CRL for Cereals and Feeding stuff National Food Institute Technical University of Denmark



## Validation Report 5

Determination of pesticide residues in cereals by GC-MS/MS

(QuEChERS method)

Susan Strange Herrmann & Mette Erecius Poulsen 20 February 2009

## **CONTENT:**

| 1. Introduction                                                 | . 2 |
|-----------------------------------------------------------------|-----|
| 2. Principle of analysis                                        | . 2 |
| 3. Validation design                                            | .3  |
| 4. Chromatograms and calibration curves                         | .3  |
| 5. Validation parameters                                        | . 5 |
| 6. Criteria for the acceptance of validation results            | .6  |
| 7. Results and discussion                                       | 6   |
| 8. Conclusions                                                  | .7  |
| 9. References                                                   | .7  |
| Appendix 1. MRM transitions for the pesticides sought validated | .9  |
| Appendix 2. Repeatability, recovery and limit of detection.     | 10  |

## **1. Introduction**

This report describes the validation of the QuEChERS method combined with GC-MS/MS. The method was validated for 22 pesticides, isomers and degradation products in wheat. The method has previously been validated for about 76 pesticides.

The QuEChERS method has an extraction and clean-up step, which has been developed to be Quick, Easy, Cheap, Efficient, Rugged and Safe. The method is most commonly used on fruit and vegetables<sup>1</sup>.

The method validated here is based on the procedure for dry matrixes (<30% water content) according to the document CEN/TC 275/WG 4 N 0204 (CEN document)(available as a draft). Even though cereals have a fat content of about  $2\%^2$  no attempt has been made to remove the fat from the extract, e.g. freezing out as proposed in the CEN document, since no problems caused by fat has been observed.

## 2. Principle of analysis

## Sample preparation:

Cold water/ice water, acetonitril and an internal standard are added to the milled sample.

## **Extraction:**

The sample is shaken and a salt and buffer mixture is added and the sample is shaken again.

Clean-up:

After centrifugation the supernatant is transferred to a tube with PSA and MgSO<sub>4</sub>. After shaking and an additional centrifugation step the final extract is obtained.

### **Quantification and qualification**:

Internal standard is added and the final extract is analysed GC/MS/MS (electron energy 70 eV, source temp. 180°C, transfer line GC interface 250°C). The injection volume is 8 µl.

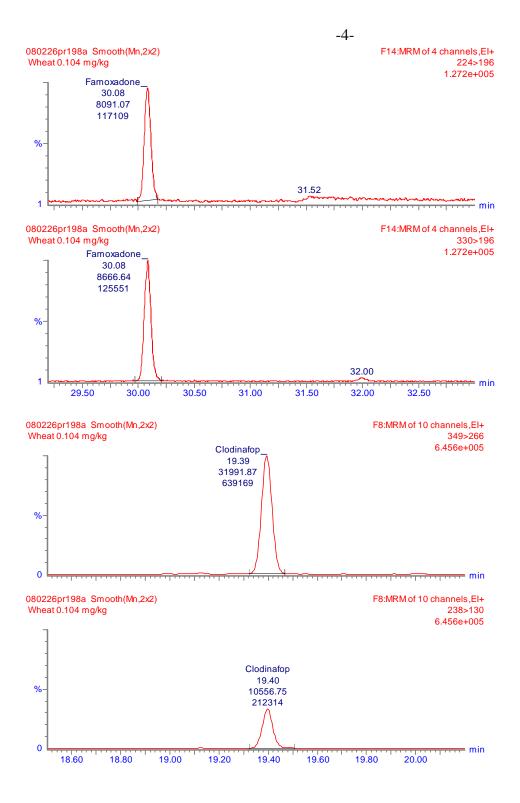
#### Selectivity and specificity:

GC-MS/MS is a highly selective method, and thereby highly specific. Two MRM transitions were used (two parent and two daughter ion) one for quantification and another transition for qualification. Parent and daughter ions are presented in appendix 1.

## 3. Validation design

The method was validated for 22 pesticides, isomers or degradation products (appendix 1) in wheat.

The validation was performed on 5-6 replicates at each of the three concentration levels. The concentration levels were 0.011, 0.02 and 0.104 mg/kg. A blank sample was included.


## 4. Chromatograms and calibration curves

Examples of chromatograms obtained when analysing the extracts by GC-MS/MS are presented in figure 1.

The calibration curve is determined by the analysis of each of the 22 analytes at 5 calibration levels, i.e. 0.00289, 0.0087, 0.0289, 0.0868 and 0.289  $\mu$ g/ml. The calibration curves were best fitted to a linear curve. The majority of the correlation coefficients (R) were higher or equal to 0.98. Examples of calibration curves are presented in Figure 2.

Five-point matrix-matched calibration curves were used for quantification. The concentration range was between 0.00289 and 0.289  $\mu$ g/ml. Triphenyl phosphate was used as internal standard and hexachlorbenzen (HCB) was used as quality control standard.

-3-



**Figure 1:** Examples of chromatograms for famoxadon and clodinafop-propargyl obtained when analysing extract of wheat spiked with 0.104 mg/kg.

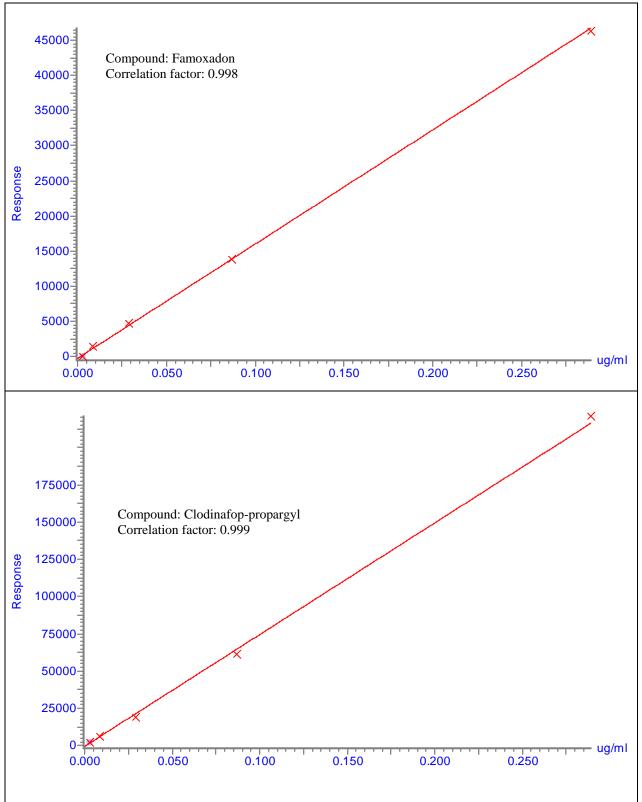



Figure 2. Examples of calibration curves for famoxadon and clodinafop-propargyl (concentrations from  $0.00289-0.289 \ \mu g/ml$ )

## **5.** Validation parameters

## **Precision – Repeatability**

Repeatability was calculated for all pesticides and degradation products on all three spiking levels.

Repeatability is given as the relative standard deviation on the result from two or more analysis at the same sample, done by the same technician, on the same instrument and within a short period of time. Repeatability in this validation was calculated from the 6 replicate determinations.

Repeatability were calculated as given in ISO  $5725-2^3$ .

Appendix 2 shows the relative repeatability for the validated pesticides, isomers and degradation products.

#### Accuracy – Recovery

The accuracy was determined by recovery samples spiked at three concentration levels. In appendix 2 recovery, repeatability and limit of quantification (LOQ) are given for the validated pesticides, isomers and degradation products. For most of the analytes the recovery from wheat were in the range of 75-110% for all three concentration levels (0.011 mg/kg, 0.02 mg/kg and 0.104 mg/kg). Recoveries may be seen in appendix 2.

#### Robustness

The QuEChERS method has earlier by Anastassiades et al. 2003<sup>1</sup> in connection with the development of the method been shown to be robust.

## Limit of quantification, LOQ

Quantification limits (LOQ) are calculated from the results at the lowest accepted spike level, as 6 times the standard deviation (absolute recovery). The quantification limits are given in appendix 2.

## 6. Criteria for the acceptance of validation results

For the pesticides to be accepted as validated the following criteria for precision and trueness must to be fulfilled:

1. The relative standard deviation of the repeatability must be less than or equal to the standard deviation proposed by  $Horwitz^4$ .

2. The average relative recovery must be between 70 and  $110\%^5$ .

If the above mentioned criteria have been meet, the detection limits have been calculated.

## 7. Results and discussion

The multi-residue method has been tested for 22 pesticides, isomers and degradation products in wheat.

The relative repeatability  $(RSD_r)$  varied between 2 to 21 %, however most of the values were around 5-16%.

For the majority of the pesticides the recovery was in the range of 80-96% at all three concentration levels.

The criteria for acceptance were met for 21 out of 22 pesticides, isomers and degradation products (listed in Table 1). The LOQs ranged from 0.003 mg/kg to 0.015 mg/kg with a median at 0.010 mg/kg. The lowest calibration level (LCL) was 0.00289  $\mu$ g/ml corresponding to LOD at 0.006 mg/kg. However most of the LOQs are at or above 0.010 mg/kg.

The pesticides, isomers and degradation product which has been validated presented in table 1 are divided in to two groups, one for the compounds for which the acceptance criteria could be meet (Accepted) and those which could not meet the acceptance criteria (Not accepted).

The results for the different pesticides which were accepted are listed in Appendix 1.

| Wheat<br>Accepted (21 compour                                                                                         | ade)                                                                                                                      |                                                                              |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Fuberidazol<br>Tetraconazole<br>Triadimenol<br>Paclobutrazol<br>Carboxin<br>Flusilazole<br>Diniconazole<br>Quinoxafen | Clodinafop<br>Proquinazid<br>Diflufenican<br>Epoxiconazole<br>Bromuconazole<br>Dimoxystrobin<br>Picolinafen<br>Flurtamone | Fenoxaprop-p<br>Prochloraz<br>Tau-fluvalinate<br>Famoxadone<br>Cinidon-ethyl |
| Not accepted (1 compo<br>Fludioxonil                                                                                  | ounds)                                                                                                                    |                                                                              |

 Table 1: Compounds validated and not accepted as validated for wheat.

The QuEChERS method has in connection with the development been shown to be rugged<sup>1</sup>.

## 8. Conclusions

In conclusion 21 of 22 pesticides, isomers and degradation products were validated for the

QuEChERS method using GC-MS/MS for the analysis.

## 9. References

1 http://www.quechers.com/ or Anastassiades et al., J. AOAC Int., vol. 86, no. 2, p. 412, 2003

2 The Composition of Foods – fourth edition by Erling Saxholt, Gyldendals, 1996.

3 ISO 5725-2:1994. Accuracy (trueness and precision) of measurement methods and results - Part

2. Basic method for the determination of repeatability and reproducibility of standard measurement method. First edition. December 1994.

4 W. Horwitz, Anal. Chem., 1982; 54, 67A.

**5** Method Validation and Quality Control Procedures for Pesticide Residue Analysis in Food and Feed, Document No SANCO/2007/3131, 31/October/2007, European Commission, Brussels, 2007.

|    |                      |          | Fragment | Collision |           |          | Fragment |          |           |
|----|----------------------|----------|----------|-----------|-----------|----------|----------|----------|-----------|
|    | Pesticide/metabolite | Parent 1 | 1        | energy 1  | intensity | Parent 2 | 2        | energy 2 | intensity |
| 1  | Bromoconazole-1      | 295      | 173      | 10        | 1260000   | 293      | 173      | 15       | 1010000   |
| 2  | Bromoconazole-2      | 295      | 173      | 15        | 848000    | 293      | 173      | 15       | 930000    |
| 3  | Carboxin             | 235      | 143      | 5         | 10200000  | 143      | 87       | 5        | 8290000   |
| 4  | Cinidon ethyl        | 358      | 330      | 10        | 2100000   | 330      | 302      | 15       | 1620000   |
| 5  | Clodinafop-prop.     | 349      | 266      | 10        | 2250000   | 238      | 130      | 20       | 603000    |
| 6  | Diflufenican         | 394      | 266      | 15        | 14000000  | 265      | 246      | 10       | 2870000   |
| 7  | Dimoxystrobin        | 116      | 89       | 15        | 6960000   | 205      | 116      | 10       | 6660000   |
| 8  | Diniconazole         | 268      | 232      | 15        | 761000    | 270      | 232      | 10       | 558000    |
| 9  | Epoxiconazole        | 192      | 138      | 10        | 3030000   | 165      | 138      | 10       | 830000    |
| 10 | Famoxadone           | 330      | 196      | 20        | 38900000  | 224      | 196      | 10       | 30400000  |
| 11 | Fenoxaprop-p         | 288      | 119      | 5         | 3120000   | 361      | 288      | 10       | 2820000   |
| 12 | Fludioxonyl          | 248      | 127      | 20        | 9000000   | 154      | 127      | 5        | 3150000   |
| 13 | Flurtamone           | 333      | 120      | 20        | 1470000   | 199      | 157      | 15       | 503000    |
| 14 | Flusilazole          | 314      | 233      | 20        | 2360000   | 206      | 137      | 20       | 1380000   |
| 15 | Fuberidazole         | 155      | 129      | 20        | 1220000   | 184      | 156      | 10       | 6210000   |
| 16 | Paclobutrazol        | 236      | 125      | 15        | 1430000   | 238      | 127      | 15       | 564000    |
| 17 | Picolinafen          | 375      | 238      | 20        | 7880000   | 377      | 239      | 15       | 1370000   |
| 18 | Prochloraz           | 180      | 138      | 10        | 418000    | 308      | 266      | 5        | 224000    |
| 19 | Proquinazid          | 288      | 245      | 15        | 16200000  | 330      | 288      | 5        | 8450000   |
| 20 | Quinoxyfen           | 237      | 208      | 20        | 5820000   | 272      | 237      | 15       | 4940000   |
| 21 | Tau-fluvalinate-1    | 208      | 181      | 15        | 3560000   | 250      | 200      | 20       | 1150000   |
| 22 | Tau-fluvalinate-2    | 250      | 200      | 20        | 1040000   | 208      | 181      | 10       | 368000    |
| 23 | Tetraconazole        | 171      | 136      | 10        | 1450000   | 337      | 220      | 15       | 933000    |
| 24 | Triadimenol-1        | 168      | 70       | 5         | 1180000   | 128      | 100      | 10       | 299000    |
| 25 | Triadimenol-2        | 168      | 70       | 10        | 1470000   | 128      | 100      | 10       | 587000    |

# Appendix 1. MRM transitions for the pesticides sought validated.

## -10-

# Appendix 2. Repeatability, recovery and limit of quantification.

In the tables are presented repeatability and LOQ for the validated compounds. Values outside the acceptance criteria are written in italic and by grey background.

| FuberidazolTetraconazoleTriadimenolPaclobutrazolCarboxin                 | level<br>mg/kg<br>0.011<br>ecovery,<br>%<br>91<br>117<br>111<br>120<br>85<br>105 | Horwitz,<br>%<br>32<br><b>RSDr,%</b><br>14<br>15<br>15<br>14<br>15 | level<br>mg/kg<br>0.02<br><b>Recovery,</b><br>%<br>75<br>113<br>96 | Horwitz,<br>%<br>29<br><b>RSDr, %</b><br>6<br>7 | level<br>mg/kg<br>0.104<br>Recovery,<br>%<br>65 | Horwitz,<br>%<br>22<br><b>RSDr, %</b> |   | LOQ   |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------|---|-------|
| Fuberidazol<br>Tetraconazole<br>Triadimenol<br>Paclobutrazol<br>Carboxin | 0.011<br>ecovery,<br>%<br>91<br>117<br>111<br>120<br>85                          | 32<br>RSDr, %<br>14<br>18<br>15<br>14                              | 0.02<br>Recovery,<br>%<br>75<br>113                                | 29<br><b>RSDr, %</b><br>6                       | 0.104<br>Recovery,<br>%<br>65                   | 22<br>RSDr, %                         |   |       |
| FuberidazolTetraconazoleTriadimenolPaclobutrazolCarboxin                 | ecovery,<br>%<br>91<br>117<br>111<br>120<br>85                                   | RSDr, %<br>14<br>18<br>15<br>14                                    | <b>Recovery</b> ,<br>%<br>75<br>113                                | <b>RSDr, %</b>                                  | Recovery,<br>%<br>65                            | RSDr, %                               |   |       |
| Fuberidazol<br>Tetraconazole<br>Triadimenol<br>Paclobutrazol<br>Carboxin | %       91       117       111       120       85                                | 14<br>18<br>15<br>14                                               | %<br>75<br>113                                                     | 6                                               | %<br>65                                         |                                       |   |       |
| Tetraconazole Triadimenol Paclobutrazol Carboxin                         | 91<br>117<br>111<br>120<br>85                                                    | 18<br>15<br>14                                                     | 75<br>113                                                          |                                                 | 65                                              | 11                                    | _ |       |
| Tetraconazole<br>Triadimenol<br>Paclobutrazol<br>Carboxin                | 117<br>111<br>120<br>85                                                          | 18<br>15<br>14                                                     | 113                                                                |                                                 |                                                 | 11                                    |   | 0.000 |
| Triadimenol<br>Paclobutrazol<br>Carboxin                                 | 111<br><u>120</u><br>85                                                          | 15<br>14                                                           |                                                                    | 7                                               |                                                 |                                       |   | 0.008 |
| Paclobutrazol Carboxin                                                   | <mark>120</mark><br>85                                                           | 14                                                                 | 96                                                                 | ,                                               | 104                                             | 5                                     |   | 0.009 |
| Carboxin                                                                 | 85                                                                               |                                                                    |                                                                    | 12                                              | 93                                              | 10                                    |   | 0.011 |
|                                                                          |                                                                                  | 15                                                                 | 103                                                                | 7                                               | 93                                              | 10                                    |   | 0.009 |
| <u> </u>                                                                 | 105                                                                              |                                                                    | 75                                                                 | 8                                               | 68                                              | 8                                     |   | 0.008 |
| Flusilazole                                                              |                                                                                  | 13                                                                 | 99                                                                 | 10                                              | 86                                              | 7                                     |   | 0.009 |
| Diniconazole                                                             | 104                                                                              | 14                                                                 | 91                                                                 | 12                                              | 82                                              | 6                                     |   | 0.009 |
| Quinoxafen                                                               | 93                                                                               | 16                                                                 | 86                                                                 | 12                                              | 82                                              | 7                                     |   | 0.010 |
| Clodinafop                                                               | 94                                                                               | 16                                                                 | 87                                                                 | 7                                               | 89                                              | 9                                     |   | 0.010 |
| Proquinazid                                                              | 93                                                                               | 16                                                                 | 86                                                                 | 9                                               | 95                                              | 8                                     |   | 0.010 |
| Diflufenican                                                             | 92                                                                               | 17                                                                 | 86                                                                 | 8                                               | 84                                              | 9                                     |   | 0.010 |
| Epoxiconazole                                                            | 97                                                                               | 16                                                                 | 83                                                                 | 9                                               | 74                                              | 8                                     |   | 0.010 |
| Bromuconazole                                                            | 89                                                                               | 17                                                                 | 76                                                                 | 8                                               | 72                                              | 7                                     |   | 0.010 |
| Dimoxystrobin                                                            | 96                                                                               | 15                                                                 | 81                                                                 | 11                                              | 73                                              | 7                                     |   | 0.009 |
| Picolinafen                                                              | 94                                                                               | 17                                                                 | 84                                                                 | 10                                              | 80                                              | 6                                     |   | 0.010 |
| Flurtamone                                                               | 90                                                                               | 19                                                                 | 80                                                                 | 4                                               | 82                                              | 7                                     |   | 0.011 |
| Fenoxaprop-p                                                             | 76                                                                               | 19                                                                 | 70                                                                 | 2                                               | 80                                              | 8                                     |   | 0.010 |
| Prochloraz                                                               | 107                                                                              | 21                                                                 | 81                                                                 | 7                                               | 80                                              | 10                                    |   | 0.015 |
| Tau-fluvalinate                                                          | 93                                                                               | 17                                                                 | 85                                                                 | 9                                               | 68                                              | 9                                     |   | 0.011 |
| Famoxadone                                                               | 122                                                                              | 45                                                                 | 101                                                                | 8                                               | 101                                             | 7                                     |   | 0.010 |
| Cinidon-ethyl                                                            | 109                                                                              | 36                                                                 | 92                                                                 | 2                                               | 95                                              | 5                                     |   | 0.003 |
|                                                                          |                                                                                  |                                                                    |                                                                    |                                                 |                                                 |                                       |   |       |
| Maximum                                                                  | 111                                                                              | 21                                                                 | 113                                                                | 12                                              | 104                                             | 10                                    |   | 0.015 |
| Minimum                                                                  | 76                                                                               | 13                                                                 | 70                                                                 | 2                                               | 72                                              | 5                                     |   | 0.003 |
| Median                                                                   | 93                                                                               | 16                                                                 | 86                                                                 | 8                                               | 83                                              | 7                                     |   | 0.010 |
| Average                                                                  | 95                                                                               | 16                                                                 | 87                                                                 | 8                                               | 86                                              | 8                                     |   | 0.010 |