl.de